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Polarity fields are known to exhibit long distance patterns, in both physical and biological systems.

The mechanisms behind such patterns are poorly understood. Here, we describe the dynamics of

polarity fields using an original physical model that generalizes classical spin models on a lattice by

incorporating effective transport of polarity molecules between neighboring sites. We account for

an external field and for ferromagnetic interactions between sites and prescribe the time-evolution

of the system using two distinct dissipative classes for non-conserved and conserved variables repre-

senting polarity orientation and magnitude, respectively. We observe two main types of steady-state

configurations – disordered configurations and patterns of highly polar spots surrounded by regions

with low polarity – and we characterise patterns and transitions between configurations. Our results

may provide alternative pattern-generating mechanisms for materials endowed with polarity fields.

It is important to investigate the mechanisms under-

lying the formation of patterns in polarity fields. Exper-

iments and models revealed pattern formation in both

passive and active media involving polymers or rods [1–

4]. Biological tissues may also be considered as polar

materials formed of cells, each expressing distinct polari-

ties [5–7]. For instance, the asymmetric distribution of a

specific protein within a cell or at its periphery defines a

polarity [8, 9]. Planar cell polarity (PCP) is observed in

thin tissues and entails the polarization of cells tangen-

tially to the tissue sheet [10]. PCP often exhibits long

distance patterns that play important roles in tissue mor-

phogenesis by regulating cell division, cell flow, and tis-

sue mechanics [11–14]. PIN1 (PIN FORMED1) proteins

that enable the transport of a plant hormone, auxin, and

PCP complexes in the Drosophila wing are well-studied

examples of polarity fields [10, 15–18]. Experimental ob-

servations suggest that polarity can be coordinated over

a tissue. This could occur in two ways. All cells could

have their own target polarity, each coupled to an exter-

nal field that prescribes the overall pattern. To reach a

global polarity pattern, this would require a well-defined

external field, that may be a fluid flow, gradient of chem-

ical signal, or shear stress [19–21]. Alternatively, the

interactions between the polarities of neighboring cells

regulate pattern formation. Such cell-cell couplings may

operate directly, through membrane-spanning complexes,

or indirectly, through diffusing molecules [17, 18, 22–27].

For instance, auxin couples the polarity of PIN1 proteins

in neigboring cells: PIN1 polarity is enhanced by auxin,

which is, in turn, transported by PIN1 proteins.

An important class of biophysical models that describe

coupling and patterning of polarities is based on classi-

cal physical models of interacting magnetic dipoles. In

particular, Ising, XY, and liquid crystal models have

been used to study formation of such patterns [28, 29].

All these models successfully explain the alignment be-

tween different fields or between a field and an exter-

nal flow [14, 19–21, 24, 27]. However, the formation of

non-uniform or intermittent patterns is still poorly un-

derstood. In this letter, we extend the classical dipole

models and allow for transport of polarity molecules be-

tween neighboring cells. In a simplified approach, we con-

sider transport of polarity as a proxy for molecular pro-

cesses that couple the polarities of neighboring cells and

transport of molecules interacting with them. Including

such a possibility in our theoretical model is motivated

by interaction of PIN1 polarity and the long-range sig-

nal auxin. We find that transport generates behaviors

that differ significantly from those of the classical mod-

els [20, 28, 29]. In particular, our model yields spatial

patterns with localized polarity.

Our model describes a field of polar cells in a two di-

mensional tissue, assumed to form a square lattice of

identical cells. In 2D, a polarity can be a vector or a

nematic described by an angle, φ, and a magnitude, ρ.
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These variables are given for individual cells indexed by

α, φ = φα and ρ = ρα. We formulate the model for

nematic polarity fields, though it can easily be extended

to vector polarities. The simplest interaction energy is

given by the inner products of polarities,

E = −K
∑
〈α,β〉

ραρβ cos 2(φα − φβ)− F
∑
α

ρα cos 2φα. (1)

The first term describes the interaction between neigh-

bors, assuming a positive coupling constant, K; the sum

is over all pairs of neighboring sites 〈α, β〉. This term

is minimized when neighboring polarity nematics align

and increase in amplitude. The second term corresponds

to alignment with an external field F that is parallel to

the x axis and the sum is over all sites. The factor of 2

in the argument of cosines reflects the nematic nature of

polarities and should be removed for vector polarities.

Concerning dynamics, we assume different dissipative

properties for orientation and magnitude. The nematic

orientation, φ, follows a stochastic differential equation

for a non-conserved variable (model A in [30]),

dφα
dt

= −ξa
δE

δφα
+ ηα(t). (2)

Here ξa is the dissipative coefficient. δ depicts the func-

tional derivative, which can be replaced by a partial

derivative in a discrete model. ηα(t) is an uncorrelated

random noise with zero mean and white noise spectrum.

In the numerics, η is a random variable with Gaussian

normal distribution and standard deviation ζ, propor-

tional to the square root of an effective temperature (see

Supplementary Note).

Transport of polarity is considered as a proxy of molec-

ular processes involved in site-site or site-external field

couplings. Accordingly, we describe the dynamics of po-

larity magnitude, ρ by a partial differential equation for

a conserved variable (Model B in [30]),

dρα
dt

= ξρ∆
δE

δρ
|α +D∆ρ|α . (3)

Here ξρ is the corresponding dissipative coefficient and ∆

is the 2D Laplacian operator. Intercellular transport is

the main novelty of our model and will appear to dras-

tically influence the dynamics of the system. Transport

is not intrinsically active since it is driven by fluxes to

minimize the energy function. We also account for pure

diffusion, with a coefficient D = µkBT that depends on

the effective temperature T , µ being a mobility. This

FIG. 1. Steady state configurations of the polarity field in a

20×20 square lattice in the presence of an external field. The

polarity orientation at each site is shown a black bar. The

magnitude of polarity is color-coded with the same scale for

all panels. The noise level is ζ = 1.8. Each panel corresponds

to different transport properties: (A) ξρ = 0, D = 0, (B)

ξρ = 2, D = 0, (C) ξρ = 0, D = 0.033, (D) ξρ = 2, D = 0.033.

effectively incorporates noise into this equation, without

explicitly including stochastic noise as in Eq. (8). In this

formulation, the total polarity magnitude is conserved

although this is not a key assumption in our model.

The dynamic equations for φ and ρ can be solved nu-

merically on a lattice of N ×N square cells with periodic

boundary conditions (see Supplementary Note). The ini-

tial conditions for polarity magnitude and orientation in

each cell are given by random numbers with uniform dis-

tributions. In the Supplementary Note, we show how the

solutions reach quasi-stationary states, with total energy

decreasing and reaching a plateau. We here study states

for different choices of parameters. We present the results

as a function of normalized model parameters, though we

use the same notations for convenience (see Supplemen-

tary Note). In the following, we analyze separately how

each of the two energy terms (Eq. 1) influences the dy-

namics of the polarity network.

Nonuniform patterns with an external field. We first

study the response to an external field with no coupling
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FIG. 2. Influence of model parameters on order parameters

(p1 and p2). We assume the diffusion constant proportional

to the square of noise strength, D = dζ2. Error bars represent

the standard error of the mean (SEM).

between neighbors (K = 0). We rewrite Eqs. (8-3) as

dφα
dt

= −2ξaFρα sin 2φα + ηα(t),

dρα
dt

= −ξρ∆f |α +D∆ρ|α , fα = F cos 2φα , (4)

We first consider an intermediate value of noise (see here-

after for a more rigorous definition of intermediate). No

order can be seen for static polarity magnitude when

ξρ = 0, without (D = 0, Fig. 1A) or with diffusion

between neighbors (D > 0, Fig. 1C), when polarity

magnitude is homogenous and polarity nematic is ran-

domly oriented. In contrast, the transport of polarity

molecules between neighbors (ξρ > 0) leads to a con-

figuration with inhomogeneous distributions of polarity

(Fig. 1B,D). Starting from a random initial state, polar-

ity magnitude increases in cells that are initially better

aligned with the external field, due to intercellular trans-

port. In parallel, due to lower interaction energy in cells

with larger polarity magnitude, fluctuations of orienta-

tion are reduced, enhancing alignment with the external

field and amplifying polarity. This feedback loop yields

domains of high polarity magnitude, in which the orien-

tation follows the external field, while elsewhere, polarity

magnitude remains low and orientation appears random.

To analyze patterns, we compute two order parameters

defined from spatial averages: the average alignment of

polarity p1 = 〈cos 2φα〉 and the average magnetization

p2 = 〈ρα cos 2φα〉. Note that −Fp2 is equal to the av-

erage internal energy per site (see Eq. 1). In Fig. 2, we

study how these order parameters change as a function

FIG. 3. Noise at transition to non-uniform patterns in Fig. 2,

shown as a function of transport constant ξρ: adiabatic ap-

proximation (lines) and numerical solutions (diamonds) with

error bars representing uncertainties.

of noise strength ζ, a proxy for the effective temperature

T . Because ζ is proportional to
√
T while the diffusion

coefficient D is proportional to T , we vary parameters so

that D = dζ2, the constant d being a function of mobility

and dissipative coefficient. In the absence of transport of

polarity molecules (ξρ = 0), the two order parameters

simultaneously decrease with noise strength, similar to

classical models. However, they split when transport is

allowed (ξρ > 0). Average alignment, p1, shows a drop

when noise becomes positive, while magnetization, p2,

persists over a finite range of noise strengths. This split

reflects the formation of spatial patterns, which have low

global alignment and high global magnetisation. It oc-

curs at finite values of noise, that we call intermediate.

At very high noise, patterns disappear. Fig. 2 also shows

that increasing transport coefficient ξρ and decreasing

diffusion d sustain patterns and delay their disappear-

ance.

The transition between uniform state and patterns can

be investigated analytically in the adiabatic limit where

φ varies in time much faster than ρ. φ then follows

the Boltzmann distribution associated with the energy

2ξaFρα cos 2φα. The time average, m, of cos 2φα is there-

fore given by m = I1(e)/I0(e), where I0 and I1 are mod-

ified Bessel functions and e = Fρα/kBT . m vanishes for

ρα = 0, meaning that the orientation is temporally ran-

dom, and m = 1 for large ρ, meaning that the orientation

follows the external field, as observed in Fig. 1B,D. We

expand the equations around a homogenous state where

the distribution of polarity magnitude is uniform. The

dynamics of magnitude ρ is then described by a diffusion

equation dρ/dt = (D − cξρF 2/kBT )∆ρ, where c = 1/2

for e � 1. The homogenous state is stable only if D >
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FIG. 4. Steady state configurations of polarity fields when

neighbors are coupled. The lattice size is 20×20. The polarity

orientation at each site is shown by a black bar. The polarity

magnitude is color-coded with the same scale for all panels.

The constant of driven polarity transport ξρ = 0.067. Noise

strength, ζ, varies between panels: (A) 0, (B) 0.73, (C) 1.46,

(D) 1.95. The diffusion constant is proportional to the square

of noise strength: D = dζ2, with d = 0.11.

cξρF
2/kBT or equivalently ζ > ζt = (2ξacF

2ξρ/d)1/4,

which is in semi-quantitative agreement with numerical

solutions (Fig. 3).

Patterns driven by the interaction between neighbors.

We now remove the external field to focus on the role of

coupling between neighboring cells (although many of the

observations hold with an external field). The dynamic

equation for polarity orientation becomes

dφα
dt

= 2Kξaρα
∑
β

ρβ sin 2(φβ − φα) + ηα(t), (5)

while its magnitude follows Eq. (4) with f replaced by

fα = K
∑
β

ρβ cos 2(φα − φβ), (6)

with summation over all neighbors of cell α.

When transport of polarity molecules is allowed, the

behavior of our model differs from the classical XY

model. Fig. 4 shows typical steady-state configurations

of polarity fields. Starting from a random distribution

of polarity, the polarity magnitude becomes localized in

small regions. Like in the first part of the paper, po-

larity orientation is aligned in high magnitude regions

FIG. 5. Average energy per site ē = E/N2, normalized by

2ε = 2Kρ̄2, in the steady state as a function of noise strength.

The diffusion constant is proportional to the square of noise

strength: D = dζ2, with d = 0.11.

and appears random elsewhere. However, polarity ori-

entation varies from domain to domain, with no appar-

ent correlation. Alignment appears stronger when ξρ is

smaller. Domains merge into bigger domains when noise

strength is increased (Fig. 4C). Domains cease to exist

above a critical noise strength and the system reaches a

configuration with roughly uniform polarity magnitude

and random orientation (Fig. 4D).

We now analyze system behavior quantitatively. Fig. 5

illustrates the steady state internal energy (which differs

from the free energy) as a function of noise strength for

different values of the driven transport constant, ξρ. As

expected, when ξρ = 0, the average internal energy in-

creases with increasing noise as in classical models. For

ξρ > 0, the average energy slowly decreases with noise

strength, then drops sharply before rising to its maximum

value corresponding to a network with a homogenous dis-

tribution of polarity magnitudes and random phase. The

size of high magnetization domains hardly changes for

intermediate noise strength and increases rapidly near

the transition. (Fig. 6A, obtained with bigger lattice of

100× 100). The wavelength behaves similarly to domain

size, it remains finite even when noise strength vanishes

and it increases at the transition (Fig. 6B, see Supple-

mentary Note for details).

To better understand these patterns, we consider the

continuum limit of the model. The energy can be ap-

proximated as E = K/2
∫

dxdy{−4ρ2/a2 + (∇ρ)2 +

4ρ2(∇φ)2}, where a is lattice size. The dynamics of po-

larity magnitude, linearized around a uniform state, fol-

lows dρ/dt = (D − 4Kξρ)/a
2∆ρ − Kξρ∆

2ρ. The uni-

form state is unstable whenever 4Kξρ > D and the

most unstable wavelength is πa/(1− D
4Kξρ

)1/2. This ac-

counts for the disappearance of patterns at high noise,

while predicted wavelengths agree with numerical solu-
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FIG. 6. Size of steady-state patterns as a function of noise

strength for a 100 × 100 lattice. (A) Average diameter of

domains with high density for two values of the dissipation

coefficient ξρ in numerical solutions. Error bars (SD) are

smaller than markers. (B) Comparison of the dominant wave-

length between numerical solutions (shown as a range of the

most robust wavelengths) and the continuum limit estimate.

D = dζ2, with d = 0.11 for all.

tions (Fig. 6B).

Conclusion. Our results demonstrate how adding

intercellular transport of polarity magnitude to the XY

model qualitatively affects its dynamics and results in the

formation of patterns, consisting of confined regions with

high magnitudes of polarity, within a finite range of ef-

fective temperatures, reminiscent of transitions observed

in polymer suspensions [1–3].

Future extensions could account for a non-conserved

polarity field. It would be interesting to investigate sys-

tem behavior with source and sink terms in the dynamic

equations. To be closer to a biological tissue, we could

consider lattices with different topologies, such as hexag-

onal, although we do not expect qualitative changes be-

cause the continuous limit of the model is well-defined as

long as interactions are ferromagnetic (K > 0).

Our model may apply to specific biological systems or

to other polar media. Although there is no evidence of

direct transport of polarity proteins in biological tissues,

other molecules may be transported that influence po-

larity magnitude. In this context, our study theorizes

a novel mechanism for the self-organization of long dis-

tance patterns, that may be relevant to animal skin ap-

pendages or to hairs in plant epidermis. This mechanism

might serve as a conceptual framework to think about

such experimental systems, or as a starting point to de-

velop more realistic models, for instance with additional

mobile molecules that may mediate cell-cell coupling. Fi-

nally, since our model is based on the general XY model

that has been used extensively to describe systems such

as magnetic rotors or spin glasses [31, 32], our extension

could be significant for some of these systems.
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daev, É. Roldán, and G. Ingram, for reviewing or proof-

ing the manuscript prior to submission, and anony-

mous reviewers for helping to significantly improve the

manuscript.
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SUPPLEMENTARY NOTE

Numerical methods. We numerically solve the equations on an N × N square network with lattice size a,

considering periodic boundary conditions. We use Euler integration method for stochastic systems. The initial

conditions are such that the orientation of polarity at each site is a random variable with a uniform distribution in the

interval (0, π). Two cases are considered for the initial magnitude of polarity. In the main case, polarity magnitude

is a random variable with a uniform distribution. In a particular case, polarity magnitude is localized in a square of

four sites in the center. The spatial average of polarity magnitude is the same for the two initial conditions.

In our numerical analysis, we do not calculate the Laplacian directly. Instead, to ensure that polarity magnitudes

remain positive, we approximate the flux from site α to its neighbor β by

Jα,β = −ξρ
a

(fα − fβ) +
D

a
(ρα − ρβ). (7)

In such a square lattice, each site can also be defined by two indices (i, j) representing the position along x and y

axes. The neighbors of site α are then indexed by (i+ 1, j), (i− 1, j), (i, j + 1), and (i, j − 1). For practical reasons,

we assume that a site has zero outgoing flux if its polarity magnitude is smaller than a threshold, which we generally

take as 1% of the average polarity magnitude, though the value does not affect the results as far as it is small.

We consider the diffusion constant D = µkBT , where µ is the mobility and T is an effective temperature accounting

for random noise in the system. This effective temperature can be greater than thermal energy. The noise ηα(t) is an

uncorrelated random noise with zero mean and a white noise spectrum 〈ηα(t)ηβ(t′)〉 = 2ξakBTδα,βδ(t − t′). In our

numerics, at each step η is computed from an independent random variable with Gaussian normal distribution of zero

mean and standard deviation of ζ/
√
dt. Here dt represents the time step and ζ =

√
2ξakBT is proportional to square

root of an effective temperature. We consider the diffusion constant to be proportional to the square of noise strength

D = dζ2, where d is a constant. We integrate the dynamical equation of polarity magnitude and angles using a time

step of dt = 10−4.

For our numerical solutions and the presented plots, we use the following normalization of parameters. Lattice size

a and time unit scale 1/(2ξaε) are used correspondingly to normalize length and time. Here ε is the scaling energy,

given by F ρ̄ and Kρ̄2, respectively, in the first and second cases. ρ̄ represents the average polarity magnitude per

site. Moreover, ξρ is normalized by 2ξaa
2ρ̄2, ζ is normalized by

√
2ξaε, and d is normalized by a2.

Transient behavior and steady state. In this study, we are mostly interested in the steady-state behavior of

the system. Therefore, we solve the equations until a steady configuration is reached. As an illustration, we show

here typical transient behavior of the system, starting from a random configuration. Fig. 7 shows the dynamics of

the network in the presence of external field, when there can be exchange of polarity magnitude between neighbors.

Fig. 8 represents network dynamics for the second case with coupling between neighbors in the absence of external

field. This figure reveals how domains are formed and become stable during time driven by the exchange between

neighbors. Following the transient, polarity magnitude is relatively fixed and exchanges between neighbors hardly

occur. Polarity orientation may still vary, most notably in regions with low polarity magnitude and at high noise.

However, we are always careful that the state variables, such as order parameters and energy, have reached a steady

state. Fig. 9 shows that the energy of the same systems decays and indeed reaches a plateau.

Estimate of transition between uniform and localized states. We analyze transition between uniform states with

homogenous distribution of polarity magnitude and non-uniform sates in which polarity magnitude is localized in some

sites. In the first case, in the presence of external field, we estimate the transition point where the order parameters

p1 and p2 reunite. This happens at finite noise level for non-zero values of the polarity magnitude transport constant

ξρ > 0 (see Fig. 2 in the main text). The interval of noise strength in our numerics is then considered as an estimate

of the maximum uncertainty of the transition noise.

Initial condition. We note that, steady state solutions can depend on initial configuration when noise is small. As

an illustration, in the second case with neighbor coupling we start from a configuration where the polarity molecules

are localized in the center. Figs. 10A-B show that the polarity molecules spread out even in the absence of diffusion.
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FIG. 7. An example of a polarity field dynamics in a lattice of size 20 × 20 in the presence of an external field, initialized by

a random distribution of polarity magnitude. Each time frame represents 4 ∗ 104 time steps. The polarity orientation at each

site is shown by a black bar. Magnitude of polarity is color-coded with the same scale for all panels. It corresponds to the data

presented in Fig. 1D in the main text.

However, the final configuration appears to remain pinned near the center, as compared to Fig.4A-B in the main text.

Therefore, at low noise, the final state of the system may be influenced by pre-patterns, i.e. by the patterns present

in the initial condition.

Analysis of domain size. We use a simple method to quantify the average size of patterns. First, we calculate

the diameter of domains as a measure of their size. We consider a threshold of polarity magnitude to define border

of domains. This threshold is unimportant because domain size hardly varies with the value of the threshold within

a reasonable range. In our numerics, we chose to use a threshold of 3. For each domain, the diameter is estimated

as the largest border-to-border distance along the x axis. This is a legitimate estimate since domains are relatively

symmetric. In each lattice the total number of domains is denoted by Nc. We provide the density of domains Nc/N
2,

where N is lattice size (Fig. 11). We calculate the mean and standard deviation of the size of domains in each lattice

(Fig. 6 in the main text), that is relatively very small.

Moreover, we analyze the patterns by computing the Fourier transform of the polarity density. For a network of

size N ×N with periodic boundary conditions, the Fourier coefficients of ρ are given by

ρ̃(nx, ny) =
∑
i,j

ρ(i, j)e2πi(inx+jny)/N . (8)

Here ρ̃(nx, ny) is a complex number for any set of integers nx, ny. We define n =
√
n2x + n2y and find n∗ that maximizes
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FIG. 8. An example of a polarity field dynamics in a lattice of size 20 × 20 with coupling between neighbors initialized by a

random distribution of polarity magnitude. Each time frame represents 105 time steps. The polarity orientation at each site

is shown by a black bar. Magnitude of polarity is color-coded with the same scale for all panels. d = 0.11 and ξρ = 0.067.

ζ = 1.22.

FIG. 9. Time evolution of average energy per site for the lattice shown in (A) Fig. 7 and (B) Fig. 8.

|ρ̃(n)|. The most robust wavelength is then given by N/n. Because of the uncertainty in finding the position of the

maximum of |ρ̃(n)| in our numerical solutions, we show a range for the most robust wavelength (Fig. 12 and Fig. 6B

in the main text).
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FIG. 10. Steady state configurations of polarity fields with coupling between neighbors for the initial condition of polarity

magnitude localized in the center. The lattice size is 20 × 20. The polarity orientation at each site is shown by a black bar.

The polarity magnitude is color-coded with the same scale for all panels. The constant of driven polarity transport ξρ = 0.067.

Noise strength, ζ, varies between panels: 0 (A), 0.73 (B). The diffusion constant is proportional to the square of noise strength:

D = dζ2, with d = 0.11.

FIG. 11. Number density of domains as a function of noise strength for a lattice of size 100 × 100 in steady-state limit. The

data corresponds to the solutions presented in Fig. 6A in the main text.

FIG. 12. Comparison of the dominant wavelength between numerical solutions and the continuum limit estimate ξρ = 0.133.

Numerical solutions correspond to the steady state solution for a lattice of size 100 × 100 as presented in Fig. 6A in the main

text.
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