F. M. Alferez, K. M. Gerberich, J. Li, Y. Zhang, J. H. Graham et al., Exogenous nicotinamide adenine dinucleotide induces resistance to citrus canker in citrus, Front. Plant Sci, vol.9, p.1472, 2018.

W. L. Araújo, A. Nunes-nesi, Z. Nikoloski, L. J. Sweetlove, and A. R. Fernie, Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues: TCA control and regulation in plant tissues, Plant Cell Environ, vol.35, pp.1-21, 2012.

S. Arrivault, M. Guenther, A. Ivakov, R. Feil, D. Vosloh et al., Use of reverse-phase liquid chromatography, linked to tandem mass spectrometry, to profile the Calvin cycle and other metabolic intermediates in Arabidopsis rosettes at different carbon dioxide concentrations, Plant J, vol.59, pp.826-839, 2009.

A. Bar-even, E. Noor, Y. Savir, W. Liebermeister, D. Davidi et al., The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters, Biochemistry, vol.50, pp.4402-4410, 2011.

T. Barrett, S. E. Wilhite, P. Ledoux, C. Evangelista, I. F. Kim et al., NCBI GEO: archive for functional genomics data sets-update, Nucleic Acids Res, vol.41, pp.991-995, 2013.

B. Beauvoit, I. Belouah, N. Bertin, C. B. Cakpo, S. Colombié et al., Putting primary metabolism into perspective to obtain better fruits, Ann. Bot, vol.122, pp.1-21, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02539159

B. P. Beauvoit, S. Colombié, A. Monier, M. Andrieu, B. Biais et al., Model-assisted analysis of sugar metabolism throughout tomato fruit development reveals enzyme and carrier properties in relation to vacuole expansion, Plant Cell, vol.26, pp.3224-3242, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01058814

I. Belouah, C. Nazaret, P. Pétriacq, S. Prigent, C. Bénard et al., Modeling protein destiny in developing fruit, Plant Physiol, vol.190, pp.1709-1724, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02327302

B. D. Bennett, E. H. Kimball, M. Gao, R. Osterhout, S. J. Van-dien et al., Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli, Nature Chem. Biol, vol.5, pp.593-599, 2009.

B. Biais, C. Bénard, B. Beauvoit, S. Colombié, D. Prodhomme et al., Remarkable reproducibility of enzyme activity profiles in tomato fruits grown under contrasting environments provides a roadmap for studies of fruit metabolism, Plant Physiol, vol.164, pp.1204-1221, 2014.

C. G. Bowsher, A. E. Lacey, G. T. Hanke, D. T. Clarkson, L. R. Saker et al., The effect of Glc6P uptake and its subsequent oxidation within pea root plastids on nitrite reduction and glutamate synthesis, J. Exp. Bot, vol.58, pp.1109-1118, 2007.

A. G. Briggs and A. F. Bent, Poly(ADP-ribosyl)ation in plants, Trends Plant Sci, vol.16, pp.372-380, 2011.

D. C. Centeno, S. Osorio, A. Nunes-nesi, A. L. Bertolo, R. T. Carneiro et al., Malate plays a crucial role in starch metabolism, ripening, and soluble solid content of tomato fruit and affects postharvest softening, Plant Cell, vol.23, pp.162-184, 2011.

S. Colombié, B. Beauvoit, C. Nazaret, C. Bénard, G. Vercambre et al., Respiration climacteric in tomato fruits elucidated by constraint-based modelling, New Phytol, vol.213, pp.1726-1739, 2017.

S. Colombié, C. Nazaret, C. Bénard, B. Biais, V. Mengin et al., Modelling central metabolic fluxes by constraint-based optimization reveals metabolic reprogramming of developing Solanum lycopersicum (tomato) fruit, Plant J, vol.81, pp.24-39, 2015.

R. P. Donaldson, Nicotinamide cofactors (NAD and NADP) in glyoxysomes, mitochondria, and plastids isolated from castor bean endosperm, Arch. Biochem. Biophys, vol.215, pp.90305-90313, 1982.

C. Dutilleul, Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity, and determine stress resistance through altered signaling and diurnal regulation, Plant Cell, vol.15, pp.1212-1226, 2003.

C. Dutilleul, Mitochondria-driven changes in leaf NAD status exert a crucial influence on the control of nitrate assimilation and the integration of carbon and nitrogen metabolism, Plant Physiol, vol.139, pp.64-78, 2005.

C. Dutilleul, S. Driscoll, G. Cornic, R. D. Paepe, C. H. Foyer et al., Functional mitochondrial complex I is required by tobacco leaves for optimal photosynthetic performance in photorespiratory conditions and during transients, Plant Physiol, vol.131, pp.264-275, 2003.

M. Faurobert, E. Pelpoir, and J. Chaïb, Phenol extraction of proteins for proteomic studies of recalcitrant plant tissues, Methods Mol. Biol, vol.355, pp.9-14, 2007.

N. Fernandez-pozo, Y. Zheng, S. I. Snyder, P. Nicolas, Y. Shinozaki et al., The tomato expression atlas, Bioinformatics, vol.33, pp.2397-2398, 2017.

B. Gakière, A. R. Fernie, and P. Pétriacq, More to NAD+ than meets the eye: a regulator of metabolic pools and gene expression in Arabidopsis. Free Radic, Biol. Med, vol.122, pp.86-95, 2018.

B. Gakière, J. Hao, L. De-bont, P. Pétriacq, A. Nunes-nesi et al., NAD + biosynthesis and signaling in plants, Crit. Rev. Plant Sci, vol.37, pp.1-49, 2018.

P. Geigenberger and A. R. Fernie, Metabolic control of redox and redox control of metabolism in plants, Antioxid. Redox Signal, vol.21, pp.1389-1421, 2014.

Y. Gibon, O. E. Blaesing, J. Hannemann, P. Carillo, M. Höhne et al., A robot-based platform to measure multiple enzyme activities in Arabidopsis using a set of cycling assays: comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness, Plant Cell, vol.16, pp.3304-3325, 2004.

Y. Gibon, E. Pyl, R. Sulpice, J. E. Lunn, M. Höhne et al., Adjustment of growth, starch turnover, protein content and central metabolism to a decrease of the carbon supply when Arabidopsis is grown in very short photoperiods, Plant Cell Environ, vol.32, pp.859-874, 2009.

Y. Gibon, B. Usadel, O. E. Blaesing, B. Kamlage, M. Hoehne et al., Integration of metabolite with transcript and enzyme activity profiling during diurnal cycles in Arabidopsis rosettes, Genome Biol, vol.7, p.76, 2006.

F. Guérard, P. Pétriacq, B. Gakière, and G. Tcherkez, Liquid chromatography/time-of-flight mass spectrometry for the analysis of plant samples: a method for simultaneous screening of common cofactors or nucleotides and application to an engineered plant line, Plant Physiol. Biochem, vol.49, pp.1117-1125, 2011.

S. N. Hashida, H. Takahashi, and H. Uchimiya, The role of NAD biosynthesis in plant development and stress responses, Ann. Bot, vol.103, pp.819-824, 2009.

S. Hashida, H. Takahashi, M. Kawai-yamada, and H. Uchimiya, , 2007.

, Arabidopsis thaliana nicotinate/nicotinamide mononucleotide adenyltransferase (AtNMNAT) is required for pollen tube growth: AtNMNATis required for pollen tube growth, Plant J, vol.49, pp.694-703

S. Hashida, A. Miyagi, M. Nishiyama, K. Yoshida, T. Hisabori et al., Ferredoxin/thioredoxin system plays an important role in the chloroplastic NADP status of Arabidopsis, Plant J, vol.95, pp.947-960, 2018.

S. Hashida, H. Takahashi, K. Takahara, M. Kawai-yamada, K. Kitazaki et al., NAD+ Accumulation during Pollen maturation in arabidopsis regulating onset of germination, Mol. Plant, vol.6, pp.216-225, 2012.

M. Havé, T. Balliau, B. Cottyn-boitte, E. Dérond, G. Cueff et al., Increases in activity of proteasome and papain-like cysteine protease in Arabidopsis autophagy mutants: back-up compensatory effect or cell-death promoting effect?, J. Exp. Bot, vol.69, pp.1369-1385, 2018.

L. Hunt, J. E. Gray, L. Hunt, M. J. Holdsworth, and J. E. Gray, The relationship between pyridine nucleotides and seed dormancy, New Phytol, vol.181, pp.341-351, 2007.

L. Hunt, F. Lerner, and M. Ziegler, NAD-new roles in signalling and gene regulation in plants, New Phytol, vol.163, pp.31-44, 2004.

A. Katoh, K. Uenohara, M. Akita, and T. Hashimoto, Early steps in the biosynthesis of NAD in Arabidopsis start with aspartate and occur in the plastid, Plant Physiol, vol.141, pp.851-857, 2006.

S. Köster, B. Upmeier, D. Komossa, and W. Barz, Nicotinic acid conjugation in plants and plant cell cultures of potato (Solanum tuberosum), Z. Naturforsch. C, vol.44, pp.623-628, 1989.

E. Kraszewska, The plant Nudix hydrolase family, Acta Biochim. Pol, vol.55, pp.663-671, 2008.

W. Kupis, J. Pa?yga, E. Tomal, and E. Niewiadomska, The role of sirtuins in cellular homeostasis, J. Physiol. Biochem, vol.72, pp.371-380, 2016.

B. Li, X. Wang, L. Tai, T. Ma, A. Shalmani et al., NAD kinases: metabolic targets controlling redox co-enzymes and reducing power partitioning in plant stress and development, Front. Plant Sci, vol.9, p.379, 2018.

W. Li, F. Zhang, Y. Chang, T. Zhao, M. E. Schranz et al., , 2015.

, Nicotinate O-glucosylation is an evolutionarily metabolic trait important for seed germination under stress conditions in Arabidopsis thaliana, Plant Cell, vol.27, pp.1907-1924

W. Li, F. Zhang, R. Wu, L. Jia, G. Li et al., A novel N-methyltransferase in arabidopsis appears to feed a conserved pathway for nicotinate detoxification among land plants and is associated with lignin biosynthesis, Plant Physiol, vol.174, pp.1492-1504, 2017.

W. Li, X. Wang, R. Li, W. Li, C. et al., , 2014.

, Genome-wide analysis of the NADK gene family in plants, PLoS One, vol.9, issue.6, p.101051

Y. Li, H. Wang, Y. Zhang, M. , and C. , Can the world's favorite fruit, tomato, provide an effective biosynthetic chassis for high-value metabolites?, Plant Cell Rep, vol.37, pp.1443-1450, 2018.

A. Lytovchenko, I. Eickmeier, C. Pons, S. Osorio, M. Szecowka et al., Tomato fruit photosynthesis is seemingly unimportant in primary metabolism and ripening but plays a considerable role in seed development, Plant Physiol, vol.157, pp.1650-1663, 2011.

A. P. Macho, F. Boutrot, J. P. Rathjen, and C. Zipfel, Aspartate oxidase plays an important role in Arabidopsis stomatal immunity, Plant Physiol, vol.159, pp.1845-1856, 2012.

G. Magni, A. Amici, M. Emanuelli, G. Orsomando, N. Raffaelli et al., Enzymology of NAD+ homeostasis in man, Cell. Mol. Life Sci, vol.61, pp.19-34, 2004.

R. Mahalingam, N. Jambunathan, and A. Penaganti, Pyridine nucleotide homeostasis in plant development and stress, Int. J. Plant Dev. Biol, vol.1, pp.194-201, 2007.

A. Matsui, Y. Yin, K. Yamanaka, M. Iwasaki, A. et al., Metabolic fate of nicotinamide in higher plants, Physiol. Plant, vol.131, pp.191-200, 2007.

E. H. Meyer, T. Tomaz, A. J. Carroll, G. Estavillo, E. Delannoy et al., Remodeled respiration in ndufs4 with low phosphorylation efficiency suppresses Arabidopsis germination and growth and alters control of metabolism at night, Plant Physiol, vol.151, pp.603-619, 2009.

A. Moing, C. Renaud, M. Gaudillère, P. Raymond, P. Roudeillac et al., Biochemical changes during fruit development of four strawberry cultivars, J. Am. Soc. Hortic. Sci, vol.126, pp.394-403, 2001.

Z. Mou, Extracellular pyridine nucleotides as immune elicitors in Arabidopsis, Plant Signal Behav, vol.12, 2017.

H. E. Neuhaus and M. J. Emes, Nonphotosynthetic metabolism in plastids, Annu. Rev. Plant Physiol. Plant Mol. Biol, vol.51, pp.111-140, 2000.

T. D. Niehaus, L. G. Richardson, S. K. Gidda, M. Elbadawi-sidhu, J. K. Meissen et al., Plants utilize a highly conserved system for repair of NADH and NADPH Hydrates, Plant Physiol, vol.165, pp.52-61, 2014.

G. Noctor, G. Queval, and B. Gakière, NAD(P) synthesis and pyridine nucleotide cycling in plants and their potential importance in stress conditions, J. Exp. Bot, vol.57, pp.1603-1620, 2006.

S. Osorio, J. G. Vallarino, M. Szecowka, S. Ufaz, V. Tzin et al., Alteration of the interconversion of pyruvate and malate in the plastid or cytosol of ripening tomato fruit invokes diverse consequences on sugar but similar effects on cellular organic acid, metabolism, and transitory starch accumulation, Plant Physiol, vol.161, pp.628-643, 2013.

T. K. Pellny, O. V. Aken, C. Dutilleul, T. Wolff, K. Groten et al., Mitochondrial respiratory pathways modulate nitrate sensing and nitrogendependent regulation of plant architecture in Nicotiana sylvestris, Plant J, vol.54, pp.976-992, 2008.

Y. Perez-riverol, A. Csordas, J. Bai, M. Bernal-llinares, S. Hewapathirana et al., The PRIDE database and related tools and resources in 2019: improving support for quantification data, Nucleic Acids Res, vol.47, 2019.

P. Pétriacq, L. De-bont, L. Genestout, J. Hao, C. Laureau et al., Photoperiod affects the phenotype of mitochondrial complex I mutants, Plant Physiol, vol.173, pp.434-455, 2017.

P. Pétriacq, L. De-bont, J. Hager, L. Didierlaurent, C. Mauve et al., Inducible NAD overproduction in Arabidopsis alters metabolic pools and gene expression correlated with increased salicylate content and resistance to Pst-AvrRpm1, Plant J, vol.70, pp.650-665, 2012.

P. Pétriacq, L. De-bont, G. Tcherkez, and B. Gakière, NAD: not just a pawn on the board of plant-pathogen interactions, Plant Signal Behav, vol.8, pp.1-11, 2013.

P. Pétriacq, J. Ton, O. Patrit, G. Tcherkez, and B. Gakière, NAD acts as an integral regulator of multiple defense layers, Plant Physiol, vol.172, pp.1465-1479, 2016.

G. Queval and G. Noctor, A plate reader method for the measurement of NAD, NADP, glutathione, and ascorbate in tissue extracts: application to redox profiling during Arabidopsis rosette development, Anal. Biochem, vol.363, pp.58-69, 2007.

J. H. Schippers, A. Nunes-nesi, R. Apetrei, J. Hille, A. R. Fernie et al., The Arabidopsis onset of leaf death5 mutation of quinolinate synthase affects nicotinamide adenine dinucleotide biosynthesis and causes early ageing, Plant Cell, vol.20, pp.2909-2925, 2008.

R. Schwacke, G. Y. Ponce-soto, K. Krause, A. M. Bolger, B. Arsova et al., MapMan4: a refined protein classification and annotation framework applicable to multi-omics data analysis, Mol. Plant, vol.12, pp.897-892, 2019.

E. Soubeyrand, S. Colombié, B. Beauvoit, Z. Dai, S. Cluzet et al., Constraint-based modeling highlights cell energy, redox status and ?-ketoglutarate availability as metabolic drivers for anthocyanin accumulation in grape cells under nitrogen limitation, Front. Plant Sci, vol.9, p.421, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02533089

M. Steinhauser, D. Steinhauser, K. Koehl, F. Carrari, Y. Gibon et al., Enzyme activity profiles during fruit development in tomato cultivars and Solanum pennellii, Plant Physiol, vol.153, pp.80-98, 2010.

C. Studart-guimarães, Y. Gibon, N. Frankel, C. C. Wood, M. I. Zanor et al., Identification and characterisation of the alpha and beta subunits of succinyl CoA ligase of tomato, Plant Mol. Biol, vol.59, pp.781-791, 2005.

Y. Suda, H. Tachikawa, A. Yokota, H. Nakanishi, N. Yamashita et al., Saccharomyces cerevisiae QNS1 codes for NAD+ synthetase that is functionally conserved in mammals, Yeast, vol.20, pp.995-1005, 2003.

W. L. Turner, J. C. Waller, B. Vanderbeld, and W. A. Snedden, Cloning and Characterization of two NAD kinases from Arabidopsis. Identification of a calmodulin binding isoform, Plant Physiol, vol.135, pp.1243-1255, 2004.

B. Upmeier, J. E. Thomzik, and W. Barz, Nicotinic acid-N-glucoside in heterotrophic parsley cell suspension cultures, Phytochemistry, vol.27, pp.3489-3493, 1988.

J. C. Waller, P. K. Dhanoa, U. Schumann, R. T. Mullen, and W. A. Snedden, Subcellular and tissue localization of NAD kinases from Arabidopsis: compartmentalization of de novo NADP biosynthesis, Planta, vol.231, pp.305-317, 2010.

G. Wang and E. Pichersky, Nicotinamidase participates in the salvage pathway of NAD biosynthesis in Arabidopsis, Plant J, vol.49, pp.1020-1029, 2007.

R. Wu, F. Zhang, L. Liu, W. Li, E. Pichersky et al., MeNA, controlled by reversible methylation of nicotinate, is an NAD precursor that undergoes long-distance transport in Arabidopsis, Mol. Plant, vol.11, pp.1264-1277, 2018.

X. Zhang and Z. Mou, Extracellular pyridine nucleotides induce PR gene expression and disease resistance in Arabidopsis, Plant J, vol.57, pp.302-312, 2009.