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Abstract: Oil palm production is gaining importance in Central and South America. However, the
main species Elaeis guineensis (Eg) is suffering severely from bud rod disease, restricting the potential
cultivation areas. Therefore, breeding companies have started to work with interspecific Elaeis
oleifera × Eg (Eo × Eg) hybrids which are tolerant to this disease. We performed association studies
between candidate gene (CG) single nucleotide polymorphisms (SNP) and six production and 19 oil
quality traits in 198 accessions of interspecific oil palm hybrids from five different origins. For this
purpose, barcoded amplicons of initially 167 CG were produced from each genotype and sequenced
with Ion Torrent. After sequence cleaning 115 SNP remained targeting 62 CG. The influence of
the origins on the different traits was analyzed and a genetic diversity study was performed. Two
generalized linear models (GLM) with principle component analysis (PCA) or structure (Q) matrixes
as covariates and two mixed linear models (MLM) which included in addition a Kinship (K) matrix
were applied for association mapping using GAPIT. False discovery rate (FDR) multiple testing
corrections were applied in order to avoid Type I errors. However, with FDR adjusted p values
no significant associations between SNP and traits were detected. If using unadjusted p values
below 0.05, seven of the studied CG showed potential associations with production traits, while
23 CG may influence different quality traits. Under these conditions the current approach and the
detected candidate genes could be exploited for selecting genotypes with superior CG alleles in
Marker Assisted Selection systems.
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1. Introduction

East-Asian countries address most of the oil palm production. Actually, Indonesia, Malaysia, and
Thailand together produce almost 90% of the palm oil worldwide. Latin-American countries have
started climbing positions in production few years ago, since Asian countries suffer lack of space due
to increased oil demand and restricted cultivation areas [1]. Colombia, for example, has produced 1.68
million metric tons in 2019 [2] and ranks now fourth in the list of most productive countries. Moreover,
two other Latin-American countries can be found among the top 10 palm oil producing countries in
2017; Ecuador and Honduras which produced 273,364 and 201,665 tons of oil, respectively [3].

However, the main oil palm species Elaeis guineensis (Eg) is suffering from bud rot disease
“Pudrición de Cogollo” in these countries [4,5] leading to important economic losses, since most of
the infected palms die. In order to face this situation, seed companies work now with interspecific
hybrids between Elaeis oleifera and Eg (Eo × Eg) [6]. These hybrids combine desirable characteristics of
both species; high oil production inherited from Eg and higher amounts of oleic and linoleic acids,
vitamins, sterols, and iodine values, as well as resistance to different diseases descending from Eo [7,8].
Cadena et al. [9] reported an average of 71.5% oil in dry mesocarp of Eo × Eg interspecific hybrids, for
commercial varieties of Eg var. tenera an average of 78% oil content and an average of 26.3% oil for
Eo palms. They also reported the measured iodine values for these materials. Eo × Eg hybrid palms
revealed an average iodine value of 66.3 g I2 100 g−1, Eg palms showed 52 g I2 100 g–1 and Eo palms an
average of 77.4 g I2 100 g−1.

Many breeding and seed companies have started breeding programs to get elite hybrid palms.
Marker-assisted selection has emerged as a useful technology for this purpose, particularly for traits
controlled by multiple genes, such as those related to oil quality and oil quantity. However, until now
only a few studies have been published on this topic. Montoya et al. [10] identified 19 quantitative
trait loci (QTL) associated with fatty acid composition in an interspecific pseudo-backcross (Eo ×
Eg) × Eg. Singh et al. [11] constructed a linkage map using AFLP, RFLP, and SSR markers in an
interspecific cross of a Colombian Eo and a Nigerian Eg accession and detected 11 QTL for iodine
value and for six components of the fatty acid composition. Since these two studies were performed in
specific mapping populations, the results may not be valid for other genetic backgrounds. Association
Mapping (AM) based on linkage disequilibrium (LD) represents a way to avoid this problem, since a
random population with unobserved ancestry can be studied [12,13]. While this technique is widely
used in other crops, only a few articles have been published in Eg (The et al. [14], Kwong et al. [15],
or Xia et al. [16]) and none in interspecific crosses of Elaeis species. Therefore, in the current study a
broader collection of Eo × Eg hybrids was analyzed for different traits, divided in two big groups;
production and quality traits. Production traits cover agronomic performance in terms of bunch
number, bunch weight, and bunch yield and the oil contents in mesocarp and bunch. The analyzed oil
quality traits considered different components of lipids and tocols, as well as carotenoids. Even though
these last two represent only minor components, they are of nutritional importance [17]. The quality
traits are described in detail under Material and Methods. The aim of this study was to determine via
amplicon sequencing the allelic variation of potential candidate genes (CG) influencing these traits and
to determine the effects of their particular single nucleotide polymorphisms (SNP) on trait expression,
in order to exploit promising CG SNP for downstream applications in molecular breeding.

2. Results

2.1. Phenotype Analysis

Saphiro–Wilk tests revealed 16 traits which were not normally distributed. They are marked with
“*” in Table 1. The ANOVA results for testing the influence of origins on the traits are presented in
Supplementary Material, Table S1. Transformed data were used for non-normal distributed traits.
Observed mean values, standard deviations (SD), minimum and maximum values, and the significance
levels of the F tests are shown for each analyzed trait in Table S1. All production traits showed
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significant differences at significance level p < 0.001 as well as 16 quality traits. The SSS triglyceride
(SSS), Delta compound (Delta), and Gamma compound (Gamma) traits did not reveal significant
differences between origins.

Table 1. Mean values of the studied traits for each origin and significant levels obtained by Tukey post
hoc tests.

Origin: Coari × LaMé Taisha × Avros
(RGS)

Taisha × Avros
(Oleoflores) Taisha × Econa Taisha ×

Yangambi

Production
Traits

Mean
Value Level Mean

Value Level Mean
Value Level Mean

Value Level Mean
Value Level

BN (nº) * 52.49 B 39.81 C 63.00 A 32.75 C 40.10 BC
BW (kg) 9.44 B 11.04 B 13.22 A 9.81 B 9.91 B
BY (kg) * 501.67 B 469.32 B 845.66 A 334.30 B 444.75 B
OilfM (%) 34.69 A 28.99 B 29.31 B 24.74 C 28.71 BC

OildM (%) * 65.23 A 51.20 B 53.70 B 45.69 C 51.14 BC
OilB (%) 22.66 A 17.38 BC 19.67 B 14.09 C 17.04 BC

Oil Quality
Traits

Sat (%) * 32.07 B 37.91 A 38.64 A 39.39 A 40.00 A
Mono-Un (%) * 56.06 A 48.74 B 46.54 B 46.66 B 46.05 B

Poly-Un (%) 12.35 C 13.01 BC 14.31 A 13.68 AB 13.62 AB
OA (%) * 54.84 A 47.21 B 44.84 B 44.98 B 44.16 B
IV (cg/g) * 68.87 A 63.25 B 63.56 B 61.97 B 61.62 B
SSS (%) * 1.08 - 1.48 - 1.12 - 1.18 - 1.64 -
SUS (%) * 17.76 B 24.38 A 25.41 A 25.80 A 25.99 A
SUU (%) 35.82 A 31.95 B 31.40 B 31.77 B 29.44 B

UUU (%) * 21.06 A 12.01 B 10.28 B 10.23 B 9.90 B
Tocph (ppm) * 164.37 C 247.15 AB 198.63 BC 290.47 A 255.70 AB
Alpha (ppm) * 115.22 B 178.43 A 130.78 B 211.37 A 203.34 A
Delta (ppm) * 40.28 - 44.17 - 40.93 - 54.31 - 43.10 -

Gamma (ppm) * 39.49 - 46.64 - 47.29 - 47.35 - 42.15 -
Toc3 (ppm) 874.15 C 1087.74 B 1338.07 A 1159.80 AB 1065.70 BC

Alpha3 (ppm) 203.71 C 313.70 B 396.75 A 320.28 AB 314.24 AB
Delta3 (ppm) * 66.96 B 98.57 B 143.11 A 95.68 B 80.82 B

Gamma3 (ppm) 605.39 B 675.47 B 806.15 A 743.84 AB 670.64 B
Toc (ppm) 1038.52 B 1334.90 A 1543.12 A 1450.27 A 1321.40 AB

Car (ppm) * 785.89 BC 832.09 B 671.91 C 900.20 AB 1068.65 A

* Means with the same letter are not statistically different (α > 0.05). Traits marked with “*” did not follow a normal
distribution according to Saphiro–Wilk tests. Production traits: bunch number (BN), bunch weight (BW), bunch
yield (BY), oil % in fresh mesocarp (OilfM), oil % in dry mesocarp (OildM) and oil % in bunch (OilB). Quality traits:
oleic acid % (OA), saturated fatty acids % (Sat), mono-unsaturated fatty acids % (Mono-Un), poly-unsaturated
fatty acids % (Poly-Un), iodine value (IV), carotene contents (Car), different types of triglycerides in % (SSS, SUS,
SUU, UUU), tocopherol (Tocph) compounds; Alpha, Delta, Gamma, tocotrienol (Toc3) compounds; Alpha3, Delta3,
Gamma3, tocols (Toc).

The results of the Tukey post hoc tests are presented in Table 1. Production traits oil % in fresh
mesocarp (OilfM), oil % in dry mesocarp (OildM), and oil % in bunch (OilB) revealed large values
for the Coari × La Mé origin, while the Taisha × Ekona genotypes showed the lowest values for all
production traits. On the other hand, Taisha × Avros (Oleoflores) revealed the highest values for bunch
number (BN), bunch yield (BY), and bunch weight (BW) traits. For quality traits also a large difference
was detected between Coari × La Mé and the other four origins. The Coari × La Mé origin showed
statistically significant higher values for mono-unsaturated fatty acids % (Mono-Un), oleic acid % (OA),
iodine value (IV), SUU triglyceride (SUU), or UUU triglyceride (UUU), but significant lower values
than the other origins for saturated fatty acids % (Sat), poly-unsaturated fatty acids % (Poly-Un), SUS
triglycerides (SUS), and tocopherol (Tocph) and tocotrienols (Toc3) compounds.
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2.2. Genotype Analysis

Three separate amplicon libraries were constructed with a total of 167 candidate genes. The first
library was constructed from 56 candidate genes and yielded over 13.9 million raw reads. The second
library from 55 CG produced around 9.2 million raw reads and the third library from 56 CG generated
around 9.6 million raw reads. This total number of 32.7 million reads was reduced to 9.8 million clean
reads after the filtering steps. Approximately 83% of the reads mapped to the Eg reference genome. The
Snakemake-capture workflow identified initially 12,200 potential SNP. However, after the mentioned
filtering steps, only 115 potential SNP remained for the following analyses. The average observed (Ho)
and expected heterozygosity (He) were 0.61 and 0.37, respectively. Bartlett’s test revealed a significant
difference between expected and observed heterozygosity. The fixation indices (Fst) values revealed no
discriminant differentiation between populations as can be seen in Table 2, since all values were close
to zero. With respect to the Fst values, the largest distances between origins were observed between
Coari × La Mé and Taisha × Avros (Oleoflores) or Taisha × Yangambi, while the closest distances were
observed between Coarí × La Mé and Taisha × Avros (RGS) and between Taisha × Ekona and Taisha ×
Yangambi. The inbreeding coefficients (Fis) values revealed no relatedness between individuals of the
same origin since all obtained values were negative, suggesting a high diversity within origins. The
Chi square tests indicated that only 38 of the markers were in Hardy–Weinberg equilibrium (HWE),
while the other 77 showed significant deviations.

Table 2. Genetic diversity studies in terms of inter cross Fixation indices (Fst) and intra cross Inbreeding
coefficients (Fis).

Inter-Cross Fst Value Taisha ×
Yangambi

Taisha ×
Ekona

Taisha × Avros
(Oleoflores)

Taisha × Avros
(RGS) Coari × La Mé

Taisha × Yangambi - 0.028876 0.055139 0.068303 0.10416
Taisha × Ekona - - 0.051121 0.064635 0.083617
Taisha × Avros

(Oleoflores) - - - 0.10259 0.10992

Taisha × Avros (RGS) - - - - 0.012305

Intra-Cross Fis Values −0.7447191 −0.69170213 −0.72402062 −0.46477064 −0.46522124

Cluster analysis of the 115 markers by fastStructure for determining ancestry indicated that six sub-populations (K
= 6) exists in our germplasm. These six cluster are represented in Figure S1 of the Supplementary Data as distruct
plot. This parameter was also used for association mapping analyses.

2.3. Association Analysis

The remaining 115 SNP belong to 62 of the 167 initial CG used in the study and four of them
showed multi locus mapping at two loci. SNP numbers for each candidate gene varied between one
and four. The remaining CG are shown in Table S2 in Supplementary Material. Internal names for
these 62 CG, the NCBI Gene ID, the CG position on the Malaysian Palm Oil Board (MPOB)’s reference
genome, as well as the putative function of the CG are indicated in that Table.

After running Association Mapping using GAPIT, expected and observed p values of each model
were drawn as a Quantile-Quantile (QQ) plot for each trait. Figure 1 shows an example of a QQ plot
for carotene contents (Car), reflecting the fitting of different alternative fixed generalized linear model
(GLM) and fixed and random mixed linear models (MLM). The QQ plots for each trait are shown in
Supplementary Material, Figure S2 The below described formula for calculating the average square
distance (d2) of the CG data points from the diagonal of the QQ plot was applied for determining
the best fitting model for each trait, even though in several cases the differences in the values for
alternative models are very small. The results are shown in Table 3. For all production traits except
OilfM MLM gave the best results. The OilfM trait fitted best with the GLM taking into account the
structure matrix (Q) model; GLM_Q. OildM and OilB traits fitted best with the MLM using principle
component analysis matrix (PCA) and IBS Kinship matrix (K); MLM_PCA+K and the three bunch
related traits with MLM_Q+K models. Additionally, for most quality traits, mixed models were found
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to be the best fitting models, but some traits such as Alpha3 compound (Alpha3), Gamma, tocols (Toc),
and Toc3 revealed better results with fixed effect models. Eight of the quality traits fitted better with
MLM_PCA+K models and the other seven with MLM_Q+K models.
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Oil Quality Traits     

Figure 1. Example for a Quantile-Quantile (QQ) plot for Carotene contents (Car). Candidate gene
(CG) data points of alternative generalized linear model (GLM) with structure matrix (Q) or principle
component analysis matrix (PCA) as covariates: GLM_Q, GLM_PCA, respectively, and mixed linear
models (MLM) incorporating in addition the IBS Kinship matrix (K) into the models: MLM_Q+K,
MLM_PCA+K. They are represented by different symbols. (black circles: MLM_PCA+K; white squares:
MLM_Q+K; stars: GLM_Q; crosses: GLM_PCA).

Table 3. Average square distance (d2) values of the CG data points from the diagonal of the QQ plot for
determining the best fitting model for each trait.

Production Traits GLM_PCA GLM_Q MLM_PCA+K MLM_Q+K

BN 0.4349 0.335 0.350 0.286
BY 0.369 0.335 0.298 0.289
BW 0.377 0.383 0.357 0.332

OilfM 0.294 0.293 0.294 0.294
OildM 0.281 0.285 0.281 0.327
OilB 0.331 0.337 0.303 0.458

Oil Quality Traits

Sat 0.301 0.332 0.270 0.442
Mono-Un 0.305 0.352 0.298 0.317
Poly-Un 0.348 0.385 0.347 0.381

OA 0.333 0.365 0.323 0.426
IV 0.434 0.376 0.327 0.753
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Table 3. Cont.

Production Traits GLM_PCA GLM_Q MLM_PCA+K MLM_Q+K

SSS 0.310 0.312 0.295 0.292
SUS 0.286 0.319 0.285 0.314
SUU 0.272 0.279 0.271 0.282
UUU 0.313 0.348 0.306 0.355
Tocph 0.333 0.355 0.323 0.322
Alpha 0.359 0.394 0.330 0.327
Delta 0.341 0.319 0.341 0.317

Gamma 0.265 0.260 0.265 0.266
Toc3 0.315 0.306 0.315 0.311

Alpha3 0.284 0.264 0.284 0.270
Delta3 0.329 0.382 0.315 0.295

Gamma3 0.342 0.339 0.337 0.333
Toc 0.325 0.309 0.325 0.316
Car 0.486 0.645 0.359 0.334

The best fitting model with smallest d2 value is indicated in bold and underlined for each CG.

Table 4 presents the results of association mapping. The detected associations based on observed
unadjusted p values < 0.05 between CG SNP and traits are displayed, as well as the genome location of
the significant SNP, the applied model, the significance level of the association, the explained variance,
and the effect of the marker. The significant SNP which belong to a particular CG were grouped.

Table 4. Results of association mapping between CG Single nucleotide polymorphisms (SNP) and
production and oil quality traits in oil palm hybrids.

CG SNP Position Production Traits AM Model p Value %VA Effect

BKACPII_1 C10: 22949607
BW MLM_Q 0.013 13.9 6.812
BY MLM_Q 0.037 26.2 538.811

EgNAC C05: 40852639
OildM MLM_PCA 0.044 18.3 −5.524
OilB MLM_PCA 0.046 8.9 −3.256

LIPOIC C07: 18432097 OilfM GLM_Q 0.042 10.9 −2.387

M2200 C13: 12503450 OildM MLM_PCA 0.009 19.9 13.384

PKP-ALPHA C01: 40816686 OilB MLM_PCA 0.007 10.8 −9.339

SEQUI U02: 19591286 BW MLM_Q 0.015 14.1 2.319

TO1 U02: 79752170
BN MLM_Q 0.020 24.4 −45.134
BW MLM_Q 0.033 14.8 −6.218

CG Name SNP Position Quality Traits AM Model p Value %VA Effect

ATAGB1_ML * C13: 103569
SSS MLM_Q 0.022 7.2 −0.614

Mono-Un MLM_PCA 0.008 20.4 −5.291
Poly-Un MLM_PCA 0.047 10.7 1.136

ATP3 U05: 50035832
Mono-Un MLM_PCA 0.050 18.7 −5.726
Poly-Un MLM_PCA 0.003 13.7 2.549

atpB CT: 54552 Delta MLM_Q 0.046 11.6 −6.913

BnC8_761 C08: 4351912
Delta3 MLM_Q 0.008 17.3 33.287

OA MLM_PCA 0.025 20.1 −2.488
UUU MLM_PCA 0.048 21.8 −2.250

CA3 C02: 35978226 Delta MLM_Q 0.045 11.6 15.740
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Table 4. Cont.

CG SNP Position Production Traits AM Model p Value %VA Effect

EgNAC

C05: 40852136

OA MLM_PCA 0.015 20.6 2.890
Sat MLM_PCA 0.042 17.2 −1.990
SUS MLM_PCA 0.014 23.2 −2.189
SUU MLM_PCA 0.019 14.3 2.125
UUU MLM_PCA 0.007 23.5 3.246

C05: 40852594

Mono-Un MLM_PCA 0.044 18.8 3.568
OA MLM_PCA 0.005 21.7 4.826

Poly-Un MLM_PCA 0.010 12.3 −1.310
SUS MLM_PCA 0.009 23.6 −3.376

UUU MLM_PCA 0.003 24.3 5.081
C05: 40852639 Car MLM_Q 0.026 26.9 −173.576

EOCHYB C04: 37534489 Alpha MLM_Q 0.027 14.6 −50.440

GLUT1
C12: 28135330 OA MLM_PCA 0.040 19.7 −2.823
C12: 28135361 OA MLM_PCA 0.040 19.7 −2.823
C12: 28135379 OA MLM_PCA 0.040 19.7 −2.823

HtC2_11412
C08: 25294023

Delta3 MLM_Q 0.036 15.7 27.356
SUU MLM_PCA 0.047 13.4 −1.552

C08: 25294107
Delta3 MLM_Q 0.015 16.7 29.133

SSS MLM_Q 0.049 6.1 0.290

HtC2_1255C2-411
C02: 43975856 SSS MLM_Q 0.046 6.1 0.529
C02: 43975982 SSS MLM_Q 0.046 6.1 0.529

HtC7_9200 C06: 41269483
Toc GLM_Q 0.042 13.6 157.269

Tocph MLM_Q 0.046 13.2 35.249
C06: 41269559 Car MLM_Q 0.005 28.3 −158.848

JC35 C13: 22806955 Car MLM_Q 0.024 27.0 −109.838

JC55 C05: 14759308 IV MLM_PCA 0.007 15.1 7.826

LIPOIC

C07: 18431998

Gamma GLM_Q 0.041 7.0 −7.841
Mono-Un MLM_PCA 0.039 18.9 −2.700

OA MLM_PCA 0.024 20.2 −2.842
Poly-Un MLM_PCA 0.037 11.0 0.782

C07: 18432097

Gamma GLM_Q 0.003 11.6 −11.135
Toc GLM_Q 0.043 13.5 −184.481

Toc3 GLM_Q 0.027 16.3 −173.161
Delta3 MLM_Q 0.033 16.0 −27.292

PAT_2 C09: 34725045
Alpha MLM_Q 0.014 15.5 49.496
Delta MLM_Q 0.027 12.1 9.758
Tocph MLM_Q 0.005 15.4 70.245

PAT_2_ML C02: 23775894 Poly-Un MLM_PCA 0.035 11.0 −0.877

PAT_6 C08: 27075521 Car MLM_Q 0.040 26.6 −163.806

PDHB C01: 51857834 IV MLM_PCA 0.027 13.8 3.407

PKP-ALPHA C01: 40816686 UUU MLM_PCA 0.034 22.1 −7.962

SEQUI U02: 19591232

Toc GLM_Q 0.031 13.9 260.781
Toc3 GLM_Q 0.040 15.9 212.755

Gamma3 MLM_Q 0.015 14.1 142.540
SSS MLM_Q 0.028 6.6 0.504
IV MLM_PCA 0.037 13.5 −2.828

Poly-Un MLM_PCA 0.020 11.6 −1.139
U02: 19591286 IV MLM_PCA 0.020 14.1 −3.630
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Table 4. Cont.

CG SNP Position Production Traits AM Model p Value %VA Effect

SHELL

C02: 3078054
Alpha MLM_Q 0.029 14.6 66.367
Delta MLM_Q 0.028 12.1 17.751
Tocph MLM_Q 0.019 14.1 90.283

C02: 3078154

Toc GLM_Q 0.031 13.9 213.715
Toc3 GLM_Q 0.046 15.8 169.457

Alpha MLM_Q 0.048 14.2 37.502
Delta3 MLM_Q 0.026 16.1 32.474

Gamma3 MLM_Q 0.023 13.7 109.420
Tocph MLM_Q 0.029 13.7 51.563

TO1
U02: 79752182 Gamma3 MLM_Q 0.030 13.6 136.526
U02: 79752184 Gamma3 MLM_Q 0.030 13.6 136.526

TO3 C03: 13885419 Car MLM_Q 0.029 27.0 −157.239

Legend: CG Name: internal name of the CG; SNP position: genome location of the SNP; Trait: associated trait;
Association Mapping (AM) Model: best fitting model for AM; p value: observed error probability value for the
model; %VA: percentage of the total variance explained by the model; Effect: effect of the marker.

SNP belonging to a total of seven CG influenced significantly six production traits. Three CG
revealed significant effects on two different production traits, while the other four CG influenced only
one trait each, leading to a total of 10 significant associations for production traits. The BW trait was
influenced by three different CG, OildM and OilB by two CG and BN, BY, and OilfM by only one CG.
The explained variances by the model ranged from 8.9% to over 26% for the different CG.

For quality traits SNP belonging to a total of 23 CG showed potential significant associations
with 18 out of the 19 quality traits using unadjusted p values. Alph3 did not show any association
with any of the studied CG SNP. The explained variances by the models ranged from 6.1% to over
28% of the total variance. For nine CG more than one SNP showed associations with different traits.
Poly-Un showed associations with six of the studied CG and the Car trait revealed associations with
five CG. Four potential associations were observed for the Delta, Delta3 compound (Delta3), Mono-Un,
OA, SSS, and Toc traits and three associations for Alpha compound (Alpha), Gamma3 compound
(Gamma3), IV, Toc3, Tocph, and UUU. SUU revealed two potential associations and Gamma, Sat and
SUS showed only one potential association. It is also worth to notice, that five of the CG—EgNAC,
PKP-ALPHA, SEQUI, LIPOIC, and TO1—showed also potential effects on different production traits.
However, considering FDR adjusted p values, all detected associations are not significant anymore.

3. Discussion

3.1. Phenotypic Data Analysis

The analyses of production traits revealed larger differences between Coarí × La Mé genotypes
and the other four origins where Taisha was involved. The Coarí × La Mé origin presented on average
a higher oil to bunch (OilB) percentage and higher oil percentages in fresh and dry mesocarp (OilfM,
OildM). Peláez et al. [5] observed that Coarí palms as well as their hybrids with Eg had higher CO2

fixation capacities, which are positively correlated with an increase in oil contents [17]. On the other
hand, Taisha palms have been described by Barba [18] as “Oleifera Guineensis palms”, since they
have similar morphological characteristics as guineensis palms. In our study we also found higher
bunch weights (BW) in all origins involving Taisha and a higher bunch yield (BY) in the Taisha × Avros
(Oleoflores) accessions. However, Arias et al. [19] studied different Eo origins and detected the highest
total oil-per-bunch ratios [%] for Taisha accessions followed by Coarí accessions, indicating that there
may be considerable variation between the particular accessions of the origins. From a commercial
point of view (CPO, crude palm oil yield), also the industrial extraction rates have to be considered,
which according to Soh et al. [20] are lower for hybrids involving Taisha.
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Considering analyses of quality traits, some studies are available from Montoya et al. [10], Singh
et al. [11], and Cadena et al. [9]. These authors analyzed beside iodine value particularly the fatty
acid composition in interspecific hybrids from controlled crosses and established linkage maps with
integrated QTL for these traits. Cadena et al. studied the lipase activity, oil contents in fresh mesocarp,
and iodine values in a collection of Eg, Eo, and Eo × Eg genotypes. However, we present here the
first detailed oil quality analyses for oil palm involving 19 different quality traits. These include traits
related to lipids where the saturation level of fatty acids was measured, considering the percentages
of saturated (Sat), mono-unsaturated (Mono-un), and poly-unsaturated (poly-un) fatty acids. The
mono-unsaturated fatty acids are considered as the healthiest [21,22]. We also analyzed the percentage
of oleic acid in the oil (OA) which was classified as mono-unsaturated omega-9 fatty acid, the iodine
value (IV) indicating the global degree of unsaturated fatty acids, and particularly the different types
of triglycerides which can be formed from three fatty acids (SSS > SUS > SUU > UUU). We found large
differences between Coari × La Mé and the other origins. Coari × La Mé accessions showed desirable
characteristics such as high contents of mono-unsaturated acids, oleic acid, high iodine values, and
UUU and SUU triglycerides, while the saturated acid levels were significantly below those of the other
origins. Pelaez et al. [5] also determined higher oleic acid contents and iodine values in Coari palms.

We performed also a detailed study for tocols contents which are composed of tocotrienols and
tocopherols. These components represent different forms of vitamin E and can be found in oil palm as
beneficial phytonutrients [23]. Both, tocotrienols and tocopherols have four isomers each (α-, β-, γ-,
δ-) and have unique benefits [24]. Here we studied three of them (α-, β-, γ-). In contrary to what has
been observed above, Coari × La Mé accessions showed significantly less contents of tocols. The α

isomers from tocopherols and tocotrienols revealed lower quantities compared to the other four origins.
Finally, carotenoids contents were measured in the five origins. These pigments are responsible for the
orange-red brilliant color of the oil and are precursors of vitamin A [24]. For this trait the Taisha ×
Yangambi origin revealed the highest content.

3.2. SNP Detection and Genetic Diversity Analysis

We used the Ion Torrent Personal Genome Machine (PGM) sequencing platform for convenience,
based on previous experiences in other studies and ease of access. Similar studies using the PGM
platform were also performed by other authors [25,26].

Mapping of the sequenced reads were performed using the published Eg var. pisifera genome
sequence as reference. The decision to use this genome relied on the fact that actually no reference
genome exists for Eo even though Singh et al. [27] published a draft. Nevertheless, Camillo et al. [28]
analyzed genome sizes of Eg, Eo, and interspecific hybrids with the intention to reveal in the near
future the genome sequence of Eo. When available, the genome sequences of both Elaeis species could
be used as reference for mapping the sequence reads.

In our analysis 83% of the reads could be mapped onto the reference genome and 12,200 SNP
were identified initially. According to Singh et al. [27] 73% of the transposable element contents differ
between Eg and Eo and could decrease the SNP numbers, since the reads in the hybrids descend from
both Elaeis species. The high number of SNP was reduced drastically after the filtering steps and only
115 potential markers remained. The 62 targeted CG included two CG with multi-locus characteristics
(PAT_2, ATAGB1), since they mapped to different chromosomes on the genome. These results suggest
that the corresponding CG primers were specific for gene families rather than for individual CG.

Random seed samples were received descending from multiple crosses made by Oleflores and
RGS. However, nothing was known about the population structure a priori. Therefore, we performed
some global genetic analyses. The Ho = 0.561 was significantly higher than the He = 0.37 in the
accessions of all five origins. This high Ho value is in accordance with Arias et al. [19] who evaluated
phenotypic and genetic diversity in two assays using of 13 and 19 SSR markers to characterize different
Eo origins, including two Eo × Eg accessions and calculated Ho values of even 0.70 and 0.77 in the
two assays, respectively. They also observed that 27% and 32% of the detected alleles in the study
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represented specific alleles of the different Eo origins and that one of the Eo × Eg accessions had
the largest number of specific alleles. Arias et al. [29] found also for Eg accessions higher observed
heterozygosity levels than the expected ones in most of the 23 analyzed origins. This can explain also
the findings in our study since Eo origins from Brazil (Coarí) and from Ecuador (Taisha), as well as Eg
origins from La Mé, Ekona, Yangambi, and Avros are incorporated into our hybrids. Furthermore, due
to the nature of our F1 hybrids, it is expected to observe a higher Ho value.

According to Johnson and Shaw [30] the high Ho value is also coherent with the observed
negative values of the computed Fis values in each of the five origins indicating high levels of genetic
variability [30]. The observed high Ho value leads consequently also to high deviations from HWE (77
markers out of 115).

3.3. Association Mapping Results

Many studies have been published for the important oil palm crop Eg with the objective of
crop improvement. However, the hybrids between the Elaeis species, which are so important in
Latin-American regions, have been studied far less so far. Actually, only some QTL studies have been
performed in order to improve the crop [10,11,31,32]. However, these studies consider structured
(mapping) populations Here we performed a genotype-phenotype association study where the
germplasm represents a random population with unobserved ancestry.

In total four different models were used for association mapping. Two GLM models with
population structure (GLM_Q) and principal component analysis (GLM_PCA) as covariates and
two MLM models where in addition a K matrix between individuals was included (MLM_Q+K,
MLM_PCA+K). After the analysis, the coincidence of observed and expected p values was visualized
in a QQ plot for each trait. Several authors have used these QQ plots to determine the best fitting
models visually [33–35].

When looking to the example of a QQ plot for carotenes contents in Figure 1, it can be seen clearly
that the GLM_Q model represented by “stars” is the worst for fitting our data, while deciding visually
between the other three models is impossible. Therefore, we developed an equation to calculate the
average square distance (d2) of the CG data points from the diagonal of the QQ plot which represents
an objective method for determining the best fitting model for each trait.

In our study the mixed effects models fitted better for most of our traits, while only a few traits
were found to have better associations with GLM models where the K matrix was not taken into
account. These findings are in accordance with those of Wang et al. [36], Nigro et al. [37], or Lin
et al. [35], who reported that MLM models were more appropriate for association studies in maize
and wheat.

As pointed out by Gao et al. [38] the output of FDR adjusted p values from GAPIT is highly
stringent, leading to the loss of the detected significant associations using unadjusted p values. A p
value of 0.05 was set as threshold for identifying potential CG with potential significant influence on
a trait as also in other studies with similar approaches [38–41]. In total, seven CG were found to be
related to six production traits and 23 CG to 18 quality traits (Table 4). With respect to the CG with
significant effects, special attention has to be paid to eight of them (LIPOIC, SEQUI, TO1, EgNAC)
with a potential relevant biological meaning.

If not considering FDR adjusted p values, LIPOIC revealed potential associations with one
production traits (OilfM,) and six quality traits (Gamma, OA, Mono-Un, Poly-Un, Toc, Toc3) It
represents a lipoyl synthase gene, responsible for the synthesis of lipoic acid a universal antioxidant
under oxidative stress conditions. This gene is required for cell growth, mitochondrial activity,
and coordination of fuel metabolism and uses multiple mitochondrial 2-ketoacid dehydrogenase
complexes [42] for the catalysis. Together with LIP2 it is essential for mitochondrial protein lipoylation
during seed development [43]. It is known to be of high importance for obtaining high yielding
plants [44].
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Using unadjusted p values, also TO1 may influence the production traits BN and BW and one
quality trait Gamma3. This CG represents a gamma-tocopherol methyltransferase which catalyzes
the conversion of gamma-tocopherol into alpha-tocopherol. In Arabidopsis the overexpression of this
enzyme resulted in more than 80-fold increase of α-tocopherol at the expense of γ-tocopherol without
changing the total tocopherol contents [45].

The candidate gene SEQUI showed potential influence with one production trait, BW, and six
quality traits; Toc, Toc3, Gamma3, SSS, IV, and Poly-Un. It is an alpha-humulene synthase transcript
related to zerumbone biosynthesis. This compound is known as an essential oil of C. verbenacea and
Cannabis sativa L. [46,47] and has healing effects as a multi-anticancer agent [48] and anti-inflamatory
effects [47]. This compound also mediates the formation of beta-caryophyllene, another oil compound
related to reduce systemic inflammation and oxidative stress [49].

Finally, EgNAC showed that it could be associated with seven quality traits and one production
trait. NAC transcription factors have been studied widely in different crops. They are known to
regulate different plant functions in plants, such as fruit ripening in tomato [50], variations in the
protein content of wheat [51], increase in seed yield [52], and regulative functions for biotic and abiotic
stress responses [53].

These findings indicate that many significant candidate genes could be involved in complex
biological pathways, but there is still a lot of information missing. Fully understanding these metabolic
pathways can help to discover the precise role of these genes influencing particular characters and can be
a good starting point to obtain higher yielding oil palm varieties with increased oil contents. Association
mapping results could be exploited in potential downstream applications by selecting genotypes with
superior alleles of different significant candidate genes in Marker Assisted Selection systems.

Production traits are the most interesting characters from a commercial point of view. However,
quality traits are becoming more and more important in recent years. Breeding Companies look for
high quality oil properties in order to satisfy customer’s preferences. Components such as high levels
of unsaturated acids, high carotene contents, or high amount of tocols are becoming more and more
important traits for taking into account. Our association mapping approach and whole understanding
of the function of these detected candidate genes could help to obtain improved palms with these
desired qualities.

In our study we only considered partial amplicons from a reduced number of candidate genes,
limiting the scope of our approach. Further studies should be conducted in the future to improve
the results, considering other molecular tools such as whole genome resequencing, transcriptome
sequencing, or bait sequencing in order to increase the number of targets.

4. Material and Methods

4.1. Plant Material

A broader collection of 198 Eo × Eg F1 genotypes from five different origins were evaluated in the
Energy and Palma plantation in San Lorenzo (Ecuador; 1.122980, −78.763190 GPS coordinates). These
consisted of 40 hybrid genotypes from Coari × La Mé origin (Hacienda La Cabaña, Bogotá, Colombia),
75 accessions from Taisha × Avros (Oleoflores, Barranquilla, Colombia), 37 genotypes from Taisha ×
Avros (RGS, Quito, Ecuador), 21 genotypes from Taisha × Yangambi (RGS, Ecuador), and 25 genotypes
from Taisha × Ekona (RGS, Ecuador).

4.2. Candidate Gene (CG) Selection

Partial amplicons from 167 CG related to oil production and oil quality were used for the analysis.
These CG were identified randomly by in silico mining using different sources: (i) literature searches
related to known genes from oil palm or other species with proven influence on the trait of interest,
(ii) relevant patent sequences in oil palm and other species, (iii) exploration of relevant metabolic
pathways such as palm oil biosynthesis for potentially useful enzymes, and (iv) analyses of published
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QTL and co-located transcripts with a relevant biological meaning. Amplicon primers for these CG
were designed only in exons, but not in adjacent regulatory regions [54]. The CG name, the Gene ID
from NCBI, the CG position according to the MPOB reference genome obtained by BLAST searches, the
putative function of the CG and the forward and reverse primers used to obtain the partial amplicons
can be found in Supplementary Material, Table S3.

4.3. Trait Recording

Eo × Eg genotypes were planted in 2010 and phenotypic data recording started in 2014. In
total, six production traits and 19 quality traits were studied. The phenotypic raw data are shown in
Supplementary Material, Table S4.

The evaluated production traits were bunch number (BN; (nº)), bunch weight (BW; (kg)), bunch
yield (BY = BN*BW; (kg)), oil percentage in fresh mesocarp (OilfM; (%)), oil percentage in dry mesocarp
(OildM; (%)), and oil percentage in the bunch (OilB; (%)). BN and BW data were collected over
four years and cumulative data were used for the analysis. OildM data was determined by Soxhlet
extractions. OilfM and OilB were calculated according to García and Nañez [55] as modified by
Arias et al. [19].

The analyzed oil quality traits considered different components of lipids and tocols, as well
as carotenoids. Lipid components included percentages of oleic acid (OA), of saturated acids (Sat),
mono-unsaturated acids (Mono-Un), and poly-unsaturated acids (Poly-Un) and were measured using
the AOCS Official Ce-1h-05 [56] method. The iodine value (IV) in cgiodine/g was measured using the
AOCS Official Da 15-48 method [57] and the percentages of the different types of triglycerides (SSS,
SUS, SUU, UUU) were analyzed using the AOCS Official Ce-5C-93 method [58]. The nomenclature of
the triglycerides indicate the saturation level of fatty acids at each of the three positions (S = saturated,
U = unsaturated). Tocols (Toc) considered the sum of individual alpha, beta, gamma tocopherol´s
(Tocph, Alpha, Beta, Gamma), and the sum of alpha3, beta3, gamma3 tocotrienols (Toc3, Alpha3,
Beta3, Gamma3). All compounds were determined using the AOCS Official Ce 8-89 method [59] and
are expressed in ppm. The carotene contents (Car; (ppm)) were measured using the PORIM p2.6
method [60].

Saphiro–Wilk tests were applied in order to check for non-normal distributed data. The traits that
showed a significant deviation were normalized by z-score correction and the normalized data were
further used for ANOVA analyses. ANOVA analyses of the different traits and origins were performed
in order to see how the origin of the different accessions affects oil production and quality. Separation
of means for traits with significant differences was performed using a Tukey post hoc test. All analyses
were performed using R language.

4.4. DNA Extraction and Library Construction

DNA extractions were performed from young leaflet tissue samples using the Analytik JenaLife
extraction kit (Science Products, Jena, Germany) according to the manufacturer instructions.

All PCR primers were designed in exons of the CG by blasting the CG against the oil palm genome
sequence from MPOB [27] and using Primer3 software [61]. All amplification products were visualized
via gel-electrophoresis in 1.5% TAE agarose gel stained with GelRed® (Biotium, Fremont, CA, USA).

Three amplicon libraries were constructed with a total of 167 CG in the mentioned plant materials.
First and second libraries were constructed with 55 CG each, while the third had 57 CG. The CG for
each library were chosen randomly. The library number in which a particular CG was included is
indicated in Supplementary Materials Table S3. Amplicons for each CG were generated in a two-step
PCR reaction as shown schematically in Figure 2, separately for each genotype.
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For the first multiplex PCR reaction fusion primers were used which were composed of a universal
part (UniA, UniB) and a part common to the CG of interest. These primers produced 120–300 bp
amplicons. For each library several multiplex reactions were performed. For selecting appropriate
primers for these multiplex reactions, each primer pair was tested with all others for Self-Dimers and
Cross Primer Dimers formation using Thermo Fisher Multiple Primer Analyzer [62]. Sets of primers
without dimer formation were used for each multiplex reaction.

A total of 20 ng of each genomic DNA, Invitrogen™ Platinum™ SuperFi™ PCR Master Mix (Life
Technologies, Carlsbad, CA, USA), and 0.16 µM primer-mix were used per 25 µL amplification reaction.
The PCR conditions were as follows: 98 ◦C denaturation for 30 s, followed by 30 cycles of 98 ◦C
for 10 s, 58 ◦C for 30 s, 72 ◦C for 60 s, and a final elongation step of 72 ◦C for 5 min. PCR reactions
were performed in a Thermal Cycler ABI 2720 (Applied Biosystems, Foster, USA). Amplification
products were visualized as described and the PCR products were purified using Agencourt AMPure
XP (Beckman Coulter, Indianapolis, IN, USA).

All purified multiplex PCR products of a specific genotype were combined in one pool and used
in a second PCR reaction to barcode each genotype. For this purpose, fusion primers were designed
which were composed of one part complementary to the universal part of UniA and UniB, a genotype
specific MID part, the key part (ACGT) to calibrate the sequencing machine and the specific key
sequences A and B used by the sequencing platform. All primers as well as the forward and reverse
MID sequences are shown in Supplementary Materials, Table S5.

The genotype specific combinations of the MID sequences with UniA and UniB sequences,
respectively, allow to identify unambiguously each genotype. By using a combination of forward and
reverse MID a large number of genotypes can be barcoded with a relatively small number of primers.
With 2n MID primers n2 genotypes can be discriminated.

For each barcoding reaction, a 25 µL reaction volume was prepared containing 1 µL of the purified
PCR product, 0.2 µM forward and reverse barcoding primer, and Invitrogen™ Platinum™ SuperFi™
PCR Master Mix. PCR reactions and visualization were performed as described before in the first step.

PCR products of each barcoded genotype were individually quantified with a Qubit 2.0 device,
using the Qubit dsDNA HS assay (Life Technologies, Carlsbad, CA, USA). Equal concentrations of
genotype specific PCR products were mixed in one tube.

Each pool was purified with columns using the GeneRead Size Selection Kit (Qiagen, Hilden,
Germany). The quality of the libraries was verified on an Agilent 2100 Bioanalyzer using DNA Chips
with HS DNA Kit reagents according to the manufacturer’s protocol (Agilent Technologies). The
libraries were sent for sequencing to the Center for Applied Medical Research (CIMA, Pamplona,
Spain), using the Ion Torrent PGM. Emulsion PCR was performed with Ion PGM™ Template OT2 400
Kit according to the manufacturer’s protocol. All libraries were sequenced using the 318 Chip v2 with
the Ion PGM™ Sequencing 400 Kit. Sequencing was performed unidirectionally.
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4.5. Sequence Processing and Association Analysis

Analyses of the obtained sequences were performed using the South Green Bioinformatics
Platform http://southgreen.cirad.fr/ [63], which provides different bioinfomatic tools and methods for
sequence analysis.

The Fastq files of the three libraries were combined and processed together, since all genotypes had
the same MID combination in the three libraries. In order to obtain clean amplicon sequences, trimming
and demutliplexing steps were performed. First, each genotype was identified by the combination of
MIDs in each read. Sequences were separated in genotype specific files. For this purpose the public
“demultiplex.py” Python script [64] was used. Then, the “Cutadapt trimming tool” v1.8.1 [65] was
applied to remove universal primer parts (UniA, UniB) and the MIDs. The cleaned, genotype specific
sequences were processed using the “Snakemake-capture” script [66] of the South Green bioinformatics
platform to map the reads using BWA v0.7.15 [67], to clean the alignments with Samtools v1.3 [68], to
sort the reads with Picard-tools v2.7.0 [69] and to call the SNP using GATK haplotype caller v3.7-0 [70].
The MPOB E. guineensis pisifera genome sequence [27] was used as reference.

The SNP of the obtained Variant Calling Format (VCF) file were filtered using VCFtools software
v4.2 [71]. Markers were filtered for only biallelic SNP with a minimum allele frequency of 0.05 and
a maximum of 0.95, markers below q < 30 were eliminated as well as indels. Additionally, variants
with more than 20% of missing data were eliminated for the following analyses. Genetic diversity
was studied in terms He and Ho of the markers using the adegenet [72] and hierfstat [73] packages in
R. Monomorfic markers were eliminated for the following analyses. For studying genetic variances
between and within origins, Fst obtained from VCFtools and Fis obtained from the hierfstat package
were used. We tested also for HWE using the pegas package [74]. The null hypothesis (Ho = 0; p value
< 0.05) was that the population is in equilibrium and pairing occurs randomly. fastStructure software
v1.0 [75] was applied to analyze the population structure. Allele frequencies of each cluster from 1 to 9
were estimated with a 10-fold cross-validation (CV). In order to choose the appropriate number of
model components explaining the structure in our dataset, thechooseK.py script of the fastStructure
software was run. The distruct.py script from the fastStructure was used for drawing the distruct plot.

Association studies were performed on a single marker basis using GAPIT v 3.0 [76] in R
environment. Initially, fixed effects GLM were applied to test associations between segregating markers
and phenotype for each trait. For this purpose, either Q matrix obtained from fastStructure (K = 6) was
used as covariate, or PCA matrix with three components derived from GAPIT was used as covariate
(GLM_Q, GLM_PCA). In addition, MLM analyses were performed in order to include both fixed and
random effects. In this case, the IBS K matrix obtained from Tassel (v5.2.44) was incorporated into the
previous models (MLM_Q+K, MLM_PCA+K) in order to reflect relationships among individuals with
either the Q matrix or the PCA matrix. Multiple testing was also considered, since GAPIT provides
beside unadjusted p values also FDR using the method of Benjamini and Hochberg [77] adjusted
p values.

The resulting observed and expected p values of each model were visualized separately for each
trait in a QQ plot, in order to get a first impression on the fitting of different alternative models. In
addition, an equation was developed to measure the average square distance (d2) of the CG data points
from the diagonal of the QQ plot for each model:

d2 = (
n∑

i=1

Po
2 + Pe

2
−

(Po + Pe

2

)2
)/n, (1)

where, Po and Pe are the expected and observed –log(p) values, respectively and n the number of CG
data points. The model with the smallest d2 value was considered as the best fitting model for our data.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/8/10/377/s1,
Table S1: Mean values, standard deviations (SD), minimum and maximum values of each analyzed trait, and
ANOVA significance levels between the different origins of oil palm hybrids, Figure S1: Distruct plot of the six
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clusters used to explain our population structure, Table S2: List of the 62 Candidate Genes (CG) targeted by
SNP which were used for the Association Mapping studies in oil palm hybrids, Figure S2: Quantile-Quantile
plots of the different studied traits for the four tested models, Table S3: Characteristics of all 171 candidate genes
initially analyzed by Amplicon sequencing in oil palm hybrids, Table S4: Raw phenotypic data from for each
genotype, Table S5: Universal adapters and MID sequences used for generating barcoded amplicons of the
different Candidate Genes (CG).
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