D. Pomies, B. Martin, Y. Chilliard, P. Pradel, and B. Remond, Once-a-day milking of Holstein and Montbeliarde cows for 7 weeks in mid-lactation, Animal, vol.1, issue.10, pp.1497-505, 2007.

A. Ferlay, B. Martin, S. Lerch, M. Gobert, P. Pradel et al., Effects of supplementation of maize silage diets with extruded linseed, vitamin E and plant extracts rich in polyphenols, and morning v. evening milking on milk fatty acid profiles in Holstein and Montbeliarde cows, Animal, vol.4, issue.4, pp.627-667, 2010.

A. V. Capuco, D. L. Wood, R. Baldwin, K. Mcleod, and M. J. Paape, Mammary cell number, proliferation, and apoptosis during a bovine lactation: relation to milk production and effect of bST, J Dairy Sci, vol.84, issue.10, pp.2177-87, 2001.

E. Osinska, Z. Wicik, M. M. Godlewski, K. Pawlowski, A. Majewska et al., Comparison of stem/progenitor cell number and transcriptomic profile in the mammary tissue of dairy and beef breed heifers, J Appl Genet, vol.55, issue.3, pp.383-95, 2014.

D. P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, vol.116, issue.2, pp.281-97, 2004.

A. V. , The functions of animal microRNAs, Nature, vol.431, issue.7006, pp.350-355, 2004.

S. L. Ameres and P. D. Zamore, Diversifying microRNA sequence and function, Nat Rev Mol Cell Biol, vol.14, issue.8, pp.475-88, 2013.

N. Bushati and S. M. Cohen, Annu Rev Cell Dev Biol, vol.23, pp.175-205, 2007.

R. C. Friedman, K. K. Farh, C. B. Burge, and D. P. Bartel, Most mammalian mRNAs are conserved targets of microRNAs, Genome Res, vol.19, issue.1, pp.92-105, 2009.

O. Timoneda, I. Balcells, J. I. Nunez, R. Egea, G. Vera et al., miRNA expression profile analysis in kidney of different porcine breeds, PLoS One, vol.8, issue.1, p.55402, 2013.

A. Pacholewska, N. Mach, X. Mata, A. Vaiman, L. Schibler et al., Novel equine tissue miRNAs and breed-related miRNA expressed in serum, BMC Genomics, vol.17, issue.1, p.831, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01602357

Z. Ji, G. Wang, Z. Xie, J. Wang, C. Zhang et al., Identification of novel and differentially expressed MicroRNAs of dairy goat mammary gland tissues using solexa sequencing and bioinformatics, PLoS One, vol.7, issue.11, p.49463, 2012.

Z. Ji, G. Wang, Z. Xie, C. Zhang, and J. Wang, Identification and characterization of microRNA in the dairy goat (Capra hircus) mammary gland by Solexa deepsequencing technology, Mol Biol Rep, vol.39, issue.10, pp.9361-71, 2012.

L. Guillou, S. Marthey, S. Laloe, D. Laubier, J. Mobuchon et al., Characterisation and comparison of lactating mouse and bovine mammary gland miRNomes, PLoS One, vol.9, issue.3, p.91938, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01193894

Z. Li, H. Liu, J. X. Lo, L. Liu, and J. , Expression profiles of microRNAs from lactating and non-lactating bovine mammary glands and identification of miRNA related to lactation, BMC Genomics, vol.13, p.731, 2012.

L. Mobuchon, S. Marthey, M. Boussaha, L. Guillou, S. Leroux et al., Annotation of the goat genome using next generation sequencing of microRNA expressed by the lactating mammary gland: comparison of three approaches, BMC Genomics, vol.16, p.285, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01194123

S. Avril-sassen, L. D. Goldstein, J. Stingl, C. Blenkiron, L. Quesne et al., Characterisation of microRNA expression in post-natal mouse mammary gland development, BMC Genomics, vol.10, p.548, 2009.

L. Guillou, S. Sdassi, N. Laubier, J. Passet, B. Vilotte et al., Overexpression of miR-30b in the developing mouse mammary gland causes a lactation defect and delays involution, PLoS One, vol.7, issue.9, p.45727, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01000363

T. Tanaka, S. Haneda, K. Imakawa, S. Sakai, and K. Nagaoka, A microRNA, miR-101a, controls mammary gland development by regulating cyclooxygenase-2 expression, Differentiation, vol.77, issue.2, pp.181-188, 2009.

X. Li, F. Lian, C. Liu, K. Q. Hu, and X. D. Wang, Isocaloric pair-fed high-carbohydrate diet induced more hepatic steatosis and inflammation than high-fat diet mediated by miR-34a/SIRT1 Axis in mice, Sci Rep, vol.5, p.16774, 2015.

L. Mobuchon, L. Guillou, S. Marthey, S. Laubier, J. Laloe et al., Sunflower oil supplementation affects the expression of miR-20a-5p and miR-142-5p in the lactating bovine mammary gland, PLoS One, vol.12, issue.12, p.185511, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02617650

L. Mobuchon, S. Marthey, L. Guillou, S. Laloe, D. et al., Food deprivation affects the miRNome in the lactating goat mammary gland, PLoS One, vol.10, issue.10, p.140111, 2015.

Z. Wicik, M. Gajewska, A. Majewska, D. Walkiewicz, E. Osinska et al., Characterization of microRNA profile in mammary tissue of dairy and beef breed heifers, J Anim Breed Genet, vol.133, issue.1, pp.31-42, 2016.

J. Peng, J. S. Zhao, Y. F. Shen, H. G. Mao, and N. Y. Xu, MicroRNA expression profiling of lactating mammary gland in divergent phenotype swine breeds, Int J Mol Sci, vol.16, issue.1, pp.1448-65, 2015.

X. Ye, W. L. Tam, T. Shibue, Y. Kaygusuz, F. Reinhardt et al., Distinct EMT programs control normal mammary stem cells and tumourinitiating cells, Nature, vol.525, issue.7568, pp.256-60, 2015.

R. Xu, C. M. Nelson, J. L. Muschler, M. Veiseh, B. K. Vonderhaar et al., Sustained activation of STAT5 is essential for chromatin remodeling and maintenance of mammary-specific function, J Cell Biol, vol.184, issue.1, pp.57-66, 2009.

T. Bouras, B. Pal, F. Vaillant, G. Harburg, M. L. Asselin-labat et al., Notch signaling regulates mammary stem cell function and luminal cell-fate commitment, Cell Stem Cell, vol.3, issue.4, pp.429-470, 2008.

K. R. Brennan and A. M. Brown, Wnt proteins in mammary development and cancer, J Mammary Gland Biol Neoplasia, vol.9, issue.2, pp.119-150, 2004.

Q. C. Yu, E. M. Verheyen, and Y. A. Zeng, Mammary Development and Breast Cancer: A Wnt Perspective, Cancers (Basel), vol.8, issue.7, p.65, 2016.

A. Prokesch, A. Smorlesi, J. Perugini, M. Manieri, P. Ciarmela et al., Molecular aspects of adipoepithelial transdifferentiation in mouse mammary gland, Stem Cells, vol.32, issue.10, pp.2756-66, 2014.

M. H. Perruchot, M. Arevalo-turrubiarte, F. Dufreneix, L. Finot, V. Lollivier et al., Mammary epithelial cell hierarchy in the dairy cow throughout lactation, Stem Cells Dev, vol.25, pp.1407-1425, 2016.

U. Testa, E. Pelosi, G. Castelli, and C. Labbaye, miR-146 and miR-155: two key modulators of immune response and tumor development, Noncoding RNA, vol.3, issue.3, p.22, 2017.

S. Gao, Z. Zhao, R. Wu, L. Wu, X. Tian et al., MiR-146b inhibits autophagy in prostate cancer by targeting the PTEN/Akt/mTOR signaling pathway, Aging, vol.10, issue.8, pp.2113-2134, 2018.

J. F. Chen, P. Wu, R. Xia, J. Yang, X. Y. Huo et al., STAT3-induced lncRNA HAGLROS overexpression contributes to the malignant progression of gastric cancer cells via mTOR signal-mediated inhibition of autophagy, Mol Cancer, vol.17, p.6, 2018.

I. Rapa, A. Votta, G. Gatti, S. Izzo, N. L. Buono et al., High miR-100 expression is associated with aggressive features and modulates TORC1 complex activation in lung carcinoids, Oncotarget, vol.9, issue.44, pp.27535-27581, 2018.

X. Sun, X. Liu, Y. Wang, S. Yang, Y. Chen et al., miR-100 inhibits the migration and invasion of nasopharyngeal carcinoma by targeting IGF1R, Oncol Lett, vol.15, issue.6, pp.8333-8341, 2018.

J. E. Frith, G. D. Kusuma, J. Carthew, F. Li, N. Cloonan et al., Mechanically-sensitive miRNAs bias human mesenchymal stem cell fate via mTOR signalling, Nat Commun, vol.9, issue.1, p.257, 2018.

P. Zarogoulidis, S. Lampaki, J. F. Turner, H. Huang, S. Kakolyris et al.,

, Oncol Lett, vol.8, issue.6, pp.2367-70, 2014.

R. Li, P. L. Dudemaine, X. Zhao, C. Lei, and E. M. Ibeagha-awemu, Comparative analysis of the miRNome of bovine Milk fat, Whey and Cells, PloS One, vol.11, issue.4, p.154129, 2016.

M. Bionaz and J. J. Loor, Gene networks driving bovine milk fat synthesis during the lactation cycle, BMC Genomics, vol.9, p.366, 2008.

D. Chen, Y. Sun, Y. Yuan, Z. Han, P. Zhang et al., miR-100 induces epithelialmesenchymal transition but suppresses tumorigenesis, migration and invasion, PLoS Genet, vol.10, issue.2, p.1004177, 2014.

X. Hua, Y. Xiao, W. Pan, M. Li, X. Huang et al., miR-186 inhibits cell proliferation of prostate cancer by targeting GOLPH3, Am J Cancer Res, vol.6, issue.8, pp.1650-60, 2016.

C. Cao, D. Sun, L. Zhang, and L. Song, miR-186 affects the proliferation, invasion and migration of human gastric cancer by inhibition of Twist1, Oncotarget, vol.7, issue.48, pp.79956-63, 2016.

B. B. Su, S. W. Zhou, C. B. Gan, and X. N. Zhang, MiR-186 inhibits cell proliferation and invasion in human cutaneous malignant melanoma, J Cancer Res Ther, vol.14, pp.60-64, 2018.

J. Li, L. Xia, Z. Zhou, Z. Zuo, C. Xu et al., MiR-186-5p upregulation inhibits proliferation, metastasis and epithelial-to-mesenchymal transition of colorectal cancer cell by targeting ZEB1, Arch Biochem Biophys, vol.640, pp.53-60, 2018.

H. Qiu, S. Yuan, and X. Lu, miR-186 suppressed CYLD expression and promoted cell proliferation in human melanoma, Oncol Lett, vol.12, issue.4, pp.2301-2307, 2016.

X. Zhu, H. Shen, X. Yin, L. Long, C. Xie et al., miR-186 regulation of Twist1 and ovarian cancer sensitivity to cisplatin, Oncogene, vol.35, issue.3, pp.323-355, 2016.

P. Sun, J. W. Hu, W. J. Xiong, and J. Mi, miR-186 regulates glycolysis through Glut1 during the formation of cancer-associated fibroblasts, Asian Pac J Cancer Prev, vol.15, issue.10, pp.4245-50, 2014.

F. Q. Zhao and A. F. Keating, Expression and regulation of glucose transporters in the bovine mammary gland, J Dairy Sci, vol.90, issue.1, pp.76-86, 2007.

Z. Chen, H. Qiu, L. Ma, J. Luo, S. Sun et al., miR-30e-5p and miR-15a Synergistically Regulate Fatty Acid Metabolism in Goat Mammary Epithelial Cells via LRP6 and YAP1, Int J Mol Sci, vol.17, issue.11, p.1909, 2016.

L. Ma, H. Qiu, Z. Chen, L. Li, Y. Zeng et al., miR-25 modulates triacylglycerol and lipid accumulation in goat mammary epithelial cells by repressing PGC-1beta, J Anim Sci Biotechnol, vol.9, p.48, 2018.

A. Naeem, K. Zhong, S. J. Moisa, J. K. Drackley, K. M. Moyes et al., Bioinformatics analysis of microRNA and putative target genes in bovine mammary tissue infected with streptococcus uberis, J Dairy Sci, vol.95, issue.11, pp.6397-408, 2012.

L. Bernard, C. Richard, V. Gelin, C. Leroux, and Y. Heyman, Milk fatty acid composition and mammary lipogenic genes expression in bovine cloned and control cattle, Livest Sci, vol.176, pp.188-95, 2015.

C. J. Chen, N. Servant, J. Toedling, A. Sarazin, A. Marchais et al., ncPRO-seq: a tool for annotation and profiling of ncRNAs in sRNA-seq data, Bioinformatics, vol.28, issue.23, pp.3147-3156, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00770015

M. R. Friedlander, S. D. Mackowiak, N. Li, W. Chen, and N. Rajewsky, miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades, Nucleic Acids Res, vol.40, issue.1, pp.37-52, 2012.

I. S. Bae, K. Seo, and S. H. Kim, Identification of endogenous microRNA references in porcine serum for quantitative real-time PCR normalization, Mol Biol Rep, vol.45, pp.943-952, 2018.

Y. C. Lai, T. Fujikawa, T. Ando, G. Kitahara, M. Koiwa et al., Rapid communication: MiR-92a as a housekeeping gene for analysis of bovine mastitis-related microRNA in milk, J Anim Sci, vol.95, issue.6, pp.2732-2737, 2017.

D. Li, H. Liu, Y. Li, M. Yang, C. Qu et al., Identification of suitable endogenous control genes for quantitative RT-PCR analysis of miRNA in bovine solid tissues, Mol Biol Rep, vol.41, issue.10, pp.6475-80, 2014.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(?Delta Delta C(T)) method, Methods, vol.25, pp.402-410, 2001.

G. Caraux and S. Pinloche, PermutMatrix: a graphical environment to arrange gene expression profiles in optimal linear order, Bioinformatics, vol.21, issue.7, pp.1280-1281, 2005.
URL : https://hal.archives-ouvertes.fr/lirmm-00105307

, Publisher's Note

, Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations