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Abstract – Climate-smart cropping systems should be designed with three objectives: reducing
greenhouse gas (GHG) emissions, adapting to changing and fluctuating climate and environment, and
securing food production sustainably. Agriculture can improve the net GHG emissions balance via three
levers: less N2O, CH4 and CO2 emissions, more carbon storage, and green energy production (agrifuels,
biogas). Reducing the application of mineral N fertilizer is the main option for reducing N2O emissions
either directly or by increasing the proportion of legumes in the rotation. The most promising options for
mitigating CH4 emissions in paddy fields are based on mid-season drainage or intermittent irrigation. The
second option is storing more carbon in soil and biomass by promoting no-tillage (less fuel, crop residues),
sowing cover crops, introducing or maintaining grasslands and promoting agroforestry. Breeding for
varieties better adapted to thermal shocks and drought is mainly suggested as long-term adaptation to
climate change. Short-term strategies have been identified from current practices to take advantage of more
favorable growing conditions or to offset negative impacts: shifting sowing dates, changing species,
cultivars and crop rotations, modifying soil management and fertilization, introducing or expanding
irrigation. Some crops could also move to more suitable locations. Model-based tools and site-specific
technologies should be developed to optimize, support and secure farmer’s decisions in a context of
uncertainty and hazards. Most of the adaptation and mitigation options are going in the same way but trade-
offs will have to be addressed (e.g. increasing the part of legumes will be possible only with significant
breeding efforts). This will be a challenge for designing cropping systems in a multifunctional perspective.

Keywords: climate change / adaptation / mitigation / trade-offs / conservation agriculture

Résumé – Des systèmes de culture climato-intelligents pour les agricultures tempérées et
tropicales : atténuation, adaptation et compromis. Des systèmes de culture climato-intelligents
doivent combiner (i) réduction des émissions de gaz à effet de serre (GES), (ii) adaptation au changement et
à la variabilité climatique et (iii) sécurisation de la production alimentaire. L’agriculture peut améliorer le
bilan des émissions de GES via trois leviers : (i) moins d’émissions de N2O, CH4 et CO2, (ii) plus de
stockage du carbone, (iii) de la production d’énergie verte (biocarburants, biogaz). Réduire l’application
d’engrais minéral ou augmenter la proportion de légumineuses dans la rotation permet de réduire les
émissions de N2O. La réduction des émissions de CH4 en riziculture inondée impose de revoir la gestion de
l’eau (drainage, irrigation). Stocker plus de carbone dans le sol et la biomasse passe par la culture sans labour
(moins d’énergie, paillage avec les résidus de récolte), l’utilisation de plantes de couverture, l’introduction
ou le maintien de prairies et la pratique de l’agroforesterie. La sélection de variétés mieux adaptées aux
chocs thermiques et à la sécheresse est la principale adaptation à long terme au changement climatique. Des
stratégies à court terme ont été identifiées à partir des pratiques actuelles, tirant profit de conditions de
croissance plus favorables ou compensant les impacts négatifs par le décalage des dates de semis,
l’introduction de nouvelles espèces et cultivars, la diversification des rotations, de nouvelles pratiques de
gestion du sol et de la fertilisation, l’introduction ou l’expansion de l’irrigation. Certaines cultures pourraient
également migrer vers des zones de culture plus appropriées. Des outils basés sur les modèles et l’agriculture
de précision devraient être développés afin d’aider les agriculteurs face à un contexte plus incertain et plus
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risqué. La plupart des options d’adaptation et d’atténuation sont compatibles, mais des arbitrages devront
être faits : ainsi augmenter la part des légumineuses ne sera possible que si des efforts de sélection importants
sont conduits.

Mots clés : changement climatique / adaptation / atténuation / antagonismes / agriculture de conservation
1 Introduction

Climate change, particularly increasing temperatures,
altered rainfall patterns, and climate variability (including
extreme climate events) will affect dramatically the produc-
tivity of crops and their regional distribution in the next
decades with severe impacts on food security (Porter et al.,
2014). However, despite common trends, regional and local
differences are expected.

Sub-Saharan Africa is thought to be the region most
vulnerable to these impacts (Challinor et al., 2007). The onset
and length of growing seasons governed by rainfall patterns
should be deeply modified by 2050 (Sarr, 2012) and crop
yields could decrease by 6–24% depending on climate scenario
and management strategy (Waha et al., 2013).

In Europe, grain yield stagnation and increased yield
variability in cereals have been related to recent changes,
and especially to increasing heat stress during grain filling
(e.g. for wheat, Brisson et al., 2010). Future projected trends
include (i) new opportunities due to the northward move-
ment of crop suitability zones and increasing crop
productivity in Northern Europe, but (ii) negative impacts
in southern parts where climatic risks will intensify while
productivity and suitability will decline (Moriondo et al.,
2010; Donatelli et al., 2012; Iglesias et al., 2012; Supit
et al., 2012). This may be accompanied by a widening of
water resource differences between the North and South, and
a general increase in extreme rainfall events and droughts
(Falloon and Betts, 2010).

Climate change will impact crop production directly or not
(Fig. 1). Changes of atmospheric CO2 concentration, of mean
and extreme temperatures, and of rainfall amount and timing
will directly affect yields and land use (crop suitability). It will
also result in changes in water availability patterns and in
additional irrigation requirements that will subsequently affect
agricultural productivity (Anwar et al., 2013). In addition,
emergent pests and diseases may result in dramatic crop
damages (Gregory et al., 2009).

Being partly responsible of the emissions of greenhouse
gases (GHG), world agriculture has to reduce its carbon
footprint while increasing biomass production to match the
needs of a growing population (Smith et al., 2014). In a
perspective of climate-smart agriculture (CSA), a variety of
innovative crop production systems should be designed and
spatially arranged, with three objectives: (i) reducing GHG
emissions and storing more carbon in soils and biomass, (ii)
coping with changing and fluctuating environments to reduce
the vulnerability of agricultural systems, and (iii) securing food
production both in quantity, quality and diversity (FAO, 2013;
Lipper et al., 2014; Torquebiau, 2015). A wide range of
candidate options have been proposed for these multiple goals
in relation to public policy, markets, education and training,
advisory systems, climate forecasting, plant breeding and
cropping systems changes.
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Cropping systems are currently defined as the cultural
practices applied to crop sequences at field level. More
generally the cropping system concept is used when qualifying
and managing land use at the territorial level (Boiffin et al.,
2014). Cropping systems offer a diversity of options that can
be combined to build climate-smart agriculture together with
genetics, machinery and information technology. As cropping
systems are both levers for adaptation and mitigation and
impact food production, multiple trade-offs between cropping
systems options have to be identified in a perspective of global
optimization of crop production systems (Rosenzweig and
Tubiello, 2007).

Numerous studies have reported positive or negative
impacts of agriculture on GHG emissions (Pellerin et al.,
2013). Until recently, studies addressing the vulnerability of
crops to climate change were focusing on climate impact
without considering explicitly adaptation. However, the
number of papers addressing adaptation has increased
exponentially in the last years. According to the Web of
Science, 75% of the papers mentioning “adaptationþ climate
changeþ agriculture or farm or crop” as topics (on a total of
6100) were published since 2011.

In this paper, we present and discuss cropping systems
options to reduce GHG emissions and store more C and to
contribute to the adaptation of agriculture to climate change
(i.e. reducing the vulnerability of crop production, increasing
resilience and resource-use efficiency). Then we will identify
necessary trade-offs to deal with in the context of climate-
smart agriculture.

2 Reducing greenhouse gases emissions
by modifying cropping systems

The agriculture, forestry and other land use (AFOLU)
sector is responsible for 24% (10–12 Pg CO2 per year) of
greenhouse gases emissions worldwide, with concomitant
opportunities for mitigation (Smith et al., 2014). A specific
feature of agricultural emissions is that they are mostly non
energy-related and controlled by biological processes.
Agriculture can help improve the net GHG emissions balance
via three levers: a reduction in N2O and CH4 emissions (and
also CO2 emissions due to soil C mineralization and fossil
fuel consumption by machinery), additional carbon storage
in soils and biomass, and energy production (e.g. agrifuels,
biogas) to replace fossil energies. Bioenergy production by the
agricultural sector poses specific challenges and questions,
which have been addressed by many authors (see for instance
Gabrielle et al., 2014). In this paper, we will focus on the first
two levers for mitigation (Tab. 1).

The current typology for adaptation to climate change and
adoption of mitigation measures in the agriculture sector
considers (i) incremental changes and autonomous farmer’s
responses (e.g., shifting the planting date, switching crop
varieties, including annual legumes) and (ii) planned and
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Table 1. Some agricultural practices have been assessed for their performance in reducing nitrous oxides, methane and CO2 emissions and
storing C in soils or biomass ; main options are considered here, in a qualitative way. N20 can be reduced by more legumes in crop rotations and a
better adjustment of N fertilization; C storage can be increased by no-till, residue management, introduction of cover crops, and more trees in
agrosystems (from Pellerin et al., 2014).
Tableau 1. Certaines pratiques agricoles ont été évaluées quant à leur capacité à réduire les émissions de protoxyde d’azote (N20), de méthane
(CH4) et de gaz carbonique (CO2) et à stocker du carbone dans les sols et la biomasse ; les principales options sont considérées ici. Les
émissions de N20 peuvent être réduites par une plus forte introduction de légumineuses dans la rotation et par un ajustement de la fertilisation
azotée ; le stockage du carbone peut augmenter via le non-travail du sol, la gestion des résidus de culture, l’introduction de cultures
intermédiaires, et la plantation d’arbres dans les agrosystèmes (d’après Pellerin et al., 2014).

Levers Technical options Expected effect

N fertilization More legumes in crop rotations
Adjust N mineral fertilizer application rates, make better use of organic fertilizer, adjust
application dates, use nitrification inhibitors, incorporate fertilizers (to reduce losses)

↘ N2O

Soil tillage Reduce tillage (direct seeding, occasional tillage, surface tillage) ↘ CO2

↗ C storage
Cover crops and residue

management

More cover crops in arable cropping systems, in vineyards and orchards
Grass buffer strips

↗ C storage
↘ N2O

Agroforestry and hedges Agroforestry
Hedges around fields

↗ C storage

Paddy rice management Promote aeration of rice-growing soil to reduce fermentation reactions: reduce the depth
of paddy fields, empty them several times per year

↘ CH4

Fig. 1. A schematic representation of the main components of climate change problems and the way cropping systems could influence both
adaptation and mitigation.
Fig. 1. Principales composantes du changement climatique en agriculture et voies par lesquelles les systèmes de culture peuvent influer
l’adaptation au changement climatique et l’atténuation des émissions de gaz à effet de serre.
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transformational changes that require substantial investment
(e.g. development of new crop varieties, expanding irrigation
infrastructure, introducing agroforestry) (Stokes and Howden,
2010). Autonomous adjustments include farmer’s efforts to
optimize production without major system changes and
without the implication of other sectors (e.g. public policy,
Page 3 o
research). Transformational adaptations are those that are
adopted at a much larger scale, that are truly new to a particular
region or resource system, and that transform places and shift
locations (Kates et al., 2012). They refer to major structural
changes to overcome adversity caused by climate change.
Another distinction is to consider short-term, medium-term
f 12
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and long-term adaptations, the first one being generally
autonomous and the others being more organized and planned
by the agricultural sector and policy makers.

2.1 Reduce N2O and CH4 emissions from agricultural
soils

Nitrous oxide (N2O) is produced during biochemical
denitrification and nitrification reactions occurring in soils or
during manure storage. Although many factors control N2O
production and diffusion in soils (aeration, temperature, pH...),
annual emissions are highly determined by the amount of
N supplied by mineral and organic fertilizers since N2O
production strongly depends on nitrate and ammonium
concentrations in soils. In intensively fertilized cropping
systems, reducing the application of mineral N fertilizers is the
main option for reducing N2O emissions. This can be achieved
without reducing yields by (i) strictly adjusting N fertilizer
rates to crop requirements; (ii) taking into account all N
sources in the N budget calculation, especially organic
products like manures and crop residues whose contribution
to N supply is often under-estimated and (iii) improving the
efficiency of N supply by splitting fertilizer application in time,
and incorporating and localizing fertilizers to avoid losses,
especially by ammonia volatilization during spreading, and
increase root uptake. Calculating a provisional N budget for
an accurate estimation of fertilizers needs remains challenging
(Ravier et al., 2016), especially in a context of increasing
climatic variability, but N fertilizer supply can be readjusted
during crop growth thanks to plant-based diagnostic tools
(Lemaire et al., 2008; Ziadi et al., 2010; Gianquinto et al.,
2011; Jeuffroy et al., 2013a). Application of nitrification
inhibitors is an additional option, but its cost is much higher
than the cost of measures based on better adjustment of N
fertilization rates (Pellerin et al., 2014). A second lever to
reduce N2O emissions is to increase the proportion of N fixing
legumes in crop rotations, either as main crops (including
temporary grasslands) or as cover crops between two cash
crops. Recent studies have shown that N fixation by legumes is
not an N2O emitting process (Rochette and Janzen, 2005),
whereas high concentrations of nitrates and/or ammonium in
soils following fertilizer applications are responsible for N2O
emission peaks. Legumes do not require any N application, and
their N-rich crop residues can supply N to the following crop.
All these measures reducingmineral N application rates, reduce
direct N2O emissions occurring onfields (Jeuffroy et al., 2013b)
and indirect emissions occurring downstream after lixiviation
of nitrate or volatilization of ammonia. Moreover, they
reduce emissions occurring upstream since the manufacture
of synthetic nitrogen fertilizers requires large quantities
of energy. A better N management in cropping systems is
also likely to have positive side-effects on other agri-
environmental issues like water quality (less nitrate leaching),
air quality (less ammonia volatilization) and preservation of
biodiversity (lessN deposition on natural ecosystems).

Methane (CH4) is produced during fermentation of organic
matter under anaerobic conditions. Worldwide, 27% of
anthropogenic CH4 emissions are due to enteric fermentation
by ruminants, 23% to landfills and waste management, 11% to
rice production and 39% to biomass and fossil fuels burning
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(Ciais et al., 2013). In well-aerated cropland, soils net CH4

emissions are usually very low, so that mitigation options in
agriculture mainly concern paddy rice cropping systems. The
most promising options for mitigating CH4 emissions in
paddy fields without reducing yields are based on water
management (Yan et al., 2009; Fumoto et al., 2010). Compared
to continuous flooding, mid-season drainage or intermittent
irrigation effectively curtail methane emissions (Towprayoon
et al., 2005; Khosa et al. 2011). Although draining
continuously flooded rice fields may lead to an increase in
N2O emission, the global warming potential resulting from this
increase is negligible when compared to the reduction in global
warming potential that would result from the CH4 reduction
associated with draining the fields (Yan et al., 2009). However,
such mitigation practice is only feasible where complete
control of water supply and drainage is possible, which is
not always the case, especially during rainy seasons. Other
mitigation levers are related to the choice of the rice cultivar
(varieties with low gas transport capacities and low exudate
formation), crop residue management (incorporating organic
material in the dry period rather than in flooded periods) and
fertilizer management practices (Majumdar, 2003; Xie et al.,
2010; Linquist et al., 2012). Since water, carbon and nitrogen
dynamics are closely interrelated, the use of process-based
biogeochemical models is increasingly needed to explore and
assess mitigation strategies for paddy rice cropping systems in
the tropics (Chun et al., 2016).
2.2 Increase carbon storage in soils and biomass

Soil carbon stock reflects the long-term equilibrium
between carbon inputs (rhizodeposition, crop residues and
exogenous organic products) and carbon losses by minerali-
zation. Increasing carbon stocks in soils has been considered
as a promising option for mitigating climatic change for
decades (Arrouays et al., 2002; Lal, 2011). Increasing C stocks
in agricultural soils can be achieved by reducing the C
mineralization rate, increasing C input and combining both
levers. Reduced tillage has often been considered as a
management practice fostering C storage by reducing
mineralization rate. Recent meta-analysis of long-term experi-
ments confirmed this trend, although to a lesser extent than
initially thought (Angers and Eriksen-Hamel, 2008; Dimassi
et al., 2013; Powlson et al., 2014). Additional C storage under
reduced tillage is not always observed. It does not occur or is
even lowered if biomass production (and therefore C input by
crop residues) is also reduced (Virto et al., 2012). The effect
of reduced tillage on carbon stocks also depends on climatic
conditions, with less additional C storage under wet climate
since mineralization of crop residues remaining on soil surface
is favored (Dimassi et al., 2014). Moreover, no-till may
increase N2O emissions in poorly-aerated soils (Rochette,
2008), so that all GHG sources should be considered when
assessing reduced tillage as a mitigation option (higher C
storage in soil if any, less CO2 emissions by tractors, possible
effect on N2O emissions). Therefore, the identification of
soil, climate and agronomical conditions under which reduced
tillage can improve the overall GHG budget of cropping
systems remains an important challenge for future agronom-
ical research. Increasing C inputs can be achieved by recycling
f 12



Table 2. Technical options that could be combined to reduce the vulnerability of cropping systems and take advantage of new cropping
opportunities. Different strategies can be applied concerning water and heat stresses: escape, avoidance (via crop rationing), tolerance,
attenuation, resource conservation, resilience (recovery).
Tableau 2.Options techniques qui pourraient être combinées pour réduire la vulnérabilité des systèmes de culture et tirer parti des opportunités
offertes par le changement climatique. Plusieurs stratégies peuvent être mises en œuvre pour faire face aux stress hydriques et thermiques :
l’esquive, l’évitement (via le rationnement végétatif), la tolérance, l’atténuation, la conservation des ressources, la résilience (récupération).

Levers Technical options

Crop species & varieties (stress escape) more appropriate thermal time and vernalization requirements

(stress tolerance) increased tolerance to heat shock, drought, waterlogging, low temperature,
emergent pests and diseases...
(stress avoidance) lower water needs, optimal water use pattern

Crop management (escape) shifting sowing date to escape water and thermal stresses
(avoidance) nutrient applications, planting density and spatial arrangements (e.g. skip row)
adjusted to precipitation patterns and yield goals
(attenuation) supplementary/deficit irrigation if available
(conservation) soil tillage and residue management to maximize soil water storage, reduce
evaporation, runoff and erosion

Cropping pattern Diversify crops and cultivars to increase resilience (rotation, landscape); variety mixtures and
intercropping; agroforestry; flexible systems; double and relay cropping

Information and decision system Use seasonal weather forecasting; model-based decision support systems (DSS)
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more organic products (but most of them, especially manure,
are already recycled) or by increasing field biomass production
and recycling (crop residue incorporation, cover crops between
cash crops, cover cropping in vineyards and orchards).
Although a large part of the additional biomass is readily
mineralized after incorporation in soils, recent studies of long-
term experiments have confirmed a positive effect on soil C
stocks (Justes et al., 2012; Autret et al., 2016).

AdditionalCstorage inbiomasswithout reducingyieldsmay
be obtained by developing agroforestry with a low tree density
and planting hedges around fields. Thesemeasures also increase
soil C stocks by increasing C inputs (leaves, roots). The
abatement potential of agroforestry and hedges in temperate and
tropical contexts has been highlighted in several studies at
national and continental scale (e.g. Aertsens et al., 2013 for the
EuropeanUnion). Several technical constraints are likely to limit
the applicability of these measures as they cannot be used on
small fields that limit machinery use, and cannot be applied to
shallow soils or soils with low water holding capacity to avoid
water competition with crops. Moreover, additional labor time
is required from farmers for tree and hedge maintenance, thus
limiting adoption. Even considering these constraints, a national
study carried out for France highlighted the high mitigation
potential of agroforestry at amoderate cost since additional labor
costs are partially offset by economic outlets for additional
products like wood (Pellerin et al., 2014).

Most of the previously mentioned management practices
promoting C storage in soils and biomass have several positive
and a few negative side-effects related to other agri-environ-
mental issues. Weed control may become more complicated
with no or reduced tillage, thus increasing the use of herbicides.
Using occasional tillage to solve severe weed problems
should minimize the negative aspect of continuous no tillage
on herbicide use. Besides increasing soil C stocks, cover crops
limit N losses by leaching during the intercrop period and may
provide N to the next crop, thus reducing N fertilizer needs and
N2O emissions (Justes et al., 2012). They also reduce erosion
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risks in susceptible croplands. Antagonisms may appear with
water management under dry climate because of water con-
sumption by cover crops, so that interactions between C, N
and water cycles should be considered. Besides its mitigation
effect, higher carbon content in soils increases soil structural
stability, limits erosion risks, increases water infiltration and
holding capacity, and improves soil fertility. Trees and hedges
in agricultural landscapes provide habitats for wildlife and may
help reducing the use of pesticides by favoring biodiversity and
biological regulation of pests.

3 Adaptation of cropping systems to
changing climate and fluctuating
environments

3.1 Short-term risk management at farm level

Adjustments in production technology, crop management
and cropping system composition to adapt to climate change at
farm level in an autonomous way have been extensively
reported in the literature (e.g. Smit and Skinner, 2002; Howden
et al., 2007; Olesen et al., 2007; Olesen et al., 2011; Anwar
et al., 2013). Numerous local and regional studies (field
experiments, participatory approaches, modelling exercises)
have been conducted to define the best management options to
cope with on-going climate variability and future climate
scenarios at different time horizons.

We identified a range of short-term strategies based on
current practices, either to take advantage of more favorable
growing conditions or to offset negative impacts due to the
changing duration of growing seasons, and the increased
occurrence of droughts and heat waves (Tab. 2).

3.1.1 Shifting planting dates

Shifting planting dates to face new temperature and
precipitation patterns is the simplest and low-cost adaptation
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strategy. Therefore, it is one of the most reported among
climate change studies either in Europe, Asia or Africa (e.g.
Brisson and Levrault, 2010; Chen et al., 2012; Jalota et al.,
2012; Laux et al., 2010; Waha et al., 2013; Waongo et al.,
2015). For instance, in Europe, earlier sowing of spring crops
(e.g. sugar beet, maize) is recommended to take advantage of
the longer growing season at higher latitudes. In southern
conditions where water stress and high temperatures are
expected in summer, anticipating planting and using early-
maturing varieties jointly could be an efficient drought
escaping strategy for spring-planted crops (Moradi et al.,
2013). In the North China Plain for instance, a “double-delay”
technology was suggested which consists in delaying both the
sowing time of wheat in autumn and the harvesting time of
maize, leading to an overall 4–6% increase in total grain yield
of the wheat-maize system with climate change (Wang et al.,
2012). In the Loess Plateau of China and similar semiarid
environments, the wheat sowing date could be delayed by 10 to
20 days in the wet and medium years, and by 20 to 25 days
in the dry years compared with the current sowing date
(20 September) in order to better adjust the soil water condi-
tion to phenological development (Ding et al., 2016). In some
Mediterranean regions, it was even suggested to plant
sunflower crop in late autumn or winter (instead of spring
as usually) to escape water stress at flowering and during grain
filling, with good results in water use efficiency and yield
(Soriano et al., 2004).

3.1.2 Choosing and including new crops and cultivars

Changing crop species and cultivars to take advantage of
opportunities offered by climate change or to minimize the
vulnerability to extreme conditions is an additional strategy
that should be combined consistently with the change of
planting date.

The shorter crop duration with increasing temperature
could be compensated for by using long cycle cultivars
combined with early sowing dates. This will extend the
radiation interception period. Varieties and species with
thermal time and vernalization requirements in line with
specific characteristics of the growing seasons should be sown
preferably.

In the conditions where escaping and avoiding strategies
are not applicable, where water resources are scarce and the
likelihood of high temperatures increases during the most
susceptible phenological phases, varieties and species with
increased resistance to heat shocks and drought could be
preferred when available. For instance, earlier flowering
varieties could be adopted to allow grain filling to occur in the
cooler and wetter parts of the year (van Ittersum et al., 2003;
Debaeke, 2004). The substitution of irrigated maize by
moderately irrigated or rainfed crops (e.g. sunflower, sorghum)
or fall-planted crops could be recommended to face the
increasing water problems in western and southern Europe
(Debaeke et al., 2008).

3.1.3 Modifying and widening crop rotations

Crop diversification (at field, farm or territory level) could
be widened as a self-insurance measure to cope with more
uncertain, infrequent and fluctuant climatic conditions, pest
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and disease infestations and price context (Bradshaw et al.,
2004). The introduction of additional intra- and inter-specific
planned biodiversity at field and farm level and in time (crop
rotations) is expected to bring more resilience to the
production system under climate variability and change.
Running simulations for the second half of the century using
the A1B scenario of the IPCC (2007), Nendel et al. (2014)
designed crop rotations that are expected to become possible
in the future in Germany due to a prolonged vegetation period
and at the same time shortened cereal growth period: for
instance, spring barley succeeding to winter barley could
likely be successful but no more (late-sown) winter wheat
after sugar beet because of drought exposure. The intensifi-
cation of the cropping cycle by double cropping could benefit
from the longer growing season and allow for larger annual
yields in spite of climate change (Graß et al., 2015; Seifert
and Lobell, 2015). Very early-maturing varieties could be
planted after winter crops which complete their cycle in
late spring. However, irrigation may become required for
double crop establishment whereas water availability could
be restricted in summer in some areas. If climate change
also results into impacts on river flows and groundwater
resources, the incorporation of double cropping could be
constrained by imbalances between water demand and
supply. In Sub-Saharan Africa, sequential cropping systems
(including double cropping) is also reported as a way to
maintain overall crop production, provided farmers
adapt the sowing dates to the changing climatic conditions
(Waha et al., 2013).

In the next decades, the cropping landscape will be
probably partly modified with climate change and some crops
and cropping systems will migrate to more suitable locations.
In Europe, heat-requiring crops will move towards northern
regions (Tuck et al., 2006) with the expansion of climatically
suitable areas. This should bring new opportunities for
diversifying winter-based crop rotations.

3.1.4 Increasing water availability and water use
efficiency by irrigation, crop management and cropping
systems

Supplemental or deficit irrigation (either expanded or
introduced) is an effective way to maintain or increase grain
yield in dry conditions, but future water resources could be
limited because of competition among users, especially in
the Mediterranean area. Extra precipitation in winter could
however be stored for securing summer irrigation when
possible. The need for water security will be greatest in
Southern Europe as a result of increased production
vulnerability, reduced water supply and increased demands
for irrigation (Doll, 2002; Brisson and Levrault, 2010; Falloon
and Betts, 2010; Zhao et al., 2015). For instance, irrigation is
projected to considerably improve and stabilize the yields of
late-maturing cereals and of shallow rooting crops (maize and
pea) on sandy soils under the continental climate of Germany
(Nendel et al., 2014).

It has been often reported that crop management still offers
a range of opportunities � that could be optimized – to cope
with drought-prone conditions and changing climate in rainfed
agriculture, although water conservation strategies will also be
necessary in deficit irrigated systems (Debaeke and Aboudrare,
f 12



P. Debaeke et al.: Cah. Agric. 2017, 26, 34002
2004). In most cases, but mainly in semi-arid regions, the use
efficiency of scarce water resources has been increased by
promoting soil and water conservation techniques as mulching
in no-till systems for reducing soil runoff and evaporation
(Aboudrare et al., 2006). Tillage practices (minimum or no
tillage), which include maintaining crop residues from
previous harvests on the soil surfaces, are likely to help
maintaining soil quality, protecting against erosion, and
facilitating water infiltration (Lal et al., 2011). For instance,
in Colorado, model simulations showed that up to year 2075,
no-tillage should maintain higher wheat yields than conven-
tional tillage in a wheat-fallow rotation (Ko et al., 2012). In
Australia, adoption of zero tillage, stubble retention, early
sowing, enhanced weed control, and perennial crops and
pastures are all suggested to farmers for adapting to reduced
precipitation under rainfed conditions (Howden et al., 2007;
Stokes and Howden, 2010).

Nitrogen fertilizer management needs to be adjusted to
increasing or decreasing yield expectations and to decreasing
soil moisture. In soils containing sufficient amounts of
moisture and organic matter, enhanced mineralization with
increasing temperature must be accounted for (Nendel et al.,
2014). However, this may not happen if soil moisture is too
low or if droughts are prolonged in time with climate
change. The rate and timing of N fertilizer application will
be changed as a function of soil moisture in order to
maintain the efficacy of plants to use N fertilizer but also to
optimize crop canopy development and duration according
to available transpirable water (e.g. for preventing haying-
off in cereals).

Implementation, maintenance and enhancement of agro-
forestry could contribute to climate change adaptation locally
by maximizing the use of soil water resource (Abildtrup et al.,
2006; Nguyen et al., 2013).

3.2 Long-term adaptation of the agricultural sector

Given the gradual change of climate in the past, farmers
have adapted autonomously by successive technical adjust-
ments to climate change and variability as previously
described. However, with the large climate change antici-
pated by the end of this century, transformational changes
(in land allocation and management, farming systems, and
plant breeding) could be planned considering possible
disruptions in farming systems, land use, and resulting crop
productivity (Bindi and Olesen, 2011; Kates et al., 2012;
Anwar et al., 2013).

Breeding for new varieties better adapted to thermal shocks
(heat and cold), drought, waterlogging and higher atmospheric
CO2 concentration is often suggested as the major long-term
adaptation to climate change as current cultivars were selected
for long with different targets (Ceccarelli et al., 2010; Boote
et al., 2011; Ziska et al., 2012). For instance, sunflower
varieties adapted to early planting with increased vigor should
be selected to take advantage of autumn or early spring
planting dates (Houmanat et al., 2016). However, breeding is
often a slow process (about 10 years to develop a new crop
cultivar to the point of commercial production), so it must
begin well before it is expected that new cultivars will be
needed (Asseng and Pannell, 2013). Uncertainty about the
extent of future change is very high for rainfall, moderately
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high for temperature and relatively low for CO2 concentration.
The impact assessment of adapted cultivars would strongly
depend on the assumptions made on breeding advances (Graß
et al., 2015). However, given that climatic changes are
relatively slow, there is more time for annual field crops to
deliver suitable outputs in time. Several public-private
research consortia (e.g. AMAIZING for maize, SUNRISE
for sunflower) are still running in France to identify drought-
tolerant materials and accelerate the creation of varieties better
adapted to climate change in Europe (Debaeke et al., 2017).

Model-based tools, climate forecasting and site-specific
technology should be developed to optimize, support and
secure farmer’s decisions. Remote sensing (drone, satellite)
and precision farming could be used to increase the
information on plant canopies and maximize resource-use
efficiency. Adaptation could range from tactical fine-tuning to
deep changes in the nature of cropping systems with
downstream impacts on land use and agricultural sector
activity (machinery, inputs, market). The extent of numerical
agriculture and the willingness to diversify crops and varieties
to increase the resilience at farm or territorial level will
change deeply the socio-technical system (e.g. cooperatives,
consultants, seed companies) with possible lock-ins in the
adoption of innovations.

4 Antagonisms, synergies and trade-offs
between mitigation and adaptation

In adopting adaptation options (Tab. 2), however, it is
necessary to consider the multifunctional role of agriculture
and the potential contribution of the agriculture sector in
GHG mitigation (Pellerin et al., 2013). According to Smith
and Olesen (2010), most categories of adaptation options for
climate change should have positive impacts on mitigation by
improving nitrogen use efficiencies and soil carbon storage
(e.g.measures for reducing soil erosion, conserving soilmoisture
and preventing nutrient losses, adjusting N and water rates to
actualized yield goals, diversification of crop rotations...).

For instance, conservation agriculture based on minimum
soil disturbance, retention of crop residues, continuous soil
covering with vegetation or organic mulch, diversified crop
rotation and plurispecific stands is a way to improve carbon
sequestration in soils and nutrient cycling, reduce soil
degradation, secure food production (especially in small-
holders farms in the tropics), and exploit opportunities when
offered by longer growing seasons (Brouder and Gomez-
Macpherson, 2014; Giller et al., 2015; Craheix et al., 2016). By
reducing soil erosion and nutrient leaching, conserving soil
moisture, and increasing crop biodiversity, conservation
agriculture could be a pillar of climate-smart agriculture in
most parts of the world. Over the past 10 years, it has been
promoted among smallholder farmers in the tropics, often with
disappointing results (Giller et al., 2015). First, conservation
agriculture requires more labor for weed control operations
(when no chemicals are used) and secondly, the competition
for crop residues used for soil mulching or animal feeding is
a problem in mixed crop-livestock farms in the tropics.

Similarly, agroforestry is often mentioned as a good
solution for maximizing the use of soil resources (water,
nitrogen) and modifying microclimate to reduce temperature
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extremes and provide shelter, while producing more
biomass than single crops and then storing a larger amount
of C in the soil-plant system. This is a promising option for
smallholder farmers in Africa with well-documented yield
and profitability improvements, which seems more conclu-
sive and easier to promote than conservation agriculture
(Kaczan et al., 2013).

Low input management in general is recommended to
adapt crop canopy development and yield target to decreasing
water resources: if properly applied, it should also reduce
N2O emissions as N fertilizer requirement is reduced. Organic
agriculture based on the use of legumes and manure as
substitutes to mineral N fertilizers contributes to GHG
mitigation and to adaptation to climate change: crop diver-
sification is often the rule, soil storage capacities are generally
improved in relation with increasing organic matter content
and related soil stability, which increases water infiltration
rate (Niggli et al., 2009; Lal et al., 2011; Kölling and Elola-
Calderón, 2012). However, the debate still exists on the
capability of organic and low input agriculture to feed
the growing world population. From a meta-dataset of
362 published organic–conventional comparative crop yields,
de Ponti et al. (2012) reported that crop yields in organic
systems were on average 80% of conventional ones.

On the other hand, some mitigation measures may not be
as positive for the adaptive capacity of farming systems. The
contribution of legumes to reduce GHG emissions and to limit
the exhaustion of fossil fuels has been proved to be very
important (Jensen et al., 2012; Jeuffroy et al., 2013b; Peyrard
etal., 2016). Numerous agronomic and environmental benefits
of legumes have been reported (Voisin et al., 2014), their
contribution to soil fertility being one of the key factors in
sustaining the production of cereal crops in rainfed dry areas
in developing countries and more generally in low input
systems. In addition, the indeterminate growth pattern of
most legumes provides plasticity to environmental stresses by
allowing the development of additional flowers and
then seeds when more favorable growing conditions occur
(Vadez et al., 2012).

However, the restricted root development of most grain
legume species may limit water and nutrient uptake, especially
at late growth stages when environmental stresses are frequent.
Symbiotic N2 fixation which takes place in the top soil layers is
extremely susceptible to drought (Liu et al., 2011). High
temperatures may affect dramatically anthesis and seed set
contributing to flower abortion (Daryanto et al., 2015).
Consequently, the yield of food legumes grown in arid to semi-
arid environments are usually variable or low due to severe
heat and terminal droughts that characterize these areas. Even
in wetter environments, water deficiency may still occur over
a period of a few weeks, causing significant yield loss.
Therefore, breeding efforts are necessary to improve the
adaptation potential of legume crops to heat and water stresses
concomitantly with earlier sowing dates, development of
winter types, and intercropping with cereals (Cutforth et al.,
2007; Vadez et al., 2012).

Sequential multiple cropping (double or relay; main and
cover crops) is often advocated as effective method for
increasing crop productivity while protecting soil and storing
more carbon (Chataway et al., 2011; Rao et al., 2015). In
regions where water is limited, more irrigation will be
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necessary to make possible the summer growth of double crops
or the establishment of cover crops at the end of summer
(Meza et al., 2008). In addition, more transpiration and
possible soil water shortage are expected when extending the
duration of green canopies. In some regions, one-year fallow
periods will have to be maintained for storing the critical water
volume for crop production in subsequent year as traditionally.
However, in the dry Canadian Prairie, this system was found
to be prone to wind erosion and other negative side-effects on
soil health and it has been replaced with cereal / grain legume
rotations (Zentner et al., 2004).
5 Conclusions

Through this short review, we pointed out numerous
actionable mitigation and adaptation options and highlighted
some trade-offs to deal with when designing multi-functional
cropping systems adapted to climate-smart temperate and
tropical agriculture. In most cases, adaptation and mitigation
measures are not specific of either temperate or tropical
agroecosystems although they may differ by their modalities in
each environment.

Some adaptations options are more driven by long-term
trends: firstly, with increasing temperature, planting dates have
been shifted and crop durations modified using current varietal
panels, then new crop species will be progressively introduced,
and later, innovative varieties will be cultivated issuing from a
breeding process integrating explicitly these trends (e.g. CO2,
temperature, drought). Besides, diversifying crop plans and
rotations and promoting multiple cropping with a range of
species and varieties should be rather seen as an adaptive
response to the increasing inter-annual and intra-season climatic
variability.

Cropping systems based on biodiversity and sustainable soil
management (e.g. agroforestry, conservation agriculture), and
using less (or no) chemical inputs (organic farming) could result
in a satisfying compromise between food production, adaptation
and mitigation to climate change, thanks to new biological
regulations that have emerged in such low-chemicals and
diversified cropping systems. Indeed, as stated by Tittonell
(2015), “agroecology is climate-smart”. However, during the
transition phase to stable agroecological systems, crop produc-
tion will be probably depressed by climatic factors and
uncontrolled input reduction. Therefore, crop breeding will
have to propose urgently suitable cultivars for such production
systems, not onlywater andheat resistant cultivars but alsomore
vigorous and multiple disease-resistant ideotypes, which cover
rapidly the soil for water conservation and weed suppression.

Establishing climate-smart and resilient cropping systems
may involve the implementation of integrated strategies
comprised of relevant sets of management practices rather
than implementing specific practices one at a time. To achieve
this goal, methods for designing and assessing climate-smart
cropping systems (based on crop modeling, prototyping and
multicriteria approaches) have to be selected and adapted to
the new and projected climatic context. When testing the
adaptation and mitigation solutions in the real world, farm
constraints will have to be considered explicitly and decision-
making tools will be required to put in practice such complex
strategies at field and farm level.
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