A. Makarov, Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis, Anal. Chem, vol.72, pp.1156-1162, 2000.

L. Lin, H. Lin, M. Zhang, X. Dong, and X. Yin, Types, principle, and characteristics of tandem high-resolution mass spectrometry and its applications, RSC Adv, vol.5, pp.107623-107636, 2015.

C. Kuhl, R. Tautenhahn, C. Böttcher, T. R. Larson, and S. Neumann, CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets, Anal. Chem, vol.84, pp.283-289, 2012.

R. R. Silva, F. Jourdan, D. M. Salvanha, F. Letisse, E. L. Jamin et al., ProbMetab: an R package for Bayesian probabilistic annotation of LC-MS-based metabolomics, Bioinformatics, vol.30, pp.1336-1337, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01268715

R. Breitling, S. Ritchie, D. Goodenowe, M. L. Stewart, and M. P. Barrett, Ab initio prediction of metabolic networks using Fourier transform mass spectrometry data, Metabolomics, vol.2, pp.155-164, 2006.

, H2O)

, Methionine Sulphate (-H2O)

F. Jourdan, R. Breitling, M. P. Barrett, and D. Gilbert, MetaNetter: inference and visualization of high-resolution metabolomic networks, Bioinformatics, vol.24, pp.143-145, 2008.

K. Longnecker and E. B. Kujawinski, Using network analysis to discern compositional patterns in ultrahigh-resolution mass spectrometry data of dissolved organic matter, Rapid Commun. Mass Spectrom, vol.30, pp.2388-2394, 2016.

D. J. Creek, A. Jankevics, R. Breitling, D. G. Watson, M. P. Barrett et al., Toward global metabolomics analysis with hydrophilic interaction liquid chromatography-mass spectrometry: improved metabolite identification by retention time prediction, Anal. Chem, vol.83, pp.8703-8710, 2011.

L. H. Stipetic, G. Hamilton, M. J. Dalby, R. L. Davies, R. M. Meek et al., Draft genome sequence of isolate staphylococcus aureus LHSKBClinical, isolated from an infected hip, Genome Announc, vol.3, pp.336-00415, 2015.

L. H. Stipetic, M. J. Dalby, R. L. Davies, F. R. Morton, G. Ramage et al., A novel metabolomic approach used for the comparison of Staphylococcus aureus planktonic cells and biofilm samples, Metabolomics, vol.12, 2016.

R. Mwenechanya, J. Ková?ová, N. J. Dickens, M. Mudaliar, P. Herzyk et al., Sterol 14?-demethylase mutation leads to amphotericin B resistance in Leishmania mexicana, PLoS Negl. Trop. Dis, vol.11, p.5649, 2017.

D. P. Leader, K. Burgess, D. Creek, and M. P. Barrett, Pathos: a web facility that uses metabolic maps to display experimental changes in metabolites identified by mass spectrometry, Rapid Commun. Mass Spectrom, vol.25, pp.3422-3426, 2011.

K. Suhre and P. Schmitt-kopplin, MassTRIX: mass translator into pathways, Nucleic Acids Res, vol.36, pp.481-484, 2008.

L. Cottret, D. Wildridge, F. Vinson, M. P. Barrett, H. Charles et al., MetExplore: a web server to link metabolomic experiments and genome-scale metabolic networks, Nucleic Acids Res, vol.38, pp.132-137, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00690651

M. Wang, J. J. Carver, V. V. Phelan, L. M. Sanchez, and N. Garg, Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking, Nat. Biotechnol, vol.34, pp.828-837, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01371824

R. Daly, S. Rogers, J. Wandy, A. Jankevics, K. E. Burgess et al., MetAssign: probabilistic annotation of metabolites from LC-MS data using a Bayesian clustering approach, Bioinformatics, vol.30, pp.2764-2771, 2014.