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1. INTRODUCTION 
Agricultural practices and crop performances significantly affect and depend on 18 

environmental, social and technical contexts (Ramankutty et al. 2002; Ray et al. 2012; van 

Vliet et al. 2015). For example, water availability and irrigation technologies allow crop 

diversification and increase potential yields, but at the same time, the way farmers use 21 

water for crop management may determine the state of resources and possibly lead to 

conflicts with other water users, especially during drought (European Environment Agency 

2012; Murgue et al. 2015). 24 

A specificity of agricultural practices is their great spatial and temporal variability. Indeed, 

farmers make their decisions, both strategic (e.g., crop rotation, irrigated versus rainfed crop 

production, cultivar earliness) and tactical (e.g., starting/stopping irrigation and its dose), 27 

according to the biophysical environment – particularly the spatiotemporal conditions of the 

soil, weather and plants – as well as the socio-economic context (e.g. prices, regulations). In 

addition, some management practices, such as irrigation or fertilization, are complex 30 

combinations of technical operations at successive dates (e.g. water or fertilizer 

applications).  

Agricultural practices, and specifically their spatial distribution and their dynamics, can affect 33 

natural resources, causing environmental issues, such as water scarcity or water pollution 

(e.g. Glavan et al. 2015; Allain et al., 2018). To address these issues, land managers need 

spatially explicit information about agricultural practices (e.g. Yunju et al. 2012). Several 36 

authors (e.g., Deffontaines 1973; Moss 2000; Scherr and McNeely 2008; Leenhardt et al. 

2010; Boiffin et al. 2014) repeatedly mention the need to improve methods to describe 

agricultural practices at the regional scale, i.e. on areas where exhaustive surveys of farms 39 

are impossible (typically around 100 km² and above). A consistent approach would be useful 

for exploring land management practices and integrating them at various spatial and 

temporal scales. This would help formalize the knowledge that farmers and other land 42 

managers use to make their decisions (Sarangi et al. 2004; Macé et al. 2007; McCown 2012). 

To be reliable, this approach should obtain knowledge about all components of “cropping 

systems”.  45 

A cropping system is defined for a uniformly managed spatial unit as a sequence of crops 

and the management system for each crop in the sequence. The crop management system is 

the set of technical operations applied to the crop, for all management practices: soil tillage, 48 

cultivar choice, fertilization, weed and pest management, irrigation, etc. (Sebillotte 1990). 

Describing the spatial distribution and the dynamics of cropping systems at the regional 

scale to address natural resource management issues needs to consider (i) biophysical and 51 

socio-economic conditions driving their spatial distribution, hereafter called location factors 

(Clavel et al. 2011; Temme and Verburg 2011); and (ii) the decision rules, which determine 

the nature and timing of each technical operation.  54 

Describing the spatial distribution of cropping systems at the regional scale remains a major 

scientific challenge (Therond et al. 2009; Leenhardt et al. 2010; Rizzo et al. 2013; Murgue et 

al. 2016). Recent improvements in satellite imagery, the increased availability of harmonized 57 
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censuses and surveys at large scales have contributed to the development of spatially 

explicit cropland databases. For example, remote-sensing-based databases (Bégué et al. 

2015; Waldner et al. 2015a) and periodic surveys such as the European Land Parcel 60 

Identification System (LPIS) (Sagris 2013), the LUCAS database (Temme and Verburg 2011), 

the French TerUti database (Xiao et al. 2014), and the Farm Accountancy Data Network 

(Vitali et al. 2012) provide improved support for describing and modeling crop sequences. 63 

The generic character of these databases allows using them for many purposes in different 

domains and at different levels of analysis (Murgue et al. 2016). However, they have a major 

limitation: the static perspective adopted for crop management systems is not appropriate 66 

for analyzing the dynamic interactions between technical operations, weather conditions 

and natural resource conditions (Ruiz-Martinez et al. 2015; Murgue et al. 2016). Studies 

based on these data have addressed the crop management component of cropping systems 69 

only loosely (Martínez-Casasnovas et al. 2005; Mignolet et al. 2007; Steinmann and Dobers 

2013; Sahajpal et al. 2014; Kollas et al. 2015), for example representing average practices 

(Therond et al. 2011) or fixed-calendar scheduling (Dupas et al. 2015).  72 

Overall, we identify three major obstacles that limit a complete description of cropping 

systems with such databases. First, available land cover maps provide insufficient spatial 

continuity and temporal depth to properly describe crop sequences (Fuchs et al. 2013; Xiao 75 

et al. 2014). Second, a lack of information about crop management exists; it is generally 

addressed by using land cover as a rough proxy (e.g., Verburg et al. 2009; Houet et al. 2014; 

Zimmermann et al. 2016). Third, only a few methods can represent the dynamic adaptation 78 

of crop management to pedoclimatic conditions (Houet et al. 2010; Hutchings et al. 2012; 

Constantin et al. 2015). The most advanced are based on crop management decision rules 

formalized with classic IF [Indicator] [Operator] [Threshold] THEN [Action1] ELSE [Action2] 81 

rules (Bergez et al. 2001; McCown 2012).  

Formalizing decision rules and coupling them with crop models enables simulating dynamics 

of crop management systems and their effects on the soil-crop system dynamics and 84 

possibly on water resources. For example, irrigation decision rules influence water 

withdrawals, which modify the water resource (Clavel et al. 2012; Murgue et al. 2014). The 

challenge lies in describing decision rules associated with cropping systems within a region in 87 

a way that accounts for the potentially great variability in individual decision-making 

processes (Nesme et al. 2005; Leenhardt et al. 2010).  

To describe the spatial variability and dynamics of cropping systems, it is critical to enrich the 90 

information provided by generic data sources with local knowledge obtained mainly through 

interviews, surveys or local databases (Marie et al. 2008). Local knowledge is crucial to 

capture information related to farmers’ decisions, i.e. location factors and crop management 93 

decision rules. This knowledge is largely implicit, however, and consequently difficult to 

access (Aubry et al. 1998; Tress et al. 2003; Toffolini et al. 2015; Murgue et al. 2016). 

Interviews with farmers remain the main approach for obtaining this knowledge (Marie et al. 96 

2008; Debolini et al. 2013; O’Keeffe et al. 2015). However, an exhaustive survey of all 
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farmers in a region can easily become excessively time-consuming (see examples in Maton 

et al. 2007; Schaller et al. 2012). 99 

Rapid surveys can be limited to easily observable features (Biarnès et al. 2009) or performed 

on stratified samples based on pre-defined farm typologies (Joannon et al. 2006; Murgue et 

al. 2016). Despite these simplifications, collecting farm survey data to describe the spatial 102 

distribution and dynamics of cropping systems remains time consuming. For example, 

Murgue et al. (2016) interviewed 27 farmers to describe their decision rules in detail 

(indicators and thresholds) for maize and other regionally relevant crops in an 840 km² 105 

watershed (downstream area of the Aveyron River, southwestern France). Each interview 

lasted approximately half a day. In total, the interviews took more than 13 working days, 

plus the processing time to formalize all crop management system decision rules (≈2 108 

months) (Hipolito 2012). Although the study described spatial distribution of cropping 

systems with location and decision rules, the process was resource-consuming and therefore 

would be difficult to repeat for multiple and large study areas. 111 

This article presents a simple, rapid approach to describe spatial distribution of current 

cropping systems at the regional scale in a way that considers their dynamic dimensions and 

thus can be used for simulation purposes. It builds on the study by Murgue et al. (2016), 114 

which modeled irrigation practices at the watershed scale. The approach we adopted to 

describe the cropping systems and their spatial distribution is a low-data method (sensu 

Therond et al. 2011), i.e. based on expert knowledge and easy-to-collect regional crop 117 

management information. Expertise collection rested on the  “key informant” approach 

originally described by (Tremblay 1957) where key informants are considered as experts 

having a perception grounded in theory, yet attained as a result of deep understanding, 120 

practice and interaction with the subject matter (Twongyirwe et al. 2018). We hypothesized 

that key informants, in our case local extension agents, have sufficient knowledge to 

describe location factors and decision rules of cropping systems at the regional scale and 123 

identify their most relevant characteristics at the field scale. We evaluated this approach in 

two large areas in southwestern France, first in the Tarn River area and then in the Adour 

River area. To assess the reliability of our approach to model the cropping systems and their 126 

spatial distribution, we used a multi-agent, spatially explicit model that simulates their 

effects on water withdrawals, and then compared the simulated water withdrawals to 

observed ones. 129 

2. MATERIALS AND METHODS 

2.1 Case studies and available data 
Focused on the interactions between irrigation and water-deficit issues, this study explored 132 

irrigation-management practices in two study areas in the Adour-Garonne River basin in 

southwestern France (116 000 km², Midi-Pyrénées region), which experiences a chronic 

imbalance between water resources and water needs during the low-water period, which 135 

occurs mainly during summer (Debril and Therond 2012; Mazzega et al. 2014). The first area 

(2 952 km²) is located in the downstream area of the Tarn River, one of the main tributaries 
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of the Garonne River. This area is influenced by a Mediterranean climate, with high 138 

temperatures in summer and heavy rainfall events in autumn and spring. Of note, this area is 

contiguous with the Aveyron watershed, the above mentioned case study by Murgue et al. 

(2016). The second area (1 446 km²) is located in the upstream area of the Adour River, 141 

which drains the northern slopes of the French Pyrenees. Recent statistics highlight that it 

has the highest irrigation water withdrawals in the Adour River basin (OEBA 2015). Its 

climate is oceanic, with relatively warm and humid weather in summer and heavy rainfall 144 

events in winter. The two main soil types in each study area are (i) alluvial and hydromorphic 

loamy silt soils, mainly associated with fluvial terraces, and (ii) calcareous clayey soils, which 

predominate elsewhere (Fig. 1 A and B). 147 

 

Figure 1. Locations and characteristics of the study areas (A) Adour and (B) Tarn, which is 

closer to the Aveyron study area of Murgue et al. (2016) (gray). Non-agricultural areas 150 

(white) on the soil maps represent the following CORINE Land Cover classes for 2012: urban, 

woods, wetlands, and water bodies.  

 153 

As for any area in France, generic databases are available to map the main attributes of the 

study areas (Murgue et al. 2016). For example, the "Land Parcel Identification Systems" 

(LPIS) is a georeferenced database to be developed by each member state of the European 156 

Union to control annual Common Agricultural Policy (CAP) subsidies. It stores the land cover 

information (nature and area) of each CAP islet of each farmer concerned by these subsidies 

(Inan et al. 2010). We used the French LPIS database (for 2006-2012) to (i) map the main 159 

annual crops and spatial distribution of fields (ASP 2012), (ii) retrace crop sequences at the 

field scale, and (iii) identify fields that were declared as irrigated at least once from 2007-

2009. Of note, LPIS no longer collected irrigation-related data after 2009. The French LPIS 162 

mapping unit is a “farmer’s block” or “Common Agricultural Policy islet”, which corresponds 

to one or more aggregated contiguous agricultural land parcels (Sagris 2013; Murgue et al. 

2016). We also used the CORINE Land Cover database for 2012 (EEA 2015) to complete the 165 

land-use map for orchards, typically underrepresented in LPIS, and to map non-agricultural 

land cover (i.e., forest and urban). Representing 55% of the total area, arable land dominates 

in both study areas, but includes different percentages of irrigated area: 28% in the Tarn 168 
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area and 39% in the Adour area (Table 1). Additional information about cropland 

composition was obtained from the general agricultural census performed by the French 

Ministry of Agriculture (Agreste 2010) and freely available at the Local Administrative Unit 2 171 

level, corresponding to a French municipality (Eurostat 2015). 

 

Table 1. Main characteristics of the two study areas (for 2012). Source: Land Parcel 174 

Identification System (LPIS) and CORINE Land Cover data. The number of crop fields was 

obtained from LPIS data after processing (see details in Leenhardt et al. (2012)) 

Characteristic Tarn Adour 

Area (km²) 2 950 1 446 

Estimated Farmed Agricultural Area (FAA, ha) 160 961 79 359 

Percentage of FAA in total area 55% 55% 

Estimated irrigable FAA (ha) 44 595 30 723 

Percentage of FAA irrigable 28% 39% 

Farms 4 184 2 671 

Percentage of irrigated farms 36% 41% 

Crop fields  85 484 45 716 

 177 

We obtained climate data from the SAFRAN database (Vidal et al. 2010) and soil types from 

the French Geographic Soil Database at a scale of 1:1 000 000, which represents the French 

portion of the European Geographic Soil Database (King et al. 2005; Antoni et al. 2007). 180 

Finally, we used water withdrawal data provided by water users through an annual 

mandatory report to the Adour-Garonne Water Agency (AEAG 2015). For each water user, 

these data provide the total amount of water withdrawn at each “withdrawal point”. The 183 

locations of only a few points are known precisely; most are approximated as the centroid of 

the municipality containing the withdrawal point. Since the boundaries of the two study 

areas did not overlap with municipality boundaries, we multiplied the reported withdrawn 186 

water volumes by the percentage of the municipal area located within each watershed, to 

estimate water withdrawals in each study area.  

2.2 Key informant interviews 189 

To identify key informants, namely experts with knowledge about the spatial distribution 

and management of the main irrigated crops, we first interviewed shortly the managers of 

the agro-environmental department of the extension service of each area (30mn each). They 192 

designated the technicians of agricultural extension services who could serve as key 

informants regarding the main crops of the studied areas (Table 2). We conducted four semi-

structured face-to-face interviews, lasting approximately 2.5 hours each, to deal with the 195 

two irrigated crop classes for which the most water for irrigation is withdrawn: maize and 

orchards. Three of the four interviews involved two key informants at the same time.  
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 198 

Table 2. Description of key informants (by expected expertise and study area) and interviews 

(by type, number of people interviewed and duration). 

Key informants Interviews 

Expected expertise Tarn Adour Telephone  Face-to-face Duration 

Maize production and irrigation practices 2 2  2 320 min 

Orchards and drip-irrigation practices 2 -  1 120 min 

Cash crops 1 -  1 140 min 

Vineyards  1 - 1  20 min 

Seed production and legumes 1 - 1  20 min 

Pastures and alfalfa 1 - 1  20 min 

Total 8 2 3 4 640 min 

 201 

We designed the interview script to focus on the question: “How is irrigation managed for 

the main crops in the study area?” The interview was composed of four steps: (i) identify the 

main crops in the target area, (ii) create a list of land use classes for each crop (e.g., for 204 

maize: rainfed, irrigated, silage, seed), (iii) describe water consumption (i.e., volumes per 

period) for the main crops irrigated within irrigated crop classes and (iv) describe indicators 

and thresholds necessary to define IF-THEN crop management decision rules and location 207 

factors used to define location rules.  

Interviews were supported by intermediate objects to (i) summarize existing knowledge to 

highlight and help fill information gaps and (ii) mediate between the researchers and local 210 

key informants (Vinck 1999; Buller 2009). The rationale was to facilitate elicitation of 

decision rules that underlie crop management practices. Finally, these intermediate objects 

were used to obtain easy-to-formalize, spatially explicit answers, since they provide a 213 

framework to pre-process key informants’ discourses into an input format for the simulation 

model. 

The intermediate objects were a map, a table and several diagrams. The map was used at 216 

the beginning of the interview to clarify watershed boundaries (Fig. 1 A and B), which differ 

from those of the administrative unit at which the interviewees work: the Département also 

called NUTS 3 (Eurostat 2015). The table listed the main crops identified from analyzing 219 

census data (for 2010) and LPIS and CORINE Land Cover maps (both for 2012). The diagrams 

(Fig. 2) were designed to help interviewees depict management practices for each main 

irrigated crop in the region. They were structured around a simplified calendar that explicitly 222 

required specifying indicators and threshold values that farmers are expected to use to start 

or stop sowing, irrigation and harvest. To identify cropping systems associated with each 

crop, we asked key informants if the values identified for standard management of the crop 225 

could vary in space or according to location factors (e.g. crop sequence, soil type, irrigation 

equipment). For example, key informants indicated that winter wheat can be irrigated if it 
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occurs in the same sequence as maize, otherwise it is rainfed. We also asked key informants 228 

to describe an average year and then identify possible adaptations to infrequent conditions 

(e.g., humid or dry seasons). During the process, we invited key informants to rely on their 

own field experience of crop management practices rather than on the advice they usually 231 

give to farmers. 

 

 234 

Figure 2. Example of a diagram used during key informant interviews. Interviewees were 

asked (A) to specify the crop class and (B) to quantify irrigation scheduling (number of days 

between two applications) during the most relevant periods. Then, after (C) a quick 237 

reminder of the modeling approach, they were asked to list (D) indicators (e.g., rainfall, soil 

moisture) and the associated thresholds farmers use to manage irrigation during (E) the 

irrigation season. Similarly, the timeline was used to frame (F) the scheduling of sowing and 240 

harvesting, for which interviewees were asked to set (G) indicators and thresholds 

underpinning the decision rules. Source: English translation of the original in French.  

 243 

These face-to-face interviews were supplemented with phone interviews to obtain missing 

information about specific crops (e.g., legume, pastures, vineyards - see Table 2). Phone 

interviews (approximately 20 minutes each) began with the same short introduction as the 246 

full interview, which was followed by a short list of questions about crop management 

decision rules and expected irrigation volumes for a standard cropping season. The 
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interviewer recorded answers on the intermediate objects (tables and diagrams) described 249 

previously.  

Both types of interviews were transcribed into a text editor in preparation for analysis. We 

processed the local information by grouping all details provided for each crop and cropping 252 

system during the interviews to address possible differences among key informants, 

especially those with different fields of competence, and to formalize and encode a first 

draft of the decision rules.  255 

Altogether, from interviews to the first draft of decision rules, the key informant approach 

required approximately 260 working hours for the two study areas. 

 258 

2.3 Modeling cropping systems and their spatial distribution 
Based on the information collected from interviews, we modeled spatial distributions of 

cropping systems in each study area in three steps. First, we addressed the two components 261 

of cropping systems, namely the crop sequences (step 1) and the decision rules of crop 

management (step 2). Then, we coupled the dynamic decision rules with the location factors 

(step 3). 264 

Step 1. Describing crop sequences using real data 

Our objective was to define sequence types to infer irrigation management rules. First, we 

processed the 2006-2012 LPIS data (simplifying the crop labels slightly to perform an initial 267 

grouping). This allowed us to identify the real crop sequences observed in all farmers’ blocks 

(see details in Leenhardt et al. 2012). Since this list of sequences was too large to manage 

easily, we created a typology of crop sequences useful for dealing with crop management 270 

decision rules. For this, each type of crop sequence was defined by the proportion of each 

crop in the duration of the sequence, regardless of their order. For example, Maize-Maize-

Maize-Soybean-Wheat-Maize belongs to the sequence type “maize, rotation”, in which 273 

maize occurs more often than any of the other crops.  

Second, we adapted the generic LPIS crop classes using the information from interviews 

about main local crops. We aggregated crop classes covering small areas (e.g., different 276 

types of set-aside land) or those with similar water use and irrigation practices (e.g., grain 

legumes and protein crops). We disaggregated crop classes into new sub-classes when key 

informants indicated the need to differentiate irrigation management practices (e.g. silage 279 

maize vs. grain maize). 

Step 2. Modeling crop management systems using the information retrieved 

Dynamics and locations of crop management systems were modeled using rules developed 282 

from information collected during interviews. We used information about indicators and 

their threshold values to formalize sowing, irrigation, and harvest management rules for 

each crop. We used information about location factors to develop location rules. For 285 

example, the crop sequence type was identified as a location factor: wheat is irrigated only if 
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it occurs in a sequence including maize, but not if it occurs in a rainfed sequence type (e.g., 

cereal-sunflower). The location rules were then used to assign a crop management system 288 

(described as a set of decision rules) to each combination of [crop sequence type] × [soil] × 

[irrigation equipment].  

Step 3. Defining the spatial distribution of cropping systems 291 

Cropping systems were assigned to each land parcel in each farmer’s block according to the 

following procedure. The soil type, crop sequence type, irrigation status and irrigation 

equipment of land parcels were characterized using GIS. The dominant agricultural soil type 294 

of each farmer’s block from the 1:1 000 000 soil database was assigned to each of its land 

parcels. If the original LPIS crop class observed on a given land parcel was divided into new 

classes during step 2, one of these new classes was assigned to the land parcel according to 297 

location factors such as the soil type, crop sequence or crop area of the farm it belonged to, 

while respecting, for each study area, the proportions of these new classes observed in the 

2010 agricultural census (Agreste 2010). We assigned the crop sequence of each land parcel 300 

to a crop sequence type (defined in step 1) using the Dice percentage similarity index (Dice 

1945). Irrigation status of a land parcel was determined using 2007-2009 LPIS data. We 

assumed that land parcels were potentially irrigated, i.e. equipped for irrigation, if the 303 

farmer’s block they belonged to was irrigated at least once during those years. Crops that 

can be managed either with or without irrigation were assumed to be potentially irrigated 

only if they occurred in a farmer’s block equipped for irrigation. Due to a lack of local 306 

information about the relative frequencies of types of irrigation equipment and the location 

factors that influence them, we assigned the equipment used most in the area (travelling 

gun sprinkler) to each potentially irrigated farmer’s block.  309 

Finally, a crop management system was assigned to each land parcel in each farmer’s block 

in which the crop occurred according to the observed combination of [crop sequence type] × 

[soil] × [irrigation equipment], using the table constructed in step 3. 312 

 

2.4 Evaluating the approach 
Evaluating our approach was challenging: because it was developed to compensate for the 315 

relative lack of cropping system data, it used all the data available to formalize and spatialize 

the cropping systems, leaving no data for classic “observed vs. simulated” evaluation. We 

therefore evaluated the approach indirectly. We used the cropping system information 318 

retrieved from our approach to parameterize a model able to simulate irrigation withdrawals 

and compared simulated withdrawals to withdrawal data obtained from the Adour-Garonne 

Water Agency (AEAG). Since AEAG data were annual data only, we also verified that, for 321 

each cropping system, the simulated withdrawal dynamics were consistent with key 

informants’ descriptions of irrigation starting and ending dates. Irrigation withdrawals were 

chosen as an evaluation indicator because the simplified survey of crop management 324 

practices focused on irrigation and only secondarily on sowing and harvesting. The model 

used was chosen for its ability to account for all components of the cropping system: the 



11 
 

observed crop sequences retrieved from the generic data sources, the decision rules and the 327 

location factors identified from the key informant interviews. This indirect way to evaluate 

the reliability of a modeled spatial distribution of cropping systems was previously used by 

Murgue et al. (2016). 330 

For simulating water withdrawals, we used the agricultural module of the MAELIA multi-

agent and spatially explicit simulation platform (Gaudou et al. 2013; Therond et al. 2014; 

Mazzega et al. 2014; http://maelia-platform.inra.fr/). This agricultural module, fully 333 

described by Murgue et al. (2014), combines a soil-crop model and a farmer agent model. 

The former predicts daily soil water balance based on rainfall, evapotranspiration, soil water 

content and crop development stage (Constantin et al. 2015). The latter applies farmers’ 336 

decisions using crop management decision rules. Virtual farmer agents check, every day and 

for each land parcel, whether thresholds encoded in management rules have been reached 

or exceeded and, if so, perform the corresponding technical operation(s). Note that since the 339 

hydrological and normative modules of MAELIA were deactivated, virtual farming agents 

have access to unlimited water resources.  

The modeled cropping systems, i.e. observed crop sequences purposely simplified (step 1), 342 

along with the decision rules (step 2) and the location rules (step 3), were used to 

parameterize the agricultural module of MAELIA. Through the multi-agent structure of 

MAELIA, this module (soil-crop and farmer agent models) was run independently for each 345 

land parcel in each farmer’s block on each farm in each study area. During a simulation, the 

model reads through the crop sequence each year to find the crop grown, then associates 

the crop with its management system (i.e., the set of IF-THEN rules) as a function of the crop 348 

sequence type, soil and irrigation equipment, based on the table constructed for this 

purpose. The simulation ran from 2003, an extreme drought season, to 2012, thus covering 

the period for which LPIS data were available to reconstruct crop sequences (i.e., 2006-351 

2012). Crop sequences observed from 2006-2012 were replicated to cover the previous 

years without LPIS data (2003-2005).  

Given the many fields simulated (Table 1) and their multiple interactions, our first objective 354 

was to reproduce the interannual dynamics of total withdrawal recorded in the AEAG 

database. 

3. RESULTS 357 

3.1 Cropping systems 
Twenty-three crops out of the 29 recorded in the LPIS are cultivated in the two study areas 

(Fig. 3 and 4, columns 1 and 2). For the Tarn area, we identified 21 330 crop sequences, 360 

which were grouped into 22 sequence types (Table 3). For the Adour area, LPIS analysis 

identified 7 163 crop sequences, which were grouped into 18 sequence types (Table 4). 

Figure 5 and Table 7 report the percentages and location factors used to determine the 363 

“new” crop classes in both areas, i.e. those different from the original LPIS. The original LPIS 

“maize” class was first divided into silage maize and grain maize according to a decision tree 
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based on the percentages of maize and pasture area in the farm agricultural area (Table 5). 366 

Next, the grain maize class was divided into two classes of earliness depending on the crop 

sequence and the soil in the land parcel (Fig. 5). The “other cereals” and “orchards” LPIS 

classes were also divided into new classes according to crop sequence and soil type location 369 

factors. For example, in the Tarn area, kiwifruit orchards were randomly located on 25% of 

the land parcels grown continuously in orchards (according to LPIS) and situated on alluvial 

soils. This approach resulted in 18 crop classes, 14 of which can be irrigated, in the Tarn area 372 

(Fig. 3, column 4) and 14 crop classes, 11 of which can be irrigated, in the Adour area (Fig. 4, 

column 4). 

  375 
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Figure 3. Definition of the crop classes at the regional scale in the Tarn area. Crop classes are 

irrigated (••), seldom irrigated (•) and exclusively rainfed (°). Absent crops from the original 

LPIS list were not reported. The second column shows the original Land Parcel Identification 378 

System (LPIS) label and, in parentheses, the label corresponding to the initial grouping of 

classes performed before crop sequence processing and used in Table 3. 

 381 
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Figure 4. Definition of the crop classes at the regional scale in the Adour area. Crop classes 

are irrigated (••), seldom irrigated (•), or exclusively rainfed (°). Absent crops from the 384 

original LPIS list were not reported. LPIS = Land Parcel Identification System. The second 

column shows the original Land Parcel Identification System (LPIS) label and, in parentheses, 

the label corresponding to the initial grouping of classes performed before crop sequence 387 

processing and used in Table 4. 

 

  390 
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Table 3. Crop sequence types for the Tarn area (first column). Each sequence is described by 

the dominant crop classes, its duration (each crop representing one year), and the frequency 

with which each crop occurs. For example, “Maize, rot” (rot = rotation) is a 6-year sequence 393 

with maize (silage or grain, early or late variety) in 3 out of 6 years, soybean, wheat and 

another cereal. For monocropping (mc) and perennial production, the crop is only listed in 

the second column. Note that crops in a sequence that can be irrigated or rainfed are 396 

managed differently. Crop names come from the Land Parcel Identification System (original 

label, or labeled after the initial grouping – see Fig. 3). 

 Sequence 

Sequence type Crop 1 Crop 2 Crop 3 Crop 4 Crop 5 Crop 6 Crop 7 

IRRIGATED 

Maize, mc Maize 

Maize, rot Maize Maize Maize Soybean Wheat Other cer 

Cereals - Soybean Wheat Other cer Soybean 

Cereals Wheat Other cer 

Alfalfa - Maize Fodder crop Fodder crop Fodder crop Maize 

Seed production, mc Seeds   

Seed production, rot Seeds Seeds Wheat Other cer 

Vegetables Vegetables 

Orchards  Orchards       

RAINFED 

Maize, rot Maize Maize Maize Soybean Wheat Other cer Straw cer. 

Cereals - Soybean Wheat Other cer Straw cer. Soybean 

Cereals Wheat Other cer Straw cer. 

Cereals - Sunflower Wheat Other cer Straw cer. Sunflower 

Cereals - Rapeseed Wheat Other cer Straw cer. Rapeseed 

Vegetables Vegetables 

Set-aside Set-aside 

Alfalfa - Cereals Fodder crop Fodder crop Fodder crop Straw cer. 

Alfalfa - Maize Fodder crop Fodder crop Fodder crop Maize 

Mix Small grain Pea Sunflower Soybean Seeds Alfalfa Set-aside 

Grassland Pastures       

Orchards  Orchards       

Vineyards  Vineyards       

 399 
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Table 4. Crop sequence types for the Adour area (first column). Each sequence is described 402 

by the simplified dominant crop classes, its duration (each crop representing one year), and 

the frequency with which each crop occurs. For example, “Maize, rot” (rot=rotation) is a 5-

year sequence with maize (silage or grain, early or late variety) in 3 out of 5 years, soybean 405 

and a small grain cereal crop. For monocropping (mc) and perennial production, the crop is 

only listed in the second column (Crop 1). Since the grouping of crops in the Adour area was 

relatively simple, we used the labels of the simplified crop classes (Fig. 4) to name the crops 408 

(except for maize). 

 Sequence 

Sequence type Crop 1 Crop 2 Crop 3 Crop 4 Crop 5 Crop 6 

IRRIGATED 

Maize, mc Maize 

Maize, rot Maize Maize Maize Soybean Small grains 

Alfalfa - Maize Alfalfa Alfalfa Alfalfa Maize 

Seed production, mc Seeds 

Seed production, rot Seeds Seeds Small grains 

String beans String beans 

Orchards  Orchards      

RAINFED 

Maize, rot Maize Maize Maize Soybean Small grains 

Cereals Small grain 

Cereals - Sunflower Small grain Sunflower 

Cereals - Rapeseed Small grain Rapeseed 

Set-aside Set-aside 

Alfalfa - Cereals Alfalfa Alfalfa Alfalfa Small grains 

Alfalfa - Maize Alfalfa Alfalfa Alfalfa Maize 

Mix Sunflower Soybean Seeds Alfalfa pastures Set-aside 

Grassland Pastures      

Orchards  Orchards      

Vineyards  Vineyards      

 

  411 
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Table 5. Distribution of the Land Parcel Identification System maize class into grain and 

silage classes based on location factors (percentages of maize and pasture in the farm area). 414 

This model was used for both the Tarn and Adour areas. 

Location factors 
 Distribution of the LPIS maize class into grain and 

silage classes 

% of maize in farm 

agricultural area 

% of pasture in farm 

agricultural area 
 Grain maize Silage maize 

< 30% –  75%  25% 

     

 < 10%  100% 0% 

> 30% 10-35%  50% 50% 

 > 35%  100% 0% 

     

 

 

Figure 5. Procedure used to develop 

detailed crop classes from original 

Land Parcel Identification System 

(LPIS) classes, as specified by key 

informants (cf. step 1 of the crop 

system modeling). The diagram 

presents the original LPIS class (col. 

1), the location factors (col. 2) and 

percentages (col. 3) used to divide 

LPIS classes, and possibly 

recombine them, into new crop 

classes (col. 4). Here, “maize” is only 

grain maize. This procedure was 

applied to one area each in the 

Adour and Tarn watersheds, France. 

 417 
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Based on the irrigated and rainfed areas of each crop derived from LPIS irrigation data for 

2007-2009 (Fig. 6), maize was the most extensively irrigated crop in both areas. For the 

Adour area, we estimated that ≈70% of maize area was irrigated, whereas the key 420 

informants estimated that 75% was irrigated. For the Tarn area, we estimated that 93% and 

82% of late and early maize varieties, respectively, were irrigated, whereas the key 

informants estimated that 100% of each was irrigated (Fig. 6). As for location factors of 423 

cropping systems, the key informants mainly emphasized soil water-holding capacity (i.e., 

the greater the clay content, the higher and less frequent the irrigation) and irrigation 

equipment (e.g., pivot irrigation has lower doses and higher frequency than sprinkler 426 

irrigation). 

  
Fig. 6. Median rainfed and irrigated crop areas (ha) for the period simulated (2003-2012) in 

the two study areas. Values in parentheses indicate the percentage of total crop area that 429 

was irrigated. Maize is divided into silage (maizeS), early (maizeE) and late (maizeL) varieties, 

in addition to seed production. 

3.2 Simulated water withdrawals at the regional scale 432 

Median annual withdrawals for 2003-2012 reported by AEAG were 39.7 and 42.7 hm³ for the 

Adour and Tarn areas, respectively, while MAELIA predicted 37.7 and 40.4 hm³ (Fig. 7), 

respectively (under-predicted by 5%). The model simulated well withdrawal dynamics 435 

among years (Fig. 7). Predictions for the Tarn area ranged from 16% below (in 2011) to 11% 

above (in 2009) observations. Predictions were less accurate for the Adour area, especially 

for 2003-2005; for 2006-2012, they ranged from 14% below to 11% above observations. Less 438 

accurate predictions in the Adour area for 2003-2005 may have been influenced by the lack 

of LPIS crop data before 2006 and by the quality of the AEAG data for withdrawn volumes. 

Notably, AEAG data for the Adour area in the earlier years were mostly estimates based on 441 

farm irrigated area, while those in the later years were mostly measurements. This factor 

could be the most important, since the AEAG obtained measured withdrawals from an 

earlier date in the Tarn area, for which predictions were more accurate. 444 
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Fig. 7. Comparison of water withdrawals for irrigation declared to the water agency by 

irrigating farmers and predicted by the agricultural module of the MAELIA platform. 

 447 

4. Discussion 
In this article, we present a method to model the current cropping systems and their spatial 

distribution at the regional scale. Similar approaches for the same objective, based on a few 450 

local key informants, were used to describe the influence of agriculture on landscape 

management (Galli et al. 2010) and to identify strengths and weaknesses of extension 

services (Debolini et al. 2013). The discussion below addresses the (i) strengths, (ii) limits, (iii) 453 

replicability and genericity and (iv) evaluation of our approach to describe cropping systems 

at the regional scale. 

Strengths. Our approach, based on generic data sources, key informant interviews and 456 

decision modeling, allowed us to describe current cropping systems at the regional scale, not 

only as a static picture but as dynamic systems. The generic data sources allowed the 

description of crop sequences. Key informants allowed us to directly access average farmers’ 459 

strategies: we assumed that extension agents would have a wide view of crop management 

systems and could identify average decision rules and potential local and individual 

adaptations. Their integrated vision of the study area helped us to avoid the interpretation 462 

difficulties that occur in detailed surveys of agricultural management practices performed at 

the farm level: great heterogeneity among farmers and bias resulting from complying with 

regulations or from small samples (Schott et al. 2014). The ability to obtain extensive 465 

coverage of the study areas from only a few interviews was facilitated by the fact that 

French extension services are generally organized to operate with relatively few agents. In 

this regard, the help of the two managers was crucial. The design of targeted intermediate 468 

objects (maps, tables and diagrams) also helped structuring the interviews to obtain the 

missing data in the two study areas. When evaluating this approach with MAELIA’s 

agricultural module, we observed a similar ability to simulate water withdrawals as in the 471 
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previous study in the nearby Aveyron watershed (Murgue et al. 2016). Our approach, using 

local knowledge of key informants to formalize location and crop management rules, 

performs as well as the previous approach: the same order of magnitude of differences 474 

between simulated water withdrawals and AEAG withdrawals in the present study as in 

Murgue et al. (2016). Besides, our simplified approach is more efficient since it enabled us to 

describe crop management systems at the regional scale on six times as many fields as in the 477 

Aveyron study (Murgue et al. 2016), in approximately one-fourth of the time required in this 

previous study.  

Limits. The limits of our approach are closely related to the quality of the generic data and 480 

the local knowledge used. 

First, the irrigated status of land parcels appears as probably poorly estimated, as revealed 

by the underestimates of simulated water withdrawals. Indeed, we used 2007-2009 LPIS 483 

data to determine whether land parcels could be irrigated, which might have biased 

estimates of irrigation status before and after this period. In this perspective, it would be 

reasonable to update these data using specific sources, such as recent multi-sensor, high-486 

resolution time series of satellite images being evaluated for identifying irrigated crops in 

our study region (Waldner et al. 2015b).  

Second, the allocation of irrigation equipment to irrigated land parcels should be improved 489 

by collecting information about relative frequencies and distributions of types of irrigation 

equipment. The type of irrigation equipment strongly influences irrigation volume per ha. 

Discussions with irrigation experts indicate that the increasing use of pivot irrigation tends to 492 

increase irrigation intensity. Methods to obtain irrigation equipment information should be 

developed. 

Third, our crop classification was developed to discriminate crops based on their irrigation 495 

use, but it may be oversimplified. We ignored irrigated crops that covered small areas. For 

example, we gathered in a unique “seed production” class the main seed crop (maize) and 

many other seed crops found in the Tarn area (e.g. carrots, onions).  498 

Fourth, the estimation of crop management could certainly be improved. On the one hand, 

we simplified the description of rainfed crops because we primarily wanted to reproduce 

water withdrawals correctly. On the other hand, crop management of irrigated crops, 501 

although detailed, depended on the experience of key informants in local crop management 

practices.  

Fifth, the collected data is dependent on the key informants. In our case, the selected key 504 

informants ranged from a highly experienced extension agent, who had worked in the same 

area for approximately 20 years, to a recently recruited agent. In general, the longer their 

experience in local farming, the greater their ability to describe crop management decision 507 

rules at the regional scale, though their answers appeared to be adapted to average pedo-

climatic conditions. Conversely, the shorter their experience, the more they tended to refer 

to extension service bulletins, i.e. recommendations instead of actual practices. The key 510 

informants with less experience tended to provide detailed descriptions of farmers’ decision 
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rules; however, the information was restricted to the most recent years. Ultimately, we had 

to find a balance between the reliable experience of the former and the high detail of the 513 

latter. In this regard, the intermediate objects used during the interviews (maps, tables and 

diagrams) allowed to frame the respondents answers, so as to enable their comparability 

and following encoding.  516 

Genericity and replicability. Our approach of describing cropping systems at the regional 

scale was applied to the Tarn and Adour watersheds in response to specific irrigation issues. 

However, it has a generic character. First, it uses data that is relevant beyond these two 519 

study areas. The LPIS database, from which we obtained descriptions of crop sequences, is 

increasingly used to map crop patterns and dynamics in France (Durpoix and Barataud 2014; 

Rizzo et al. 2014; Bouty et al. 2015; Levavasseur et al. 2016) and elsewhere in Europe 522 

(Leteinturier et al. 2006; Levin 2013; Zimmermann et al. 2016). Second, the local information 

was integrated using intermediate objects (e.g., diagrams) and then formalized as IF-THEN 

rules for management decisions and cropping system location. Combining diagrams and IF-525 

THEN rules defined a methodological framework that can be adapted easily to study other 

areas and crop management practices besides irrigation, as well as to account for various 

annual and perennial crops. We found that the intermediate objects prepared for the 528 

interviews (scripts and diagrams) could be adapted rapidly from the first area (Tarn) to the 

second (Adour), demonstrating their genericity. Formalizing the knowledge that underpins 

the intermediate objects used for key informant interviews may eventually facilitate social 531 

learning among farmers, extension agents and scientists, at least by providing focal points 

for communication and bridging gaps among them (Jakku and Thorburn 2010; Houllier and 

Merilhou-Goudard 2016; Moonen et al. 2016). More generally, we assume the key informant 534 

approach can be repeated anywhere, and also extended to the collection of other data, e.g. 

of crop rotations and several technical operations, where or when generic database are not 

available, as did Mignolet et al. (2004). Though, its main limitation, as in other participatory 537 

approaches, is the difficulty in identifying the best key informants. One way to evaluate their 

representativeness is by characterizing the local web of actors and the socio-technical 

system (Mathevet et al. 2014). We limited our key informant approach to extension agents, 540 

but other local actors have knowledge about crop management practices that complements 

farmers’ knowledge. During the interviews, managers of local water-user associations, who 

are also farmers, or extension agents working for private or crop-specific technical institutes, 543 

were often mentioned as able to provide relevant knowledge to describe cropping systems 

and irrigation practices at the regional scale. 

Evaluation. More complete evaluation of our approach would have been based on an 546 

independent dataset of observed farmers’ practices. This dataset would have included all (or 

nearly all) farms within the region to address the high heterogeneity of farmers’ strategies. A 

dataset corresponding to a sample cannot represent the entire population and is thus 549 

insufficient for complete evaluation. However, no exhaustive dataset was available. The lack 

of adequate data is a major obstacle in evaluating model outputs, as often reported for 

model evaluation at the regional scale (e.g. Leenhardt et al. 2016; Temme and Verburg 2011; 552 

Waldner et al. 2015a). Due to the lack of independent data on observed farmers’ practices, 
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we could not evaluate our approach directly; thus, we used a simulation model to assess its 

ability to provide consistent estimates of water withdrawals. We used AEAG water 555 

withdrawal data as a validation dataset despite its weakness in spatial coverage, locations of 

withdrawal points and how withdrawn volumes were surveyed over time. The differences 

between observed and simulated water withdrawals were due in part to these inaccurate 558 

observations, but also likely due to underestimates of irrigation of orchards and vegetables 

by the model, particularly in the Tarn area, because the soil-crop model in MAELIA was not 

sufficiently parameterized to represent these two crops correctly. Another option to 561 

evaluate our approach, despite the lack of observed cropping system data, could have been 

to involve farmers (or other local experts not previously involved) and verify whether the 

simulated dates for the main technical operations (sowing, harvest) were consistent with 564 

their field knowledge. This would have required summarizing the temporal distribution of 

the corresponding technical operations for each combination of [crop sequence type] × [soil] 

× [irrigation equipment] for each crop into diagrams similar to those used during the 567 

interviews (Fig. 2). These alternative ways to assess our approach, however, are mainly 

qualitative and rely on either the quality of farmers’ expertise or the availability of new 

experts. 570 

5. Conclusions 
Describing cropping systems at the regional scale requires integrating generic data sources 

with formalized local expert knowledge. The major challenge concerns the data on crop 573 

management practices due to the high spatial and temporal heterogeneity of farmers’ 

decision making. We evaluated the contribution of a key informant approach to simplify the 

survey and modeling of crop management practices. Comparison of our approach to that in 576 

a previous study (Murgue et al. 2016) indicated that we needed only one-fourth the time to 

collect and process the relevant information. Our simplified approach involved only 12 

interviewees compared to the sample of 27 farmer interviews (and several focus groups) in 579 

the previous study. The gain in efficiency was even greater because our study areas were a 

total of six times as large as that in the previous study. Implementing the key informant 

approach allowed us to model irrigation decisions and their spatial distributions and, 582 

through dynamic simulations, to predict annual amounts and interannual dynamics of 

irrigation water withdrawals relatively well. One main innovation of our method was to use 

knowledge from generic databases when interacting with key informants and ad-hoc 585 

intermediate objects to help them focus on missing information. In particular, use of 

diagrams reduced interview duration and processing time. These intermediate objects are 

easy to reuse in new study areas. This approach was applied to two large areas and can 588 

easily be adapted to other areas where LPIS data are available. Although we focused on 

irrigation management practices in areas with water scarcity issues, this approach is 

sufficiently generic to be applied to areas, and can be easily adapted to focus on other 591 

management practices and crops. Thus, our approach can be considered a rapid and 

inexpensive tool to inform decisions and policy making to address agri-environmental issues 

that require modeling of the spatial distribution of cropping systems at the regional scale.  594 
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