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Abstract: Hydro-agricultural applications often require surface soil moisture (SM) information
at high spatial resolutions. In this study, daily spatial patterns of SM at a spatial resolution of
1 km over the Babao River Basin in northwestern China were mapped using a Bayesian-based
upscaling algorithm, which upscaled point-scale measurements to the grid-scale (1 km) by retrieving
SM information using Moderate Resolution Imaging Spectroradiometer (MODIS)-derived land
surface temperature (LST) and topography data (including aspect and elevation data) and in situ
measurements from a wireless sensor network (WSN). First, the time series of pixel-scale (1 km)
representative SM information was retrieved from in situ measurements of SM, topography data,
and LST. Second, Bayesian linear regression was used to calibrate the relationship between the
representative SM and the WSN measurements. Last, the calibrated relationship was used to
upscale a network of in situ measured SM to map spatially continuous SM at a high resolution.
The upscaled SM data were evaluated against ground-based SM measurements with satisfactory
accuracy—the overall correlation coefficient (r), slope, and unbiased root mean square difference
(ubRMSD) values were 0.82, 0.61, and 0.025 m3/m3, respectively. Moreover, when accounting for
topography, the proposed upscaling algorithm outperformed the algorithm based only on SM
derived from LST (r = 0.80, slope = 0.31, and ubRMSD = 0.033 m3/m3). Notably, the proposed
upscaling algorithm was able to capture the dynamics of SM under extreme dry and wet conditions.
In conclusion, the proposed upscaled method can provide accurate high-resolution SM estimates for
hydro-agricultural applications.
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1. Introduction

Soil moisture (SM) is a critical hydrological variable that links terrestrial water, energy, and
carbon cycles [1–3]. Most hydro-agricultural applications rely on SM measurements at fine spatial
resolutions (~1 km) with continuous temporal coverage [4,5]. However, current satellite missions
provide regional-scale SM observations at coarse spatial resolutions (lower than 25 km) [6–8].

Various approaches for estimating high-resolution SM have been proposed by downscaling coarse
passive microwave data with fine-scale auxiliary variables. The Soil Moisture Active Passive (SMAP)
mission was designed to combine high-resolution active and coarse passive microwave measurements
at L-band in order to provide SM data at 9 km resolution [9]. Other downscaling algorithms were
proposed based on a combination of coarse resolution passive microwave data (e.g., Soil Moisture
and Ocean Salinity (SMOS) and Advanced Microwave Scanning Radiometer for EOS (AMSR-E))
with moderate resolution optical/thermal sensors data (e.g., the Moderate Resolution Imaging
Spectroradiometer (MODIS)) [4,10–12], which have better temporal resolution than operational radar
sensors. However, uncertainties in passive microwave SM products would degrade the accuracy of
the downscaled SM [13]. Especially over mountainous regions, topographic effects further increase
the uncertainties in the optimization of some parameters (e.g., vegetation properties and surface
roughness) required to retrieve passive microwave SM products [14].

On the other hand, the point-scale in situ SM measurements can be extrapolated to larger scales
to obtain high-resolution SM estimates via geostatistical techniques [15,16]. However, these point
measurements are not representative of the neighboring areas because of the large spatial heterogeneity
of SM over a range of scales. With the development of the wireless sensor networks (WSNs) [17,18],
several upscaling strategies, such as machine learning [19], kriging [20], and the Bayesian maximum
entropy (BME) method [21,22], have been proposed to estimate high resolution SM by merging WSNs
and optical/thermal remote sensing data [23]. The idea behind these upscaling methods is to aggregate
SM observations from multi-point WSN measurements at the remote-sensing pixel level with the
help of vegetation cover and surface temperature information, as well as other surface parameters
obtained from optical and/or thermal sensors [23]. A range of optical SM indicators has successfully
been merged with WSNs to obtain high-resolution SM, such as land surface temperature (LST) [20],
temperature vegetation dryness index (TVDI) [22,24], soil evaporative efficiency (SEE) [22], and
apparent thermal inertia (ATI) [25]. However, these methods are only applicable under clear-sky
conditions because of the effects of cloud coverage on optical data, which limits monitoring of SM
temporal dynamics, albeit with high spatial resolution. This restriction is critical because assessing the
temporal dynamics of SM is needed for regional-scale applications, such as agriculture for irrigation
scheduling and site-specific management against diseases and pests [26].

The Bayesian linear regression (BLR) upscaling algorithm [27] has the potential to both address the
issue of temporal discontinuity in high-resolution SM products and improve the SM estimates [25,28].
The BLR upscaling algorithm is composed of two steps: i) the calibration of the relationship between
the time-series in situ SM observations and the pixel-scale SM retrieved by optical/thermal time-series
information; ii) the use of this relationship to upscale the in situ observations to obtain a continuous
time-series of high-resolution (~1 km) SM observations [28]. However, the relationships between the
in situ observations and the upscaled SM could be non-robust because of missing optical/thermal
observations under non-clear-sky conditions. The non-robustness of the relationship can be attributed
to the fact that most available optical/thermal observations are obtained during the drier times of year,
leading to bias in the calibrated relationship towards low SM values. Additionally, the application
of the BLR upscaling algorithm is limited over mountainous areas because of topographic effects,
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which could mask the SM information retrieved from optical/thermal indices (e.g., TVDI and ATI) [29].
For example, ATI is derived from LST and albedo, but topography has a large influence on albedo
retrievals, with values that can change up to 100% for the same land-cover class under varying slopes
and aspect of the terrain [30]. Consequently, uncertainties in both the optical/thermal observations
and the BLR approach could lead to biased SM estimates. Therefore, additional information is required
to limit the uncertainties in the BLR estimates.

The Babao River basin, as a sub-basin in the upper reaches of the Heihe River Basin (HRB),
produces water resource for agriculture in the middle reach and the downstream region of the HRB [18].
Scarcity of water resources has significantly restricted social and economic developments in this
area [31]. Thus, high-resolution SM information is an urgent need for the ecological environmental
management in the Babao River basin [18]. Previous studies [25] attempted to map SM at high
resolution over this area, but the complex topography conditions and missing observations due to
non-clear-sky conditions in the Babao River basin were not adequately considered, as mentioned above.

Here, we propose an upscaling approach to retrieve daily SM with a spatial resolution of 1 km in
the Babao River basin, using the BLR method to upscale WSN multi-point observations considering
topographic complexity. This was achieved using remote sensing information (e.g., ASTER aspect and
elevation and MODIS LST). The WSN measurements, MODIS LST, and topography data are presented
in Section 2; the upscaling approach and the statistical metrics used to evaluate the upscaled SM are
explained in Section 3; and results are given in Section 4. Section 5 discusses the findings and the main
conclusions are drawn in Section 6.

2. Study Area and Datasets

2.1. Study Area

The Babao River Basin (covering 2495 km2, Figure 1a) is located in the eastern branch of the upper
reach of the Heihe River Basin, which is also the main study area for hydrological research in the
cold region of the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) project [18].
The Babao River Basin is mainly covered with grasslands (Figure 1b), with elevation ranging from 2640 to
5000 m, with an average of 3604 m. The rainy season spans from May to September. The heterogeneous
distributions of both rainfall and topography (e.g., shady/sunny slopes) strongly influence the spatial
and temporal variability of SM [32]. The Babao River Basin is a cloudy area, and the cloudy period
generally exceeds half the year as a result of a combination of westerlies, East Asia monsoon, and
Tibetan Plateau monsoon [33]. The study period was from 1 July 2015 to 15 October 2015 and avoided
snow periods.

2.2. In Situ Measurements

A wireless sensor network, the Ecological and Hydrological Wireless Sensor Network (EHWSN),
was established to measure SM and soil temperature at depths of 4, 10, and 20 cm at 5 min intervals in
the Babao River Basin [34]. EHWSN is composed of 37 ground-based sites installed in 2012 to monitor
the SM dynamics [32], but parts of sites were offline because of equipment failure. In 2015, there were
16 WSN sites providing SM observations over the study periods (Figure 1a and Table 1). Additionally,
the 4 cm SM observations from the A’rou superstation and the A’rou sunny automatic meteorological
stations (AMSs) are also used in the study (Figure 1a and Table 1) [35].

2.3. Remote Sensing Products

MODIS Terra LST product (MOD11A1), which provides both day-time and night-time daily LST
at 1 km spatial resolution [36], was used to retrieve SM. Data acquired during the period from 1 July
2015 to 15 October 2015 were used in this study, avoiding snow periods as snow cover results in
uncertainties in LST products [37].



Remote Sens. 2019, 11, 656 4 of 17

The elevation (Figure 1a) and aspect (Figure 1c) data were derived from the Advanced Spaceborne
Thermal Emission and Reflectance Radiometer (ASTER) Global Digital Elevation Model (GDEM)
version 2 product [38]. A simple average method was applied to aggregate the 30 m resolution data
into 1 km resolution data to match the grids of MODIS LST products.Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 18 
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aspect (c). (a) The wireless sensor network (WSN) sites are marked as black points and the automatic 
meteorological station (AMS) sites are represented by blue stars. Elevation information is also 

Commented [Office3]: Define if necessary. 

Commented [LF4R3]: Figure 1a was updated because the 

wrong locations of WSN in the previous version. 

Figure 1. Study area and spatial distributions of ground-based stations (a), land cover types (b), and
aspect (c). (a) The wireless sensor network (WSN) sites are marked as black points and the automatic
meteorological station (AMS) sites are represented by blue stars. Elevation information is also presented
based on a digital elevation model (DEM) with a spatial resolution of 30 m shared freely by Advanced
Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) Global Digital Elevation Model
(GDEM). (b) Land cover types data at a spatial resolution of 30 m provide by the Heihe Watershed
Allied Telemetry Experimental Research (HiWATER) project [39]. (c) Terrain aspect data retrieved using
1 km GDEM, which was aggregated from 30 m GDEM data. EHWSN—Ecological and Hydrological
Wireless Sensor Network.
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Table 1. Observation periods, depth, and temporal resolution of the wireless sensor network (WSN)
and automatic meteorological station (AMS) nodes. Site locations and elevations of each node were
listed in Kang et al. (2017) [25]. EHWSN—Ecological and Hydrological Wireless Sensor Network.

Station Type Observation Period
during 2015 Observation Depth Temporal

Resolution

WSN-01 EHWSN 1 January to 25 August 4, 10, 20 cm 5 min
WSN-02 EHWSN 1 January to 23 October 4, 10, 20 cm 5 min
WSN-04 EHWSN 1 January to 31 December 4, 10, 20 cm 5 min
WSN-05 EHWSN 1 January to 31 December 4, 10, 20 cm 5 min
WSN-12 EHWSN 13 March to 31 December 4, 10, 20 cm 5 min
WSN-18 EHWSN 1 January to 31 December 4, 10, 20 cm 5 min
WSN-22 EHWSN 1 January to 31 December 4, 10, 20 cm 5 min
WSN-25 EHWSN 1 January to 31 December 4, 10, 20 cm 5 min
WSN-27 EHWSN 6 August to 31 December 4, 10, 20 cm 5 min
WSN-31 EHWSN 1 January to 31 December 4, 10, 20 cm 5 min
WSN-35 EHWSN 1 January to 31 December 4, 10, 20 cm 5 min
WSN-40 EHWSN 1 January to 29 October 4, 10, 20 cm 5 min
WSN-42 EHWSN 1 January to 31 December 4, 10, 20 cm 5 min
WSN-52 EHWSN 30 January to 31 December 4, 10, 20 cm 5 min
WSN-54 EHWSN 1 January to 31 December 4, 10, 20 cm 5 min
WSN-55 EHWSN 1 January to 31 December 4, 10, 20 cm 5 min

A’rou superstation AMS 1 January to 31 December 2, 4, 6, 10, 15, 20, 30, 40, 60, 80,
120, 160, 200, 240, 280, 320 cm 10 min

A’rou sunny slope AMS 1 January to 9 September 4, 10, 20, 40, 80, 120, 160 cm 10 min

3. Methods

3.1. The Bayesian Linear Regression (BLR) Upscaling Algorithm

The strategy used to spatially upscale the WSN measurements was previously proposed by Qin
et al. (2013) [28], and was used over the Babao River Basin by Kang et al. (2017) [25]. The theoretical
formulation assumes that the transformation function between the WSN measured SM (θWSN) and the
upscaled SM (θupscale) is linear; θupscale at a grid (1 km) from time t1 to tM can be calculated as follows:

θupscale = WT DWSN and DWSN =
[
1, θWSN

]T
, (1)

where θupscale is a column vector
[
θ

upscale
t1 , θ

upscale
t2 , . . . , θ

upscale
tM

]
. W is the vector of the combination

coefficients [W0, W1, . . . , WN ]
T . W0 is a constant term and WN is the weighted coefficient of the Nth

WSN observation node. DWSN is the observation matrix of the θWSN , and θWSN is expressed as follows:
θWSN

t1, 1 · · · θWSN
t1, N

...
. . .

...
θWSN

tM , 1 · · · θWSN
tM , N

, (2)

where θWSN
tM , N represents the SM measurement from the Nth WSN node at time tM and M is the number

of time series observations.
To calculate W at a grid point, a cost function is established in Equation (3) by combining DWSN

and θupscale at the grid point.

J =
(

DWSNW − θupscale
)T(

DWSNW − θupscale
)

. (3)

W can be derived using the ordinary least-squares (OLS) method by minimizing the cost function.
In practice, θupscale, as an estimated variable, cannot be obtained, but θupscale can be replaced by
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a representative SM (θrep) with random noise [28], as shown in Equation (4). The calculation of θrep

was described in Section 3.2.

J =
(

DWSNW − θrep
)T(

DWSNW − θrep
)

(4)

In Equation (4), the accuracy of θrep is the key to the estimates of θupscale, but θrep cannot accurately
represent the dynamics in SM. The uncertainties in θrep could result in overfitting the value of W
calculated using Equation (4). To reduce these overfitting effects, a regularization term is added to
Equation (4), which can be re-written as follows [28]:

J =
(

DWSNW − θrep
)T

σ−2
(

DWSNW − θrep
)
+ αWTW, (5)

where σ is the standard deviation of θrep. α is the unknown regularization parameter, which can be
estimated using the BLR approach based on the iteration strategy proposed by Chen et al. (2009) [27]
and Qin et al. (2013) [28]. Finally, the upscaling coefficient W for each grid was calculated using
Equation (5), after which it was used in Equation (1) to estimate θupscale at each grid. For more details
about the BLR approach, please refer to Qin et al. (2013) [28] and Kang et al. (2017) [25].

3.2. Representative Soil Moisture

As mentioned above, the representative SM information (θrep) at grid-scale (1 km) was used to
upscale multi-point WSN observations to map grid-scale SM. Kang et al. (2017) [25] used ATI-derived
SM as θrep in the Babao River Basin. ATI can be computed as follows:

ATI = A
1 − ω

∆LST
, (6)

where A is the solar correction factor and ω is the surface albedo. ∆LST denotes the maximum
daily amplitude of LST and can be directly derived from the daily day/night MODIS LST products.
However, over the study period, we found that there is no significant relationship between ATI and the
in situ measured SM, but ∆LST is significantly related to the in situ measured SM. Uncertainties in the
estimates of the surface albedo ω caused by the topographic effects could result in the failure of ATI
to represent surface water status over the study region, as mentioned in the Introduction. Therefore,
∆LST is used to retrieve the representative SM (θrep

∆LST) using a linear regression relationship as follows:

θ
rep
∆LST = a∆LST + b. (7)

Note that over the study period, the availability of ∆LST is severely affected by clouds, resulting
in a high rate (88.6%) of missing ∆LST data (Figure 2). The serious lack of availability of θ

rep
∆LST will

increase the uncertainties in the BLR upscaling algorithm; thus, additional SM information should be
introduced into the upscaling process.

The topographic factors (e.g., shady/sunny slopes and elevation), as the main factors controlling
the heterogeneous distributions of SM over the mountainous regions, have the potential to provide
additional SM information to overcome the serious lack of availability of θ

rep
∆LST . Over the mountainous

regions, the strong variability of both temperature and precipitation associated with elevation and
terrain aspect has an important impact on the SM patterns. Here, elevation and terrain aspect were
combined with the in situ measured SM to derive the representative SM (θrep

topo). This latter variable is

then combined with θ
rep
∆LST to construct the continuous time-series of representative SM (θrep

topo, ∆LST).

The different steps of the retrieval of θ
rep
topo, ∆LST are detailed below:

(a) Retrieval of θ
rep
topo
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The study region was split into four sub-regions using the elevation (Figure 1a) and
aspect (Figure 1c) data—the high-altitude with sunny slopes, the low-altitude with sunny slopes,
the high-altitude with shady slopes, and the low-altitude with shady slopes regions. Accordingly,
the representative SM (θrep

t, topo) at the date t over the study region can be constructed by the

averaged SM over each sub-region, which can be represented by θ
high−altitude, sunny
t , θ

low−altitude, sunny
t ,

θ
high−altitude, shady
t , and θ

low−altitude, shady
t , respectively, expressed by Equation (8). The averaged SM

value at the date t over each sub-region was calculated by averaging the SM values at the date t
measured by the WSN nodes located in the corresponding sub-region. The WSN nodes located in
each sub-region are listed in Table 1. The shady slopes (away from the sun, i.e., north aspect in the
Northern Hemisphere) were defined as the aspects between 0 and 90◦ and between 270 and 360◦, while
sunny slopes facing towards the sun (i.e., south aspect) were defined as aspect between 90 and 270◦

(aspects calculated from ASTER GDEM data). High-altitude regions were considered to be >3600 m in
elevation, while low-altitude regions were <3600 m.

θ
rep
t, topo = θ

high−altitude, sunny
t + θ

low−altitude, sunny
t + θ

high−altitude, shady
t + θ

low−altitude, shady
t (8)

(b) Retrieval of θ
rep
topo, ∆LST by combining θ

rep
topo and θ

rep
∆LST.

The time-series data of θ
rep
∆LST over the study region are able to capture the spatio-temporal

variability of SM, but with large missing observations, while the continuous time-series data of θ
rep
topo

have the capability to represent the temporally continuous dynamics of SM, but with low spatial
details because θ

rep
topo was constructed from data over only four sub-regions. Thus, the time-series

data of θ
rep
topo, ∆LST were produced by combining θ

rep
∆LST and θ

rep
topo. To construct θ

rep
t, topo, ∆LST on the date t,

the missing pixels of θ
rep
t, ∆LST on the date t were identified, then they were replaced by the SM values

from the corresponding pixels of θ
rep
t, topo. The combined θ

rep
topo, ∆LST was a continuous time-series of SM

estimates with a spatial resolution of 1 km. θ
rep
topo, ∆LST was considered as the representative SM to be

used in the BLR upscaling algorithm to produce high-resolution SM data.
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resolution) between 1 July 2015 and 15 October 2015.

3.3. Validation

Given that the number of available ground-measurements is not sufficient to separate them
between training and validation datasets, 10-fold cross-validation methods [40–42] were used to
evaluate the upscaled SM by comparing them against the in situ measurements from the sixteen WSN
sites. In addition, the upscaled SM estimates were also evaluated by comparing them against the SM
data measured by two AMSs. For more details about the cross-validation method, please refer to
Cawley et al. (2003) [40].
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3.4. Evaluation Metrics

The root mean square error (RMSE) is severely compromised if there are biases in either the mean
or the amplitude of fluctuations in the estimates, thus we used a non-biased estimation of the error
(unbiased-RMSE) where the mean bias is removed, as shown in Equation (9) [43]. Given that the
distribution of SM within each 1 km grid is generally heterogeneous, and the ground measurements
also include measurement uncertainties, the term ‘error’ was replaced by ‘difference’ in these metrics,
that is, the root mean square difference (RMSD) and the unbiased root mean square difference
(ubRMSD, m3/m3). Thus, ubRMSD is used to compare the upscaled SM product with the in situ
measurements, which can be calculated using Equation (10) [43].

ubRMSD =
√
(RMSD2 − Bias2), (9)

ubRMSD

=

√
1
N

N
∑

t=1
(θ

upscale
t − θupscale)

2
− ( 1

N

N
∑

t=1
(θ In situ

t − θ In situ))2,
(10)

where N is the number of the in situ observations (e.g., from WSN and AMS) in the time-series and
θ In situ

t are the in situ measurements from WSN and AMS on date t. θ In situ and θupscale are the mean
values of the corresponding time series.

In addition to the error evaluation, it is necessary to assess the consistency between datasets at
each grid using slope values calculated using a linear regression relationship between θupscale and
θ In situ from Equation (11). The correlation coefficient r, calculated using Equation (12), is also used to
assess the agreement between the estimates and the in situ measurements.

θ In situ = slope·θupscale + intercept (11)

r =
∑N

t=1

(
θ

upscale
t − θupscale

)(
θWSN

t − θin situ
)

√
∑N

t=1

(
θ

upscale
t − θupscale

)2
·∑N

t=1

(
θWSN

t − θin situ
)2

(12)

4. Results

4.1. Representative Soil Moisture

MODIS-derived ∆LST was used to derive representative SM (θrep
∆LST) by applying a regression

analysis between the pixel-averaged ∆LST and the in situ measured SM from 16 WSN sites. It is
difficult to construct a daily relationship model based on few available pairs of ∆LST and in situ
measurements, because of the serious lack of observations in MODIS-derived ∆LST. We made full
use of all matched pairs in the time-series to estimate the relationship between ∆LST and the in situ
measurements. It can be observed from the scatter plot (Figure 3) between ∆LST and the in situ
measurements that ∆LST is significantly negatively correlated to the in situ measured SM (r = −0.68,
p-value < 0.01). Thus, ∆LST can be used to represent the spatial distribution of SM in the Babao River
Basin, and the fitted linear function (indicated in Figure 3) was used to derive daily θ

rep
∆LST (Figure 4a).

However, because of atmospheric effects (e.g., clouds and rain), θ
rep
∆LST was often missing, as shown in

Figure 4a. Indeed, for the study period, atmospheric effects resulted in a high rate of missing ∆LST
data (88.6%), especially over the regions with high elevations (Figure 2).
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We found that θ
rep
topo could capture the general temporal dynamics of SM, as observed from the SM

dynamics of the four regions (Figure 5); SM in the regions with sunny slopes (the overall average values
of θhigh−altitude, sunny and θlow−altitude, sunny are 0.21 and 0.23 m3/m3, respectively) were lower than in
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regions with shady slopes (the overall average values of θhigh−altitude, shady and θlow−altitude, shady are
0.31 and 0.33 m3/m3, respectively). The temporal variability of SM was also indicated by the different
SM conditions between the high-altitude (θhigh−altitude, sunny and θhigh−altitude, shady) and low-altitude
regions (θlow−altitude, sunny and θlow−altitude, shady). In the sunny slopes, high-altitude regions were
generally dryer than low-altitude regions during most of the study period. By contrast, in the shady
slopes, the dryer high-altitude regions relative to the low-altitude regions can be observed only after
the rainy season, while the SM values in high-altitude regions were similar to those in the low-altitude
regions during the rainy season.

Figure 4c shows the spatial distribution of θ
rep
topo, ∆LST obtained by combining θ

rep
∆LST and θ

rep
topo.

It can be seen that θ
rep
topo, ∆LST is able to provide a detailed SM pattern over the whole study region.

Especially over the regions where θ
rep
∆LST is missing, θ

rep
topo, ∆LST can provide more information on the

spatial characteristics and spatio-temporal distribution of SM, compared with θ
rep
∆LST (Figure 4a). Daily

SM at high spatial resolution (1 km) was derived using the BLR upscaling method based on θ
rep
topo, ∆LST.

The upscaled SM (Figure 4d) provided not only a continuous spatial distribution of SM, but also more
detailed spatial characteristics of SM, compared with representative SM (Figure 4a–c).
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Figure 5. The time-series of the representative soil moisture (θrep
topo) in the regions with high

altitude and sunny slope (θhigh−altitude, sunny), with low altitude and sunny slope (θlow−altitude, sunny),
with high altitude and shady slope (θhigh−altitude, shady), and with low altitude and shady slope
(θlow−altitude, shady), respectively.

4.2. The BLR Performance Evaluation

We quantitatively evaluated the accuracy of the upscaled SM estimates by comparing them
against in situ measurements using the leave-one-out cross validation method (Figure 6). Additionally,
the two upscaled SM estimates based on θ

rep
∆LST and θ

rep
topo, ∆LST were evaluated to identify whether the

upscaling algorithm considering topographic effects (θrep
topo, ∆LST) could increase the accuracy of the SM

estimates. The correlation coefficients (r) obtained for the two estimates were similar and generally
high (a median r value of 0.80 and 0.82 was obtained for all stations for the SM estimates based on
θ

rep
∆LST and θ

rep
topo, ∆LST, respectively), except WSN-35 (r = 0.53 and 0.47) and WSN-42 site (r = 0.57 and

0.50, respectively). However, the SM estimates based on θ
rep
topo, ∆LST had slope values closer to the one

for all stations (ranging from 0.17 to 1.31, with a median value of 0.61), relative to the estimates based
on θ

rep
∆LST (in the range of 0.07 to 0.76, with a median value of 0.31). Also, the SM estimates based on

θ
rep
topo, ∆LST had higher standard deviation values for all stations (with a median value of 0.029 m3/m3),

relative to the estimates based on θ
rep
∆LST (with a median value of 0.015 m3/m3). Moreover, the overall

ubRMSD values of the estimates based on θ
rep
topo, ∆LST (ubRMSD = 0.025 (m3/m3)) are lower than that

based on θ
rep
∆LST (ubRMSD = 0.033 (m3/m3)). These statistical metrics indicate that the upscaling

approach based on θ
rep
topo, ∆LST provides more accurate estimates of SM, compared with the ones based

on θ
rep
∆LST.
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The better performance of the upscaling approach based on θ
rep
topo, ∆LST in comparison with that

based on θ
rep
∆LST is also indicated by comparing the two SM estimates against the AMS measurements

(Figure 7). The ubRMSD values associated with the SM estimates and the AMS observations were
calculated by removing the mean values of the time series. In the comparison between the estimates
based on θ

rep
∆LST and θ

rep
topo, ∆LST at the A’rou superstation (Figure 7a), the ubRMSD value decreased

from 0.074 to 0.039 m3/m3, while the correlation coefficient (slope) increased from 0.23 (0.055) to 0.93
(0.55). The better performance of the upscaling approach based on θ

rep
topo, ∆LST was also found at the

A’rou sunny AMS station (Figure 7b), providing higher r and slope values and lower ubRMSD values,
relative to the estimates based on θ

rep
∆LST. Moreover, better agreements can be seen between the temporal

dynamics of the AMS measurements and the estimates based on θ
rep
topo, ∆LST, compared with the ones

based on θ
rep
∆LST at both AMS stations (Figure 7). Overall, our results suggest that the performance of

the upscaling method is successfully improved by including additional SM information associated
with topographic effects.
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Figure 6. Statistical metrics of the upscaled SM values based on θ
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Equation (8). ubRMSD—unbiased root mean square difference.
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values associated with the SM estimates and AMS observations were calculated by removing the mean
values of the time series.

5. Discussion

The approach presented in this study was developed to improve SM estimates over mountainous
regions by integrating WSN measurements, optical remote sensing data (∆LST), and topography data
(e.g., elevation and aspect). The proposed upscaling method produced satisfactory SM estimates over
the mountainous regions. We also found that the SM estimates obtained using the combined SM
information (θrep

topo, ∆LST) from topography data and ∆LST provided higher accuracy of SM estimates
indicated by better statistical metrics (in particular, slope values were closer to one), compared
with the upscaled results using only ∆LST-derived SM information (θrep

∆LST). The reason for the
better performance of the upscaled approach using θ

rep
topo, ∆LST could be partly attributed to the fact

that θ
rep
topo, ∆LST provides more information on the temporal dynamics of SM, compared with the

discontinuous time-series information provided by θ
rep
∆LST. Our approach could address the shortcoming

of previous BLR upscaling approaches [25,28] in which the accuracy of the SM estimates is limited by
the discontinuity of SM information provided by optical remote sensing data. Moreover, the upscaled
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results using θ
rep
topo, ∆LST showed a strong ability to capture the extreme values of SM, overcoming the

weakness of optical remote sensing data, which are insensitive to extremely dry or wet conditions [22].
However, the approach presented here does not account for the impact of topography on the

retrieval of LST over the mountainous terrain. Indeed, over hilly areas, the signature of the surface
water status represented by LST could be masked by topographic effects, namely the pixel-scale impact
of illumination (solar radiation) and elevation (air temperature) on LST [44,45]. The LST differences
between south-facing and north-facing slopes can reach up to 30 ◦C [46]. LST in high terrain elevation
is often lower than for low terrain elevation within the same surface soil water condition, because of
the decrease in the air temperature from low to high elevation [44]. These topographic effects limit the
application of the widely used surface temperature/vegetation indices (e.g., TVDI and SEE) for the
retrieval of high-resolution SM over mountainous regions [4,10], because these indices are derived
from the spatial pattern of LST and vegetation indices [47,48]. Conversely, it is likely the topographic
effects on LST are mostly removed in the calculation of ∆LST, because the daily difference between
day and night LST caused by topographic effects can be negligible. In addition, when dense vegetation
covers the soil, LST mostly reflects the status of vegetation, and thus the ability of ∆LST and ATI to
capture the SM dynamics becomes weak [49]. Therefore, uncertainties in our proposed upscaling
method could be higher in high-density vegetation regions than in low-density vegetation regions;
note that most of the study region is covered by the low-density vegetation.

Our results also indicated that θ
rep
topo could well represent the spatial viability in SM—the SM

values in shady (south) slope were higher than those on the sunny (north) slope (Figure 5), which is
in line with previous findings [25,50]. This can be explained by the fact that the shady slopes of the
Babao River Basin endure frequent rainfalls in summer because of the windward slope location and
low evaporation, which results in higher SM than that in the sunny slope regions. After the rainy
season, the average SM in the Babao River Basin decreased, with a more rapid decrease on both sunny
and shady slopes [25]. Note that the retrieval of θ

rep
topo assumes that the spatial heterogeneity of SM is

mainly influenced by elevation and aspect. Indeed, soil texture and structure and land cover patterns
also play an important role in the SM spatial variability [23]. We assumed soil texture and structure
and topography to be temporally stable because of the short study period (from July to the middle of
October). Indeed, these factors are generally difficult to isolate and measure, and the impact of these
factors on the SM variability could vary significantly over time and space. These factors could result
in the failure of θ

rep
topo to represent the spatial viability in SM, which could be one reason explaining

why the correlation between the in situ measurements and the estimates using θ
rep
topo, ∆LST failed to be

improved over WSN-12, 18, 22, 25, 27, 40, and 54 sites, compared with the estimates using θ
rep
∆LST.

It should be noted that the performance of our upscaling method depends not only on the accuracy
of representative SM mentioned above, but also on the spatial representativeness of the point-scale in
situ measurements. We assumed that the SM distribution within each 1 km grid was homogenous.
Indeed, the strong heterogeneities of SM at sub-kilometer-scale could lead to a low representativeness
of the ground measurements. Also, this scale mismatch between pixel and point measurements could
provide biased estimates. This could be another reason for the poor performance of the SM estimates
at WSN-35 and WSN-52 sites, indicated by the low correlation and slope values and high ubRMSD
values. Additionally, the grid-scale SM estimates have less variations compared with the ground
measurements, because the estimates represent the averaged SM at the grid-scale. This could partly
explain why the extreme high SM observations consistently over-predicted the upscaled results and
the extreme low SM observations consistently under-predicted the upscaled results (Figure 7).

6. Conclusions

Previous upscaling SM methods were limited by the uncertainties in the estimation caused by the
missing observation of optical remote sensing data, especially in mountainous areas with complex
terrain. To overcome the estimation uncertainties, we proposed using the combined SM information
from optical remote sensing data, topography, and ground measurements. Remote sensing LST and
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topographic factors were used as auxiliary information and transformed into a representative SM
data-set to capture temporal SM changes at pixel-scale. The BLR method is used to construct the
relationship between the multipoint observations and the pixel-scale SM. The proposed method shows
the stronger ability to estimate SM dynamics, compared with the method only using optical data. Thus,
our study proposed an improved upscaling method to estimate high-resolution SM. The upscaled SM
estimates at 1 km with a daily resolution exhibited high estimation accuracy with overall ubRMSD,
R, and slope values of 0.025 m3/m3, 0.82, and 0.61, respectively. The upscaled SM estimates will be
useful for agriculture application for Babao River basin.

It is worth noting that the proposed method could be limited by the representativeness of the
in situ measurements and the accuracy of representative SM over other regions. These limitations
could be improved in future research by optimizing the sampling method of ground measurements to
include more auxiliary data (e.g., land cover patterns and rainfall data) in addition to the topographic
effects. Also, further research is needed to develop topography-normalized LST products by correcting
the illumination and elevation effects [30] to improve the accuracy of the representative SM over
mountainous regions, which may eventually improve the upscaled SM estimates.
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