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Abstract 25 

Many plant tissues can be observed thanks to autofluorescence of their cell wall components. 26 

Hyperspectral autofluorescence imaging using confocal microscopy is a fast and efficient way of 27 

mapping fluorescent compounds in samples with a high spatial resolution. However a huge 28 

spectral overlap is observed between molecular species. As a consequence, a new data analysis 29 

approach is needed in order to fully exploit the potential of this spectroscopic technique and 30 

extract unbiased chemical information about complex biological samples. The objective of this 31 

work is to evaluate multi-excitation hyperspectral autofluorescence imaging to identify 32 

biological components in wheat grains during their development through their spectral profiles 33 

and corresponding contribution maps using Multivariate Curve Resolution - Alternating Least-34 

Squares (MCR-ALS), a signal unmixing algorithm under proper constraints. For this purpose 35 

two different scenarios are used: 1) analyzing the total spectral domain of data sets using MCR-36 

ALS under non negativity constraint in both spectral and spatial modes; 2) analyzing a reduced 37 

spectral domain of data sets using MCR-ALS under non negativity in both modes and trilinearity 38 

constraint in spectral mode. Considering the original instrumental setup and our data analysis 39 

approach, we will demonstrate that extracted contribution maps and spectral profiles of 40 

constituents can provide complementary information used to identify molecules in complex 41 

biological samples.  42 

 43 
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1. Introduction 51 

Plants are complex organisms with a specialized body plan that requires multilevel 52 

organization (organs, tissues, cell types, subcellular compartments) and highly specialized tissues 53 

with distinct properties. Plant organs are therefore a mosaic of different cell types, with variation 54 

in their structure and composition under genetic and environmental controls. Plant organs are 55 

widely used for food, feed and industrial applications. Studying the tissue composition of organs 56 

is therefore of tremendous interest to understand plant biological functions and to evaluate the 57 

quality of plant tissues for nutritional and industrial applications. 58 

Due to the heterogeneous nature of plant tissues and to compare multiple plant samples, there is 59 

a need for imaging techniques that rapidly provide information concerning the chemical 60 

composition of tissues with good spatial resolution. Spectroscopic methods such as Raman, Mid-61 

infrared or UV-Visible fluorescence are classically used to analyze plant tissue sections.1–6 62 

However, to be applicable to plant comparison, spectral imaging techniques must deal with 63 

minimal sample preparation (e.g. avoid tissue dehydration and resin embedding), high spatial 64 

resolution (< 3 µm per pixel), high acquisition speed and a high field of view while keeping 65 

enough spectral information to ease molecular identification. As a consequence full field 66 

fluorescence imaging systems such as confocal microscopes equipped with spectral detectors is 67 

certainly the only technique meeting such requirements. Taking advantage of the 68 

autofluorescence properties of many plant compounds2,3,6–9 confocal or multiphoton imaging can 69 

be performed with little tissue preparation and, more important, without labeling.  70 

Hyperspectral autofluorescence imaging was considered in this work to follow the evolution of 71 

wheat grain tissues during grain development. For this purpose, we collected confocal 72 

hyperspectral images of wheat grains sections at different stages of development. The wheat 73 

grain comprises several tissues: embryo, endosperm and outer layers. Autofluorescence in cereal 74 

grain is due to several compounds, including pigments such as chlorophyll in green tissues, 75 

carotenoids, anthocyanidin and proanthocyanidin in colored grains.10–12 In the grain outer layers, 76 

autofluorescence is particularly important in cell walls where it has been linked to the presence 77 

of phenolic compounds such as lignin and hydroxycinnamic acids (ferulic acid, para-coumaric 78 

acid).13–15 However, the fluorescence properties of major compounds largely overlap in the 79 

spectral domain. For instance, lignin and hydroxycinnamic acids both fluoresce after UV 80 
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excitation while only lignin is fluorescent after visible excitation.2,16,17 Chemometric methods 81 

have already been used to overcome this problem and identify tissues in dry mature grain and in 82 

particles from autofluorescence multispectral images.11, 14–16 However we need to get beyond that 83 

because ambiguity has not been totally lifted. Indeed combining autofluorescence hyperspectral 84 

images obtained by confocal microscopy after different excitations may help to further identify 85 

tissues with overlapping autofluorescence responses or in cases of the co-localization of 86 

components. For each excitation wavelength, one hyperspectral image is acquired. The set of 87 

hyperspectral images forms a multi-excitation hyperspectral image. It can also be considered that 88 

for each pixel in an image, an excitation emission fluorescence matrix is acquired. Thus we can 89 

see that such experiments will impose constraints. First, as emission wavelengths are always 90 

longer than excitation ones, it results in a different spectral domain depending on the excitation 91 

wavelength and a partial excitation–emission matrix. Second, the final multi-excitation 92 

hyperspectral image cannot be strictly considered as a full 3-way data set.  Finally, with the 93 

purpose of comparing samples during grain development, several images have to be analyzed 94 

together in a consistent way. As a consequence data sets have to be reorganized and chemometric 95 

methods have to be adapted for this specific analysis.  96 

Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) is one of the signal 97 

unmixing techniques that can provide pure spectra and contribution maps of different 98 

components in the samples.21 It is an iterative algorithm that solves the bilinear model with no 99 

prior knowledge. This algorithm extracts from the data set pure contributions (concentration and 100 

spectral profiles) of all compounds present in the sample from suitable alternating least-squares 101 

optimization subjected to different constraints. The latter is imposed based on the chemical 102 

knowledge of the studied system.22–25 When data sets are analyzed by MCR-ALS, the result 103 

might be challenging due to lack of unique solutions, which is an intrinsic characteristic of 104 

bilinear matrix decompositions if incomplete information is available about the system.26 The 105 

resulting uncertainty may be dramatically large in certain cases, e.g., when extensive profile 106 

overlap occurs in one of the data modes. However, imposing different constraints such as non-107 

negativity, unimodality, selectivity and trilinearity may drastically decrease the extent of 108 

rotational ambiguity by adding more information to the MCR analysis of the system under 109 

study.27–31 A Trilinearity constraint can guarantee accurate unique profiles for constituents with 110 

trilinear structure.32,33 To fulfill the trilinearity condition, the augmented data matrix should 111 
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contain some similar factors in its sub-matrices, factors which should not be affected by 112 

experimental conditions so that they share a common spectral shape. Only their areas (and 113 

vertical heights) should proportionately change according to the constituent concentration. It is a 114 

very strong constraint that forces the decompositions to give unique solutions under mild 115 

conditions. 116 

The objective of this work is to evaluate the method of multi-excitation hyperspectral 117 

imaging by confocal microscopy combined with the exploration of second order data sets with 118 

the MCR-ALS approach to identify different components in the developing wheat grain based on 119 

their autofluorescence properties. Contribution maps and spectral profiles of different 120 

compounds are complementary information which will be extracted from the exploration of this 121 

kind of data sets. For this purpose two different scenarios are used: 1) Analyzing the whole 122 

spectral domain - obtained by merging the data sets of each excitation wavelength - using MCR-123 

ALS under non negativity constraint in both modes; 2) Analyzing the reduced spectral domain - 124 

common to all excitation wavelength - using MCR-ALS under non negativity in both modes and 125 

trilinearity constraint in spectral mode in order to get second order advantage. The two 126 

approaches will be compared and discussed on the basis of extracted contribution maps and pure 127 

spectral profiles of all components. These results will be also compared with images generated 128 

from the standard method based on emission signal integration. 129 

 130 

2. Material and methods 131 

2.1. Plant materials and growth conditions 132 

Wheat plants (Triticum aestivum L. cv. Recital) were grown in containers filled with plain 133 

soil at INRA Clermont-Ferrand (France) under conditions of natural day length and temperature. 134 

Upon flowering plants were transferred to a covered structure allowing to control and monitor 135 

the temperature. Temperature was set at 21°C from 6 a.m. to 9.30 p.m. and 14°C at night. Wheat 136 

grain development is influenced by the time elapsed since flowering, the temperature and the 137 

position of the grain within the spike. Thus its development was monitored using the thermal 138 

time method34 which is more robust than only considering time when temperature is varying. 139 

The thermal time unit is Celsius degrees days after flowering (°DAF). This measure is the 140 
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cumulated daily average temperature since flowering. Individual spikes were tagged when the 141 

first flowering event was observed. Grains were harvested at different desired developmental 142 

stages as already described in a previous work.35 More precisely samples were collected at 150, 143 

270, 350, 460, 560, 630, 790 °DAF and at mature stage. 144 

 145 

2.2. Multi-excitation hyperspectral autofluorescence imaging 146 

Freshly harvested grain samples were frozen and cut in the equatorial region of the grain 147 

using a cryotome (HM 500 OM, Microm) into 20 µm cross sections. In the case of dry grains, 148 

the embryo was removed and the grains were placed onto moist paper for 24 h at 4°C to facilitate 149 

sectioning. For each grain, serial sections were placed on a slide. This was then mounted in water 150 

and analyzed using a confocal laser-scanning system (A1, Nikon) equipped with a x40 objective 151 

for confocal imaging. The microscope was equipped with a spectral detector unit and provided 152 

three excitation wavelengths: 375 nm (UV), 488 nm (blue) and 561 nm (green). At the chosen 153 

magnification, the field of view was 317 × 317 µm and images were digitized as matrix of 512 × 154 

512 pixels with a pixel size of 0.62 × 0.62 µm. As a consequence each hyperspectral data cube 155 

contained 262,144 emission spectra. Moreover for each field of view, three hyperspectral images 156 

were recorded by collecting emitted light from 404 to 714 nm for UV excitation, 504 to 744 nm 157 

for blue excitation and 574 to 744 nm for green excitation with a 10 nm step between spectral 158 

variables. A dichroic mirror was used to filter the three excitation wavelengths. For each 159 

development stage, two or three serial sections were imaged. Two regions per section were 160 

analyzed: (1) opposite to the crease and (2) on the side of the grain, called dorsal and side 161 

respectively, with the objective to visualize all the tissues of the wheat grain (Figure 1). In the 162 

case of the youngest grains, one field of view was not always sufficient. In this case, two images 163 

were acquired to observe the whole region. Finally the whole data set contained 40 multi-164 

excitation hyperspectral autofluorescence images considering different parts of the grain and 165 

development stages; this corresponds to more than 10 million emission spectra in total.   166 
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 167 

Figure 1. A simple scheme of wheat grain cross section with spectral acquisition areas. 168 

 169 

2.3.Spectral data arrangement 170 

In this work, multiple excitation wavelengths were used to generate autofluorescence 171 

hyperspectral images of the wheat grain; which means one 3D autofluorescence hyperspectral 172 

image (two spatial modes x and y and one emission mode	λ	��) per excitation wavelength 173 

denoted 	λ	��,�,	λ	��,� and λ	��,	, respectively (Figure 2a). 	λ	��,�,	λ	��,� and λ	��,	 are the three 174 

emission wavelength ranges corresponding to the three excitation wavelength. So for these three 175 

excitation wavelengths, there are three 3D cubes thus forming together a 4D data set with two 176 

spatial modes x and y, one excitation mode and one emission mode. Each multi-excitation 177 

hyperspectral autofluorescence image corresponds to a 4D image as shown in figure 2a by 178 

considering together the purple, blue and green cubes. As a consequence, an excitation emission 179 

autofluorescence matrix is acquired for each pixel of the sample surface instead of only one 180 

emission spectra as it is usually the case for conventional fluorescence analysis. However, this 181 

matrix is only partial because the spectral domains corresponding to each excitation wavelength 182 

differs. In order to analyze the acquired data sets by using a curve resolution method like MCR-183 

ALS, a 2D matrix of data is needed. Consequently each 3D autofluorescence hyperspectral 184 

image matrix corresponding to each excitation is unfolded to a matrix with x×y rows and λem,i  185 

columns (i=1, 2 and 3) as shown in figure 2b.     186 
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 187 

Figure 2. Data arrangements: a) the three 3D blocks (denoted 	λ	��,� 	λ	��,� and λ	��,	) are three 188 

autofluorescence hyperspectral images collected using the three excitation wavelengths. b) 189 

Unfolded version of the three cubes. 190 

 191 

2.4. Data analysis – the MCR-ALS approach 192 

The MCR-ALS method is used to decompose simultaneously a hyperspectral image into the 193 

pure spectra of the image constituents and corresponding contribution maps. MCR-ALS is based 194 

on a bilinear model which assumes that each observed spectrum is a linear combination of pure 195 

components spectra present in the system.36,37 This model can be written in matrix form as: 196 

D=CST + E                                                                                                                                   (1) 197 

Where, D is the unfolded hyperspectral image data set, C is the matrix of the relative amounts or 198 

contributions, ST is the pure spectra matrix and E is the matrix associated to non-modeled part of 199 

data and potentially only noise. Naturally signal intensity in every pixel of the image should not 200 

be negative and neither should the contributions of the different constituents. It is therefore 201 

logical to use non-negativity constraint during alternating least squares optimization. The 202 

spectral matrix ST is also normalized to avoid scale ambiguity. At the end of the ALS 203 

optimization procedure, the optimized C matrix can be refolded, to recover a 2D image 204 
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(distribution map) of the contributions of every component. To evaluate the quality of extracted 205 

profiles obtained from the MCR-ALS procedure, the percentage of lack of fit (lof) and the 206 

percentage of explained variance (R2) are calculated according to the two following equations: 207 

lof  (%) = 100 × 
∑ ���	����∑ ����                                                                                                         (2) 208 

where ��� is the element of the hyperspectral image data set D, and ���� is the corresponding 209 

element of this data matrix recalculated by MCR-ALS. This lack of fit value gives a measure of 210 

the fit quality in relative terms with the same units as the measured data, and comparable to the 211 

experimental relative error estimation. For the explained variance, R2 is calculated as: 212 

R2 = 100 × �1 −	 ∑ ����∑ ���� �                                                                                                               (3) 213 

where ��� 	are the elements of the E matrix. The main advantage of this algorithm is the amount 214 

of information that can be included in the optimization process and the ability of working with 215 

either a single data matrix or multiset data structures i.e. using simultaneously several data cubes. 216 

However it is known that such an approach does not always extract unique solutions if not well 217 

managed. Therefore additional chemical information and well-selected constraints used in the 218 

decomposition process can significantly reduce or even eliminate this uncertainty. One of the 219 

most well-known constraints to ensure uniqueness of extracted solutions in MCR-ALS is 220 

trilinearity. Due to the trilinearity constraint, data arrays should contain some similar factors in 221 

their modes while factors should be independent from experimental conditions.37 Trilinearity is a 222 

very strong constraint that forces trilinear decompositions to have unique solutions under mild 223 

conditions.38,39 An important achievement in the analysis of complex data matrices resulted when 224 

Multivariate Curve Resolution methods were applied to several data matrices simultaneously to 225 

the so-called Matrix Augmented - Multivariate Curve Resolution - Alternating Least Squares, 226 

MA-MCR-ALS.40 Generally speaking, resolution ambiguities and rank deficiency problems in 227 

the analysis of two-way data sets can be reduced significantly if it is possible to analyze data 228 

structures with more information. MA-MCR-ALS, as an extension of MCR-ALS, can be easily 229 

adapted to the trilinear analysis of the three-way data sets generated from data matrices with the 230 

same row or column, taking advantage of their structure. When the trilinearity constraint is used 231 
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in the MA-MCR-ALS framework, profiles of a component in different data matrices are forced 232 

to have a common shape during each ALS optimization but may differ by a scaling factor. When 233 

this constraint is inserted into the ALS iterative optimization procedure, it forces the shape of the 234 

loading vectors to be the same in all sub-matrices. An interesting aspect of the trilinearity 235 

constraint in the ALS optimization is that its use is optional for each component of the system.  236 

 MCR-ALS optimization always starts with the generation of initial estimates of either 237 

concentration or spectral profiles. In general, the use of chemically meaningful estimates is an 238 

essential factor that can lead to not only a rapid convergence of the extractions but also a 239 

decrease in ambiguity of solutions in some cases. Different methods can be used to find suitable 240 

initial estimates to start the MCR-ALS calculation. The so-called SIMPLISMA based on the 241 

concept of purest variables is usually used to calculate them.41 However it was not possible to 242 

use it in this work due to the very high number of spectra in the considered multiset analysis. We 243 

have, therefore, decided to use the Kennard–Stone (KS) algorithm in order to generate initial 244 

estimates. 42 This algorithm allows for the selection of spectra from all parts of the data space 245 

even in the case of nonhomogeneous distribution. It starts by finding the two most distant spectra 246 

in the data set using Euclidean distance, and then continues with other points until the selected 247 

rank is reached. 248 

 The rank of the data set i.e. its total number of independent signals is usually obtained from 249 

Principal Component Analysis (PCA) considering the magnitude of singular values. Singular 250 

values related to chemical contributions are typically large, whereas singular values related to 251 

noise are smaller and similar among themselves. This diagnostic can be complemented by 252 

looking at the emergence of noisy patterns in scores and loadings profiles, typical in noise-253 

related components. When in doubt, few MCR models with different number of components can 254 

be calculated. The final model is selected as the smallest one providing an optimal model fit and 255 

chemically meaningful resolved profiles.43 In this work for most of the data sets several MCR 256 

models were calculated and the selected one had minimum residuals and optimal fit. In order to 257 

extract spectral profiles and contribution maps of all active components in the sample, MCR-258 

ALS approach has been applied following two different scenarios.  259 

In a first scenario, an augmented data set D was obtained by considering the whole spectral 260 

domain of each data cube and merging the corresponding three 2D unfolded matrices as shown 261 
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in figure 3b. In this case, MCR-ALS was applied under non-negativity constraint only in order to 262 

extract spectral autofluorescence emission profiles and contribution maps of active components. 263 

As explained in the data collection section, several regions were observed for each grain section 264 

and several serial sections were also observed for each development stage, resulting in several 265 

multisets (in red and orange in figure 3a). In the figure 3b, purple, blue and green cubes 266 

correspond to the three different excitation wavelengths used while light and dark colors 267 

correspond to two sample regions of interest.  Then we use column- and row-wise data 268 

augmentation to fuse all matrices and generate a global matrix D. Lastly, the augmented data set 269 

is used to extract pure concentration and spectral matrices using MCR-ALS (Figure 3c). To 270 

tackle the large volume of data from the 40 multi-excitation hyperspectral images (i.e. more than 271 

10 million of emission spectra), augmented data sets were built and analyzed separately for each 272 

development stage that still correspond to the multivariate analysis of 1.3 million spectra each. 273 

 274 

 275 
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 276 

Figure 3. Data arrangements; a) three 3D blocks are three autofluorescence hyperspectral images 277 

acquired with three different excitation wavelengths: 	λ	��,�, 	λ	��,� and λ	��,	  which are shown in 278 

purple, blue and green, respectively (both dark and light colors are related to orange and red 279 

regions of interest of the wheat grain). b) Unfolding of cubes and final data augmentation 280 

generating D matrix. c) The augmented data set is used to extract pure concentration and spectral 281 

matrices using MCR-ALS. Open black rectangles in the figure represent the common spectral 282 

range used when the trilinearity constraint is applied.   283 

 284 

A second scenario has been considered in this work because rotational ambiguity (i.e. 285 

uncertainty of MCR-ALS results) cannot be eliminated in the majority of cases only using the 286 

non-negativity constraint. Therefore it has been decided to apply additionally the trilinearity 287 

constraint in order to reach uniqueness of solutions in MCR-ALS, or at least verify if other 288 
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extractions are obtained in these new conditions. However, to analyze the acquired data set under 289 

the trilinearity constraint, it must have a trilinear structure at least for one mode. In the case of 290 

fluorescence, the shape of the emission spectrum for a given fluorophore is largely independent 291 

from excitation wavelength. Therefore the recorded autofluorescence hyperspectral images using 292 

different excitation wavelengths are potentially suitable for applying trilinearity constraint in 293 

spectral mode. However due to our specific instrumental setup, hyperspectral images have not 294 

exactly the same spectral domain, a necessary condition for applying this new constraint in 295 

MCR-ALS. As a consequence, a reduced spectral domain (574-714 nm) common to the three 296 

unfolded matrices has been considered. This common spectral window is represented by black 297 

open rectangles in Figure 3. In this scenario, we can already see that the application of trilinearity 298 

constraint has paid a price of losing spectral information below 574 nm. 299 

 300 

3.  Result and discussions 301 

3.1 Autofluorescence image generation with a conventional approach 302 

As described in section 2.3, the multi-excitation hyperspectral confocal images acquired form 303 

a set of three 3D blocks. Their analysis and display are therefore not straightforward. The usual 304 

ways to generate a 2D image from a fluorescence imaging data set are the integration of the 305 

signal over the whole spectral domain of emission, the integration around the wavelength of a 306 

maximum emission or a signal extraction at a particular spectral channel corresponding to a 307 

specific emission. Figure 4 shows generated autofluorescence images of the same wheat section 308 

using the three excitation wavelengths 375, 488 and 561 nm. More precisely, images in Figure 4a 309 

have been obtained considering signal integration on the whole emission domain of each 310 

excitation wavelength. Autofluorescent compounds are observed in all tissues corresponding to 311 

the wheat grain outer layers and no autofluorescence is observed into the endosperm (see figure 312 

5 for tissue and cell layers annotation if needed). Moreover the use of different wavelengths of 313 

excitation seems to be a way to highlight different subparts of the section. Indeed, after 314 

excitation at 375 nm, all outer layers fluoresce from the aleurone layer to the epiderm, while the 315 

seed coat is highlighted after excitation at 488 nm. Using excitation at 561 nm, some small points 316 

are also revealed inside cross cells corresponding to pigments.44  317 
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 318 

Figure 4.  Autofluorescence images of the same wheat section at different excitation wavelength 319 

A) when emission is integrated over the whole spectral domain B) for emission at given 320 

wavelengths.     321 

 322 

Autofluorescence images in Figure 4b have been generated considering only emission at 323 

given wavelengths. These particular wavelengths have been selected because it was possible to 324 

generate different emission images highlighting different subparts of the wheat section. 325 
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Variations in intensities in the different images suggest that each cell type shows some specific 326 

fluorescence spectral response. In autofluorescence imaging, no chemical probes are used and all 327 

molecules in the sample that are intrinsically fluorescent give emission in different parts of the 328 

spectral domain. Autofluorescence is often considered as a spurious signal but it is not. It is in 329 

fact a good opportunity to observe simultaneously different molecular contributions.15 All 330 

images shown in figure 4 obviously reveal the presence of different autofluorescent behaviors of 331 

the different tissues. However even if specific sub-parts of the grain section are highlighted at 332 

given wavelength of integration, there is no evidence that it corresponds to the contribution of 333 

only one molecule, simply because of the huge bandwidth of the considered spectroscopy. The 334 

complexity of the data structure is even more striking when looking at spectra extracted from 335 

specific areas of the considered wheat section. Figure 5 presents manual selections of pixels in 336 

cell walls of different grain tissues such as aleurone cells (red line), seed coat (orange line), cross 337 

cells (blue line), and epicarp (green line) . Corresponding mean spectra of selected pixels are also 338 

presented in the figure.          339 

 340 

Figure 5.  Manual selection of pixels in cell walls of different grain tissues (aleurone = red line, 341 

seed coat = orange line, cross cells = blue line and epicarp = green line) and corresponding mean 342 

spectra of emission for different excitation wavelengths. Annotations: epi = epicarp, mes = 343 
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mesocarp, cc = cross cell, tc = tube cell, sc = seed coat, nu = nucellar epidermis, al = aleurone 344 

layer and ens = endosperm.    345 

Although these four specific tissues are known to contain different fluorescent molecules or 346 

different concentration of several ones, the global shape of emission spectra is almost the same, 347 

only relative intensity changes being observed for different excitation wavelengths. In 348 

conclusion, a simple integration approach does not allow us to obtain unbiased information about 349 

the fluorescent molecules present in the grain tissues due to a huge spectral overlap of 350 

fluorescence.3,6,45 As a consequence, it was decided to apply the signal unmixing approach 351 

MCR-ALS in order to extract pure fluorescence signatures of molecules in the next section of the 352 

paper. 353 

 354 

3.1 Signal unmixing using MCR-ALS using the whole spectral domain 355 

All acquired data sets of each specific stage (more than 1.3 million of emission spectra) were 356 

analyzed together considering a column-wise data augmentation. In other words, we had eight 357 

augmented data sets corresponding to the eight development stages. Each data set has been 358 

analyzed separately using MCR-ALS under proper constraint. The chemical rank for each data 359 

set has been determined using singular value decomposition (SVD).22 However it was sometimes 360 

necessary to calculate different MCR models with different number of components when SVD 361 

information was not so clear. Considering the principle of parsimony, the final MCR model was 362 

selected as the one with the smallest chemical rank, a good model fit and chemically meaningful 363 

resolved profiles. A mean LOF value of 0.9% and a mean R2 value of 0.96 were observed for 364 

MCR-ALS models which are good figures of merit considering the signal to noise ratio. As 365 

summarized in table 1, a total of seven components were extracted with MCR-ALS from the 366 

eight development stages when using the whole spectral domain and non-negativity constraint 367 

only (i.e. following the first scenario).  Some components were present throughout the whole 368 

grain development and others only at specific stages.  This demonstrates the great potential of 369 

such methodology being able to detect various molecular contributions even when the spectral 370 

overlap is maximal. Indeed, on the basis of previous results (figure 4 and 5), it was very difficult 371 

to envisage observing so many spectral contributions on such complex biological samples. 372 
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 378 

 379 

 380 

 381 

 382 

 383 

Table 1.  The seven extracted components, A, B, C, D, E, F and G from the eight development 384 

stages. A tick sign indicates the presence of a component at a particular stage. 385 

 386 

MCR-ALS extracted spectral profiles of all components A-G at each development stages are 387 

shown in figure 6. Correlation coefficients were used in order to set out representations of the 388 

same component from the different development stages (i.e. different MCR-ALS models).Each 389 

panel of a component is divided in three separated parts corresponding to the three excitation 390 

wavelengths 375, 488 and 561 nm respectively highlighted in purple, blue and green. Figure 7 391 

presents corresponding extracted contribution maps of these components. If needed, all these 392 

high resolution images can be retrieved in the supplementary material section in Matlab figure 393 

format.  394 

 395 

 150 

°DAF 

270 

°DAF 

350 

°DAF 

470 

°DAF 

560 

°DAF 

630 

°DAF 

780 

°DAF 

Mature 

Component A ✔ ✔ ✔      

Component B ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Component C ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Component D     ✔ ✔ ✔  

Component E    ✔  ✔ ✔  

Component F    ✔ ✔ ✔ ✔ ✔ 

Component G ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 
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 396 

Figure 6. Extracted spectral profiles of components A-G. Subparts of each panel correspond with 397 

the three excitation wavelengths. Arrows indicate selected maxima of emission. 398 

 399 

 400 

 401 

 402 

 403 
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 404 

Figure 7. Examples of extracted contribution maps of all components in the wheat grain. 405 

Minimum and maximum values in each contribution maps are represented with cold and hot 406 

colors respectively.  407 

 408 

From a general point of view, the MCR-ALS approach extracted specific spectral profiles for 409 

each component. Molecular identification in fluorescence spectroscopy is naturally based on the 410 

selection of maximum emission wavelengths on pure extracted profiles but our approach also 411 

allow to us to observe hidden components at particular excitation wavelengths. Moreover 412 

presence or absence of emission can be used jointly for spectral interpretation. The extracted 413 

components are examined in more details here.   414 
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Component A (Figure 6A) is present from 150 °DAF to 350 °DAF (as shown in table 1). Its 415 

maximum of emission is observed at 664 nm after excitations at 488 and 561 nm (black arrows). 416 

Moreover this component exhibits no significant emission when excited at 375 nm. A broad 417 

emission is also observed between 500 and 630 nm with an excitation at 488 nm. Note that the 418 

emission drop observed at 561 nm corresponds to the wavelength excluded by the dichroic 419 

mirror for the three excitation wavelengths. Corresponding contribution maps of component A 420 

are observed on the first row of Figure 7. Component A is mainly found in the chloroplasts of 421 

cross cells, and in the outer cell wall of the epicarp for the samples at 150° and 270 °DAF. At 350 422 

°DAF this component particularly highlights the cross cells and the seed coat. Considering 423 

spectral profile and subcellular locations of this component, it might be assigned to pigments like 424 

flavonoids, carotenoids and chlorophyll.3,7,46–48 425 

Component B (Figure 6B) is detected from 150 °DAF to mature stage (as shown in table 1). 426 

Its maximum of emission is observed at 604 nm for an excitation at 561 nm. Similar to 427 

component A, this component have no significant emission for an excitation at 375 nm. 428 

Concerning the excitation at 488 nm, a moderate emission is observed in the 500-630 nm 429 

spectral region. Corresponding contribution maps are presented in the second row of figure 7 for 430 

all stages of development. The location of this component depends on the development stage. At 431 

early stages (from 150 to 350 °DAF), it is mainly found inside cells of the epicarp and mesocarp 432 

and also inside cross cells. From 560 to 630 °DAF, it is mainly located inside cross cells and in 433 

the outer cell wall of the seed coat which is covered by a cuticle. From 780 °DAF to the mature 434 

stage, this component is mainly observed in the seed coat, inside aleurone cells and in the cell 435 

walls of the epicarp and mesocarp. The multiple location of the component in all stages makes 436 

the spectral interpretation of this component difficult. However considering the excitation-437 

emission bands observed and the very similar shape of the component for all stages, this 438 

fluorescence might be attributed to flavonoid pigments. 439 

Component C (Figure 6C and 7) is present at all investigated stages. The maximum of 440 

emission is located at 544 nm after excitation at 488 nm. Almost no fluorescence is observed for 441 

excitation at 561 nm and 375 nm. The only exception is a moderate emission observed at 150 442 

°DAF after an excitation at 375 nm. Component C is mainly found in epicarp cell wall at 443 

150°DAF, in the seed coat, the tube cell walls, and the nucellar epidermis from 350 °DAF to 630 444 

°DAF. In addition, it is detected inside aleurone cells and on all pericarp cell walls at the mature 445 
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stage. The assignment of this fluorescence to only one chemical compound is not possible due to 446 

the different subcellular locations. Moreover the excitation/emission profile does not correspond 447 

to a known autofluorescence compound.3 It should be stressed that an extracted contribution of 448 

the MCR-ALS approach can potentially contain different molecules which are correlated with 449 

concentration, which may account for the difficulty of its interpretation. 450 

Component D (Figure 6D and 7) appears from 560 °DAF to the 780 °DAF. The maximum of 451 

emission is located at 674 nm for excitations at 561 nm and 488 nm as indicated by black arrows. 452 

During these development stages, the compound is present in all pericarp cell walls and in the 453 

seed coat with a gradual decrease over time. Unfortunately considering both spectral behavior 454 

and localization, no attribution of this compound can be proposed at this time. 455 

Component E (Figure 6E and 7) is present in the cell walls at 470, 630 and 780 °DAF. The 456 

maximum of emission is observed at 474 nm after excitation at 375 nm as indicated by black 457 

arrows. In this case, no significant fluorescence is observed for excitations at 561 nm and 488 nm 458 

except for 460 °DAF where a remaining fluorescence is found in the blue region. For the three 459 

stages, the component is mainly found in the cell walls of the aleurone layer, nucellus epidermis 460 

and those of the mesocarp and epicarp. Considering the cell wall locations and the spectral 461 

signature, this contribution might be attributed to hydroxycinnamic acids like ferulic or para-462 

coumaric ones, even though hydroxycinnamic acids have been detected in cell walls before 460 463 

°DAF.47 The fluorescence of these compounds is known to vary for instance with pH, types of 464 

bonds, and different molecular environments. 465 

Component F (Figure 6F and 7) is present from 470 °DAF to the mature stage. The shape of 466 

its emission profile is changing between different stages. Consequently, several wavelengths of 467 

maximum emission are observed for this component. In addition there is almost no fluorescence 468 

with an excitation at 375 nm. From 470 °DAF to 630 °DAF, the component is located in the seed 469 

coats, in the cell walls of cross and tube cells and in the outer cell wall of epicarp. It is 470 

noteworthy that both seed coat and epicarp are covered by a cuticle. After 780 °DAF, all pericarp 471 

cell walls show an important amount of this component. Considering both spectral and spatial 472 

information, this contribution could correspond to some lignin and/or cuticle compounds. Indeed 473 

it has already been reported that the autofluorescence of lignins and cuticles was due to multiple 474 

fluorophores.2,47 475 
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Component G (Figure 6G and 7) is present in all investigated stages. The maximum of 476 

emission is observed at 450 nm. Fluorescence of this compound is found in the cell walls of all 477 

outer tissues of the grain at all stages. Only some variations of intensities are observed. For 478 

example, the fluorescence is weaker in the nucellar epidermis compared to the other tissues. It 479 

increases in the cell walls in the aleurone layer from 350 °DAF. Considering the spectral pattern 480 

of this compound and its localization, it can be assigned to hydroxycinnamic acids like ferulic or 481 

para-coumaric ones.35,49  482 

Analyzing multi-excitation hyperspectral autofluorescence imaging data sets with the MCR-483 

ALS approach has therefore a good potential to obtain more information about molecules and 484 

their localization than with conventional data analysis techniques even if all components are not 485 

interpreted at this time. In this first scenario of MCR-ALS optimization, however only non-486 

negativity constraint has been applied which may give rise to some ambiguities on extracted 487 

spectral profiles and corresponding contribution maps. It is in this sense that the impact of using 488 

the trilinearity constraint in MCR-ALS has to be evaluated in the next section.  489 

 490 

3.1 Signal unmixing using MCR-ALS using trilinearity constraint 491 

Trilinearity constraint can potentially guaranty accuracy of unique extractions from MCR-492 

ALS. However, due to the trilinearity constraint, the augmented data set should contain some 493 

similar factors in their modes while the factors should be independent from experimental 494 

conditions. Thus profiles of a component in different data matrices are forced to have common 495 

shape during each ALS optimization but may differ by a scaling factor. During the ALS iterative 496 

optimization procedure, the constraint forces the shape of the loading vectors to be the same in 497 

all sub-matrices. In order to analyze the above mentioned data sets using MCR-ALS under 498 

trilinearity constraint, it was necessary to have the same spectral domain of emission. The 499 

spectral region of emission (574-714 nm) common to the three excitations was then considered. 500 

The common part of three recorded data sets were augmented row-wise and analyzed using 501 

MCR-ALS under non-negativity in both modes and trilinearity in spectral mode. Under these 502 

new conditions, only six components have been extracted with MCR-ALS with a mean LOF 503 

value of 4% and a mean R2 value of 0.99. Their presence and absence were exactly similar to the 504 

ones given in Table 1 except for component G which was absent. In fact, component G was 505 



23 

 

effectively present in grain sections but the reduction of the spectral domain prior MCR in this 506 

second scenario has led to the loss of specific spectral information. MCR-ALS extracted spectral 507 

profiles under non-negativity and trilinearity constraints of the six components A-F are shown in 508 

figure 8. Generally speaking, we can observe that for a given component, extracted spectral 509 

profiles are more consistent between stages than the ones in Figure 6. Indeed, the trilinearity 510 

constraint drastically decreases rotational ambiguity of solutions. 511 

512 

Figure 8. Extracted spectral profiles of component A-F when trilinearity and non-negativity 513 

constraints are applied. 514 

 515 

Moreover maxima of emission of components A, B and D are exactly the same as the ones 516 

observed in Figure 6. It is slightly different for component C with a maximum of emission now 517 

observed at 584 nm while it was 544 nm with non-negativity only. However this difference is not 518 

due to a real spectral shift of this band. Indeed the maximum emission of this component is 519 
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always centered on the same wavelength but the restricted spectral domain imposed by the use of 520 

trilinearity constraint only allows us to extract the bottom of this band. We observe the same 521 

situation for component E with a maximum of emission at 474 nm with the application of non-522 

negativity constraint becoming 574 nm with trilinearity. As already pointed out, emission profile 523 

of component F changes throughout wheat grain development certainly due to different chemical 524 

environments. Figure 9 shows extracted contribution maps when trilinearity constraint is applied.  525 

 526 

Figure 9. Extracted contribution maps of all components in the wheat grain when trilinearity and 527 

non-negativity constraints are applied. Minimum and maximum values in each contribution maps 528 

are represented with cold and hot colors respectively. 529 

 530 

Compared with Figure 7, we can see that the localization of all components for all stages are 531 

almost the same as it was with the first scenario, except for component G which is naturally 532 
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absent when trilinearity is considered. However a deeper analysis (particularly by zooming in on 533 

concentration maps) highlights better contrasted images when trilinearity constraint is applied. 534 

Indeed in these new conditions, rotational ambiguity is decreased and purer concentration 535 

profiles can be extracted. In other words, more zones with absence of components are observed.    536 

Less ambiguity in spectral profiles allows us to generate less biased images of the biological 537 

samples. From a data analysis perspective, it is obvious that applying the trilinearity constraint is 538 

a good way to extract better spectral profiles and corresponding contribution maps, component G 539 

being absent only because of our specific instrumental setup. 540 

 541 

4. Conclusion 542 

This work demonstrates the great potential of multi-excitation hyperspectral autofluorescence 543 

imaging for the exploration of complex biological samples. In the present work, fluorescence 544 

properties were followed after UV and visible excitations in wheat grain outer layer during 545 

development. Our instrumental setup allowed us to obtain fluorescence information from this 546 

large spectral domain with a high spatial resolution without any labelling of the samples with 547 

additional fluorophores. There is a great potential in such spectral imaging techniques for 548 

comparing set of samples by statistical approaches. A set of 40 images containing more than 10 549 

million emission spectra was acquired to analyze wheat grains for eight development stages and 550 

one of the challenges of the work was to define a strategy of data analysis for multiset 551 

hyperspectral images. Having understood the limits of simple integration approaches on such 552 

spectral data sets, a signal unmixing technique has been evaluated. Two implementations of the 553 

MCR-ALS approach were proposed to extract pure component spectra and contribution maps 554 

according to development stages. In the first case, the full spectral range was taken into account 555 

while in the second one, trilinearity constraint was applied on the common spectral emission 556 

range of the three excitation wavelengths. In both cases, augmented data sets were obtained by 557 

merging the repetition of images of a given development stage. Pure components could be 558 

compared for the two MCR-ALS implementations except for the component found in the 559 

specific emission ranges of the UV excitation. Four to six pure components were detected 560 

depending on the stages. Components were assigned to hydroxycinnamic acids, lignin and 561 

cuticle compounds. Pigments compound were also highlighted and found in several tissues of the 562 
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wheat grain. Some compounds were difficult to interpret requiring additional investigation of the 563 

natural fluorophores encountered in plants. To the best of our knowledge, it is the first time 564 

MCR-ALS with trilinearity constraint is used to analyze simultaneously multiple hyperspectral 565 

autofluorescence data sets and extract pure spectral profiles and corresponding contributions 566 

maps of different molecules present in the sample. Despite the natural spectral overlap of 567 

chemical species and the complexity of biological samples, it is possible to unmix signals and 568 

extract more information about pure components with this original concept. With these results, 569 

we are convinced that the combination of multi-excitation hyperspectral autofluorescence 570 

imaging and MCR-ALS approach represent a real breaking point in the analysis of complex 571 

biological samples.  572 
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