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Abstract

Many plant tissues can be observed thanks to awoteffcence of their cell wall components.
Hyperspectral autofluorescence imaging using caifotcroscopy is a fast and efficient way of
mapping fluorescent compounds in samples with & Isigatial resolution. However a huge
spectral overlap is observed between molecularispe8s a consequence, a new data analysis
approach is needed in order to fully exploit theeptial of this spectroscopic technique and
extract unbiased chemical information about comfietogical samples. The objective of this
work is to evaluate multi-excitation hyperspect@litofluorescence imaging to identify
biological components in wheat grains during tltgwelopment through their spectral profiles
and corresponding contribution maps using MultatiCurve Resolution - Alternating Least-
Squares (MCR-ALS), a signal unmixing algorithm ung@eoper constraints. For this purpose
two different scenarios are used: 1) analyzingtdii@ spectral domain of data sets using MCR-
ALS under non negativity constraint in both spdcairad spatial modes; 2) analyzing a reduced
spectral domain of data sets using MCR-ALS undermegativity in both modes and trilinearity
constraint in spectral mode. Considering the oabinstrumental setup and our data analysis
approach, we will demonstrate that extracted coation maps and spectral profiles of
constituents can provide complementary informatimed to identify molecules in complex
biological samples.

Key words

Multivariate Curve Resolution - Alternating Leasidares; multi-excitation hyperspectral
images; Autofluorescence; Trilinearity constralheat grain.
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1. Introduction

Plants are complex organisms with a specializedybplan that requires multilevel
organization (organs, tissues, cell types, subleglitompartments) and highly specialized tissues
with distinct properties. Plant organs are thefmosaic of different cell types, with variation
in their structure and composition under genetid anvironmental controls. Plant organs are
widely used for food, feed and industrial applioas. Studying the tissue composition of organs
is therefore of tremendous interest to understdadit piological functions and to evaluate the

guality of plant tissues for nutritional and indigdtapplications.

Due to the heterogeneous nature of plant tissugscaoompare multiple plant samples, there is
a need for imaging techniques that rapidly provid®rmation concerning the chemical
composition of tissues with good spatial resoluti®pectroscopic methods such as Raman, Mid-
infrared or UV-Visible fluorescence are classicallyed to analyze plant tissue sectibfis.
However, to be applicable to plant comparison, spedmaging techniques must deal with
minimal sample preparation (e.g. avoid tissue dedtigh and resin embedding), high spatial
resolution (< 3um per pixel), high acquisition speed and a higldfief view while keeping
enough spectral information to ease molecular ifleation. As a consequence full field
fluorescence imaging systems such as confocal sdopes equipped with spectral detectors is
certainly the only technique meeting such requime Taking advantage of the
autofluorescence properties of many plant compdutfdgconfocal or multiphoton imaging can

be performed with little tissue preparation andrenmportant, without labeling.

Hyperspectral autofluorescence imaging was consitar this work to follow the evolution of
wheat grain tissues during grain development. Hos furpose, we collected confocal
hyperspectral images of wheat grains sections fédrelint stages of development. The wheat
grain comprises several tissues: embryo, endospaduter layers. Autofluorescence in cereal
grain is due to several compounds, including pigsxeuch as chlorophyll in green tissues,
carotenoids, anthocyanidin and proanthocyanidicolored grains®™?In the grain outer layers,
autofluorescence is particularly important in cedllls where it has been linked to the presence
of phenolic compounds such as lignin and hydroxyamic acids (ferulic acid, para-coumaric
acid)**° However, the fluorescence properties of major ammps largely overlap in the

spectral domain. For instance, lignin and hydroxgemic acids both fluoresce after UV
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excitation while only lignin is fluorescent afteisible excitatiorf*®*’ Chemometric methods
have already been used to overcome this problemdamtify tissues in dry mature grain and in
particles from autofluorescence multispectral insdge****However we need to get beyond that
because ambiguity has not been totally lifted. &etleombining autofluorescence hyperspectral
images obtained by confocal microscopy after ddiférexcitations may help to further identify
tissues with overlapping autofluorescence respormgesn cases of the co-localization of
components. For each excitation wavelength, onesfsgectral image is acquired. The set of
hyperspectral images forms a multi-excitation hgpectral image. It can also be considered that
for each pixel in an image, an excitation emisgloarescence matrix is acquired. Thus we can
see that such experiments will impose constraffitst, as emission wavelengths are always
longer than excitation ones, it results in a déférspectral domain depending on the excitation
wavelength and a partial excitation—emission mati$econd, the final multi-excitation
hyperspectral image cannot be strictly considered dull 3-way data set. Finally, with the
purpose of comparing samples during grain developnseveral images have to be analyzed
together in a consistent way. As a consequences@gtdhave to be reorganized and chemometric
methods have to be adapted for this specific arsalys

Multivariate Curve Resolution-Alternating Least &ges (MCR-ALS) is one of the signal
unmixing techniques that can provide pure spectnd aontribution maps of different
components in the sampl&slt is an iterative algorithm that solves the kBfm model with no
prior knowledge. This algorithm extracts from thetadset pure contributions (concentration and
spectral profiles) of all compounds present indbheple from suitable alternating least-squares
optimization subjected to different constraints.eTlatter is imposed based on the chemical
knowledge of the studied systéf?> When data sets are analyzed by MCR-ALS, the result
might be challenging due to lack of unique soluiowhich is an intrinsic characteristic of
bilinear matrix decompositions if incomplete infation is available about the systéfriThe
resulting uncertainty may be dramatically largecertain cases, e.g., when extensive profile
overlap occurs in one of the data modes. Howewgppsing different constraints such as non-
negativity, unimodality, selectivity and trilinegri may drastically decrease the extent of
rotational ambiguity by adding more information ttte MCR analysis of the system under
study?’ 3! A Trilinearity constraint can guarantee accurat&ue profiles for constituents with

trilinear structuré®* To fulfill the trilinearity condition, the augmesd data matrix should
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contain some similar factors in its sub-matrices;tdrs which should not be affected by
experimental conditions so that they share a comspmettral shape. Only their areas (and
vertical heights) should proportionately changeoading to the constituent concentration. It is a
very strong constraint that forces the decompasstito give unique solutions under mild

conditions.

The objective of this work is to evaluate the methaf multi-excitation hyperspectral
imaging by confocal microscopy combined with theleration of second order data sets with
the MCR-ALS approach to identify different compotsemm the developing wheat grain based on
their autofluorescence properties. Contribution snagnd spectral profiles of different
compounds are complementary information which télextracted from the exploration of this
kind of data sets. For this purpose two differecgrmrios are used: 1) Analyzing the whole
spectral domain - obtained by merging the datadfetach excitation wavelength - using MCR-
ALS under non negativity constraint in both mod®sAnalyzing the reduced spectral domain -
common to all excitation wavelength - using MCR-AlWsder non negativity in both modes and
trilinearity constraint in spectral mode in order get second order advantage. The two
approaches will be compared and discussed on #ig tlextracted contribution maps and pure
spectral profiles of all components. These reswillsbe also compared with images generated

from the standard method based on emission sigteajriation.

2. Material and methods

2.1. Plant materials and growth conditions

Wheat plants Triticum aestivunL. cv. Recital) were grown in containers filledtiviplain
soil at INRA Clermont-Ferrand (France) under cands of natural day length and temperature.
Upon flowering plants were transferred to a covestdcture allowing to control and monitor
the temperature. Temperature was set at 21°C fracrm6to 9.30 p.m. and 14°C at night. Wheat
grain development is influenced by the time elapsiede flowering, the temperature and the
position of the grain within the spike. Thus itsvel®pment was monitored using the thermal
time method* which is more robust than only considering timeewhemperature is varying.

The thermal time unit is Celsius degrees days dftavering (°DAF). This measure is the
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cumulated daily average temperature since flowerindividual spikes were tagged when the
first flowering event was observed. Grains werevested at different desired developmental
stages as already described in a previous Wavore precisely samples were collected at 150,
270, 350, 460, 560, 630, 790 °DAF and at maturgesta

2.2. Multi-excitation hyperspectral autofluorescene imaging

Freshly harvested grain samples were frozen andnctlie equatorial region of the grain
using a cryotome (HM 500 OM, Microm) into 20n cross sections. In the case of dry grains,
the embryo was removed and the grains were placednooist paper for 24 h at 4°C to facilitate
sectioning. For each grain, serial sections wegiegal on a slide. This was then mounted in water
and analyzed using a confocal laser-scanning sy&dmNikon) equipped with a x40 objective
for confocal imaging. The microscope was equippé&t & spectral detector unit and provided
three excitation wavelengths: 375 nm (UV), 488 rtu€) and 561 nm (green). At the chosen
magnification, the field of view was 317 x 317 pndamages were digitized as matrix of 512 x
512 pixels with a pixel size of 0.62 x 0.62 um. &sonsequence each hyperspectral data cube
contained 262,144 emission spectra. Moreover fon &ald of view, three hyperspectral images
were recorded by collecting emitted light from 4064714 nm for UV excitation, 504 to 744 nm
for blue excitation and 574 to 744 nm for greenitexion with a 10 nm step between spectral
variables. A dichroic mirror was used to filter thieree excitation wavelengths. For each
development stage, two or three serial section® waaged. Two regions per section were
analyzed: (1) opposite to the crease and (2) onsithe of the grain, called dorsal and side
respectively, with the objective to visualize dikttissues of the wheat grain (Figure 1). In the
case of the youngest grains, one field of view natsalways sufficient. In this case, two images
were acquired to observe the whole region. Findily whole data set contained 40 multi-
excitation hyperspectral autofluorescence imagessidering different parts of the grain and

development stages; this corresponds to more tBamillion emission spectra in total.
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Figure 1. A simple scheme of wheat grain cross@eetith spectral acquisition areas.

2.3.Spectral data arrangement

In this work, multiple excitation wavelengths weused to generate autofluorescence

hyperspectral images of the wheat grain; which reeare 3D autofluorescence hyperspectral

image (two spatial modes andy and one emission mode_ ) per excitation wavelength

denoted A A 2 and)tem, respectively (Figure 2an

ex,1’ " ex

and)\em,3 are the three

em,1’ A em,2
emission wavelength ranges corresponding to tleetakcitation wavelength. So for these three
excitation wavelengths, there are three 3D cubes tbrming together a 4D data set with two
spatial modex andy, one excitation mode and one emission mode. Eachi-excitation
hyperspectral autofluorescence image corresponds 4® image as shown in figure 2a by
considering together the purple, blue and greer<uls a consequence, an excitation emission
autofluorescence matrix is acquired for each pofethe sample surface instead of only one
emission spectra as it is usually the case for eotienal fluorescence analysis. However, this
matrix is only partial because the spectral domaorsesponding to each excitation wavelength
differs. In order to analyze the acquired data bgtasing a curve resolution method like MCR-
ALS, a 2D matrix of data is needed. Consequentlshe3D autofluorescence hyperspectral
image matrix corresponding to each excitation i®ldied to a matrix withkxy rows andiem;
columns (i=1, 2 and 3) as shown in figure 2b.
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em,3

y
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XXy
XXy

autofluorescence hyperspectral images collectedgutiie three excitation wavelengths. b)
Unfolded version of the three cubes.

2.4. Data analysis — the MCR-ALS approach

The MCR-ALS method is used to decompose simultasigauhyperspectral image into the
pure spectra of the image constituents and cornelpg contribution maps. MCR-ALS is based
on a bilinear model which assumes that each obdespectrum is a linear combination of pure

components spectra present in the sysfetfiThis model can be written in matrix form as:
D=CS' +E (1)

Where,D is the unfolded hyperspectral image dataGes the matrix of the relative amounts or
contributionsS' is the pure spectra matrix aids the matrix associated to non-modeled part of
data and potentially only noise. Naturally sigmdknsity in every pixel of the image should not
be negative and neither should the contributionsghef different constituents. It is therefore
logical to use non-negativity constraint duringeatiating least squares optimization. The
spectral matrixS' is also normalized to avoid scale ambiguity. Ae tand of the ALS
optimization procedure, the optimized matrix can be refolded, to recover a 2D image
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(distribution map) of the contributions of everyngoonent. To evaluate the quality of extracted
profiles obtained from the MCR-ALS procedure, thergentage of lack of fitlgf) and the
percentage of explained variance)Bre calculated according to the two following &iipns:

Xijdij— dij

lof (%) = 100 x |24

()

whered;; is the element of the hyperspectral image datdDsetnd &ij is the corresponding
element of this data matrix recalculated by MCR-AISis lack of fit value gives a measure of
the fit quality in relative terms with the same tasms the measured data, and comparable to the
experimental relative error estimation. For thelaixed varianceR is calculated as:

R*= 100 x(1 — Z’—ezf) 3)

2
2ijdjj

wheree;; are the elements of the matrix. The main advantage of this algorithm is d&ineount

of information that can be included in the optintiga process and the ability of working with
either a single data matrix or multiset data stres i.e. using simultaneously several data cubes.
However it is known that such an approach doesalvedys extract unique solutions if not well
managed. Therefore additional chemical informato well-selected constraints used in the
decomposition process can significantly reduce enesliminate this uncertainty. One of the
most well-known constraints to ensure uniquenessxdfacted solutions in MCR-ALS is
trilinearity. Due to the trilinearity constraintath arrays should contain some similar factors in
their modes while factors should be independemn fexperimental condition¥. Trilinearity is a
very strong constraint that forces trilinear decosipons to have unique solutions under mild
conditions®®3° An important achievement in the analysis of complata matrices resulted when
Multivariate Curve Resolution methods were apptiedeveral data matrices simultaneously to
the so-called Matrix Augmented - Multivariate CurResolution - Alternating Least Squares,
MA-MCR-ALS.”° Generally speaking, resolution ambiguities anck rdeficiency problems in
the analysis of two-way data sets can be reduagdfisantly if it is possible to analyze data
structures with more information. MA-MCR-ALS, as axrtension of MCR-ALS, can be easily
adapted to the trilinear analysis of the three-@ata sets generated from data matrices with the

same row or column, taking advantage of their stinec When the trilinearity constraint is used
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in the MA-MCR-ALS framework, profiles of a comporien different data matrices are forced
to have a common shape during each ALS optimizdtidrmay differ by a scaling factor. When
this constraint is inserted into the ALS iteratofgimization procedure, it forces the shape of the
loading vectors to be the same in all sub-matrides.interesting aspect of the trilinearity

constraint in the ALS optimization is that its us@ptional for each component of the system.

MCR-ALS optimization always starts with the geriena of initial estimates of either
concentration or spectral profiles. In general, tise of chemically meaningful estimates is an
essential factor that can lead to not only a ragdvergence of the extractions but also a
decrease in ambiguity of solutions in some casdterBnt methods can be used to find suitable
initial estimates to start the MCR-ALS calculatiorhe so-called SIMPLISMA based on the
concept of purest variables is usually used toutale thenf* However it was not possible to
use it in this work due to the very high numbespéctra in the considered multiset analysis. We
have, therefore, decided to use the Kennard-St&8¢ &lgorithm in order to generate initial
estimates?*? This algorithm allows for the selection of spedi@m all parts of the data space
even in the case of nonhomogeneous distributiastatts by finding the two most distant spectra
in the data set using Euclidean distance, and tbatinues with other points until the selected
rank is reached.

The rank of the data set i.e. its total numbandépendent signals is usually obtained from
Principal Component Analysis (PCA) considering thagnitude of singular values. Singular
values related to chemical contributions are tylpidarge, whereas singular values related to
noise are smaller and similar among themselvess Tgnostic can be complemented by
looking at the emergence of noisy patterns in sca@med loadings profiles, typical in noise-
related components. When in doubt, few MCR modéetls different number of components can
be calculated. The final model is selected as t@lsst one providing an optimal model fit and
chemically meaningful resolved profilésin this work for most of the data sets several MCR
models were calculated and the selected one haidhomm residuals and optimal fit. In order to
extract spectral profiles and contribution mapsalbfactive components in the sample, MCR-

ALS approach has been applied following two différecenarios.

In a first scenario, an augmented dataDsetas obtained by considering the whole spectral

domain of each data cube and merging the corresppnidree 2D unfolded matrices as shown
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in figure 3b. In this case, MCR-ALS was applied e@ndon-negativity constraint only in order to
extract spectral autofluorescence emission proétes contribution maps of active components.
As explained in the data collection section, severgions were observed for each grain section
and several serial sections were also observeddoh development stage, resulting in several
multisets (in red and orange in figure 3a). In filgure 3b, purple, blue and green cubes
correspond to the three different excitation wawgths used while light and dark colors
correspond to two sample regions of interest. Than use column- and row-wise data
augmentation to fuse all matrices and generatelzagmatrixD. Lastly, the augmented data set
is used to extract pure concentration and spentedtices using MCR-ALS (Figure 3c). To
tackle the large volume of data from the 40 muttigation hyperspectral images (i.e. more than
10 million of emission spectra), augmented data wetre built and analyzed separately for each
development stage that still correspond to theiwarlate analysis of 1.3 million spectra each.
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Figure 3. Data arrangements; a) three 3D blockshaee autofluorescence hyperspectral images

acquired with three different excitation wavelersgth A,.,andA . which are shown in

ex,1’ e ,3
purple, blue and green, respectively (both dark lagitt colors are related to orange and red
regions of interest of the wheat grain). b) Unfofgliof cubes and final data augmentation
generating D matrix. ¢) The augmented data seded to extract pure concentration and spectral
matrices using MCR-ALS. Open black rectangles m filgure represent the common spectral

range used when the trilinearity constraint is egapl

A second scenario has been considered in this Wwedause rotational ambiguity (i.e.
uncertainty of MCR-ALS results) cannot be elimirhta the majority of cases only using the
non-negativity constraint. Therefore it has beenidkrl to apply additionally the trilinearity
constraint in order to reach uniqueness of solstion MCR-ALS, or at least verify if other
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extractions are obtained in these new conditiomsveéver, to analyze the acquired data set under
the trilinearity constraint, it must have a trilarestructure at least for one mode. In the case of
fluorescence, the shape of the emission spectrura fiven fluorophore is largely independent
from excitation wavelength. Therefore the recordetbfluorescence hyperspectral images using
different excitation wavelengths are potentiallytadpie for applying trilinearity constraint in
spectral mode. However due to our specific instmtadesetup, hyperspectral images have not
exactly the same spectral domain, a necessary tamamdor applying this new constraint in
MCR-ALS. As a consequence, a reduced spectral doa4-714 nm) common to the three
unfolded matrices has been considered. This conspentral window is represented by black
open rectangles in Figure 3. In this scenario, arealready see that the application of trilinearity

constraint has paid a price of losing spectralrimi@tion below 574 nm.

3. Result and discussions
3.1 Autofluorescence image generation with a cotweal approach

As described in section 2.3, the multi-excitatigpédrspectral confocal images acquired form
a set of three 3D blocks. Their analysis and displ@ therefore not straightforward. The usual
ways to generate a 2D image from a fluorescencginmgadata set are the integration of the
signal over the whole spectral domain of emisstbs, integration around the wavelength of a
maximum emission or a signal extraction at a paldic spectral channel corresponding to a
specific emission. Figure 4 shows generated awiodkcence images of the same wheat section
using the three excitation wavelengths 375, 48854idnm. More precisely, images in Figure 4a
have been obtained considering signal integrationtree whole emission domain of each
excitation wavelength. Autofluorescent compounds @served in all tissues corresponding to
the wheat grain outer layers and no autofluorese@nobserved into the endosperm (see figure
5 for tissue and cell layers annotation if need&treover the use of different wavelengths of
excitation seems to be a way to highlight differasntoparts of the section. Indeed, after
excitation at 375 nm, all outer layers fluoresamrfrthe aleurone layer to the epiderm, while the
seed coat is highlighted after excitation at 488 bising excitation at 561 nm, some small points

are also revealed inside cross cells corresportdipiggments.’

13
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A) Global integration

Excitation: 375 nm Excitation: 488 nm Excitation: 561 nm
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B) Single wavelength integration

Excitation: 375 nm Excitation: 488 nm Excitation: 561 nm
Emission signal integration: 474 nm Emission signal integration: 544 nm Emission signal integration: 594 nm

o'
\ ij:

Excitation: 375 nm Excitation: 488 nm Excitation: 561 nm
Emission signal integration: 424 nm Emission signal integration: 644 n Emission signal integration: 674 nm

f-\\ ‘j" !

Figure 4. Autofluorescence images of the same ideion at different excitation wavelength
A) when emission is integrated over the whole spéalomain B) for emission at given

wavelengths.

Autofluorescence images in Figure 4b have beenrgeee considering only emission at
given wavelengths. These particular wavelength® men selected because it was possible to

generate different emission images highlightingfedént subparts of the wheat section.
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Variations in intensities in the different imageggest that each cell type shows some specific
fluorescence spectral response. In autofluoresdemaging, no chemical probes are used and all
molecules in the sample that are intrinsically fegzent give emission in different parts of the
spectral domain. Autofluorescence is often considers a spurious signal but it is not. It is in
fact a good opportunity to observe simultaneousfemnt molecular contribution. All
images shown in figure 4 obviously reveal the pneseof different autofluorescent behaviors of
the different tissues. However even if specific-palts of the grain section are highlighted at
given wavelength of integration, there is no eviethat it corresponds to the contribution of
only one molecule, simply because of the huge baitbvof the considered spectroscopy. The
complexity of the data structure is even more stgkwhen looking at spectra extracted from
specific areas of the considered wheat sectiorur€i§ presents manual selections of pixels in
cell walls of different grain tissues such as abeercells (red line), seed coat (orange line),sxros
cells (blue line), and epicarp (green line) . Cepending mean spectra of selected pixels are also
presented in the figure.

Selected pixels on the wheat section Mean auto-fluorescence spectra
4000 ' ‘ ' ' '
Excitation Excitation Excitation
3500 375 nm 488 nm 561 nm
3000

25001 Epicarp
2000 Cross cells

Aleurone
1500

1000

404 714 504 744 574 744
Wavelength (nm)

Figure 5. Manual selection of pixels in cell watisdifferent grain tissues (aleurone = red line,
seed coat = orange line, cross cells = blue limkeguicarp = green line) and corresponding mean
spectra of emission for different excitation wawgjihs. Annotationsepi = epicarp,mes =

15
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mesocarpgc = cross cellfc = tube cell,sc = seed coatu = nucellar epidermisal = aleurone

layer andens= endosperm.

Although these four specific tissues are known datain different fluorescent molecules or
different concentration of several ones, the glabelpe of emission spectra is almost the same,
only relative intensity changes being observed dhiferent excitation wavelengths. In
conclusion, a simple integration approach doeshotv us to obtain unbiased information about
the fluorescent molecules present in the grainuéissdue to a huge spectral overlap of
fluorescencé®*® As a consequence, it was decided to apply theakignmixing approach
MCR-ALS in order to extract pure fluorescence stgnes of molecules in the next section of the

paper.

3.1 Signal unmixing using MCR-ALS using the whpézgal domain

All acquired data sets of each specific stage (rimma 1.3 million of emission spectra) were
analyzed together considering a column-wise datgmauatation. In other words, we had eight
augmented data sets corresponding to the eightlagewent stages. Each data set has been
analyzed separately using MCR-ALS under proper tcaimé. The chemical rank for each data
set has been determined using singular value dessitign (SVD)? However it was sometimes
necessary to calculate different MCR models witffied@nt number of components when SVD
information was not so clear. Considering the pplecof parsimony, the final MCR model was
selected as the one with the smallest chemical glood model fit and chemically meaningful
resolved profiles. A mean LOF value of 0.9% and eamR value of 0.96 were observed for
MCR-ALS models which are good figures of merit ddesing the signal to noise ratio. As
summarized in table 1, a total of seven componesmi® extracted with MCR-ALS from the
eight development stages when using the whole igpatmain and non-negativity constraint
only (i.e. following the first scenario). Some gooments were present throughout the whole
grain development and others only at specific Sagéhis demonstrates the great potential of
such methodology being able to detect various nutdeccontributions even when the spectral
overlap is maximal. Indeed, on the basis of previmsults (figure 4 and 5), it was very difficult

to envisage observing so many spectral contribatammsuch complex biological samples.
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395

4 4 4 4 4 4 4

Table 1. The seven extracted components, A, B),E, F and G from the eight development

stages. A tick sign indicates the presence of gooorent at a particular stage.

MCR-ALS extracted spectral profiles of all compotseA-G at each development stages are
shown in figure 6. Correlation coefficients weresdisn order to set out representations of the
same component from the different development stg@ige. different MCR-ALS models).Each

panel of a component is divided in three separpsets corresponding to the three excitation
wavelengths 375, 488 and 561 nm respectively lgghdid in purple, blue and green. Figure 7
presents corresponding extracted contribution nudpthese components. If needed, all these
high resolution images can be retrieved in the Eupentary material section in Matlab figure

format.
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Figure 7. Examples of extracted contribution mapsaldb components in the wheat grain.
Minimum and maximum values in each contribution mape represented with cold and hot

colors respectively.

From a general point of view, the MCR-ALS approaottracted specific spectral profiles for
each component. Molecular identification in flua@sce spectroscopy is naturally based on the
selection of maximum emission wavelengths on puteaeted profiles but our approach also
allow to us to observe hidden components at pdaticaxcitation wavelengths. Moreover
presence or absence of emission can be used jdaortlgpectral interpretation. The extracted

components are examined in more details here.
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Component A (Figure 6A) is present from IBAF to 350 °DAF (as shown in table 1). Its
maximum of emission is observed at 664 nm afteit&ans at 488 and 561 nm (black arrows).
Moreover this component exhibits no significant €sion when excited at 375 nm. A broad
emission is also observed between 500 and 630 nimami excitation at 488 nm. Note that the
emission drop observed at 561 nm corresponds tovtheslength excluded by the dichroic
mirror for the three excitation wavelengths. Coomsding contribution maps of component A
are observed on the first row of Figure 7. Comporeims mainly found in the chloroplasts of
cross cells, and in the outer cell wall of the apicfor the samples at 150° and 2B@&F. At 350
‘DAF this component particularly highlights the osells and the seed coat. Considering
spectral profile and subcellular locations of agnponent, it might be assigned to pigments like
flavonoids, carotenoids and chlorophi/ft?¢—2

Component B (Figure 6B) is detected from 150 °DARature stage (as shown in table 1).
Its maximum of emission is observed at 604 nm forexcitation at 561 nm. Similar to
component A, this component have no significantssimon for an excitation at 375 nm.
Concerning the excitation at 488 nm, a moderatesgon is observed in the 500-630 nm
spectral region. Corresponding contribution majspsesented in the second row of figure 7 for
all stages of development. The location of this ponent depends on the development stage. At
early stages (from 150 to 350 °DAF), it is maintyihd inside cells of the epicarp and mesocarp
and also inside cross cells. From 560 to 630 °DAIS, mainly located inside cross cells and in
the outer cell wall of the seed coat which is ceddny a cuticle. From 780 °DAF to the mature
stage, this component is mainly observed in the seat, inside aleurone cells and in the cell
walls of the epicarp and mesocarp. The multiplationn of the component in all stages makes
the spectral interpretation of this component diffi. However considering the excitation-
emission bands observed and the very similar sludphe component for all stages, this
fluorescence might be attributed to flavonoid pigise

Component C (Figure 6C and 7) is present at alestigated stages. The maximum of
emission is located at 544 nm after excitation&& Am. Almost no fluorescence is observed for
excitation at 561 nm and 375 nm. The only excepisoa moderate emission observed at 150
°DAF after an excitation at 375 nm. Component Qniginly found in epicarp cell wall at
150°DAF, in the seed coat, the tube cell walls, grednucellar epidermis from 350 °DAF to 630
°DAF. In addition, it is detected inside aleurom#isand on all pericarp cell walls at the mature
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stage. The assignment of this fluorescence to améychemical compound is not possible due to
the different subcellular locations. Moreover thxeitation/emission profile does not correspond
to a known autofluorescence compodrtishould be stressed that an extracted contdbuf

the MCR-ALS approach can potentially contain deéfgr molecules which are correlated with

concentration, which may account for the difficuifyits interpretation.

Component D (Figure 6D and 7) appears from 560 °BAthe 780 °DAF. The maximum of
emission is located at 674 nm for excitations dt 8% and 488 nm as indicated by black arrows.
During these development stages, the compoundeiept in all pericarp cell walls and in the
seed coat with a gradual decrease over time. Unfatély considering both spectral behavior
and localization, no attribution of this compourahde proposed at this time.

Component E (Figure 6E and 7) is present in thevealls at 470, 630 and 78DAF. The
maximum of emission is observed at 474 nm aftert&xen at 375 nm as indicated by black
arrows. In this case, no significant fluorescersceliserved for excitations at 561 nm and 488 nm
except for 460 °DAF where a remaining fluoresceisciund in the blue region. For the three
stages, the component is mainly found in the callsaof the aleurone layer, nucellus epidermis
and those of the mesocarp and epicarp. Considénegell wall locations and the spectral
signature, this contribution might be attributedhtygdroxycinnamic acids like ferulic or para-
coumaric ones, even though hydroxycinnamic acid® fteeen detected in cell walls before 460
°DAF.*" The fluorescence of these compounds is known ttp fea instance with pH, types of
bonds, and different molecular environments.

Component F (Figure 6F and 7) is present from 4JAF to the mature stage. The shape of
its emission profile is changing between differstaiges. Consequently, several wavelengths of
maximum emission are observed for this componanaddition there is almost no fluorescence
with an excitation at 375 nm. From 470 °DAF to 680AF, the component is located in the seed
coats, in the cell walls of cross and tube celld &n the outer cell wall of epicarp. It is
noteworthy that both seed coat and epicarp arered\®y a cuticle. After 780 °DAF, all pericarp
cell walls show an important amount of this compan€onsidering both spectral and spatial
information, this contribution could correspondstume lignin and/or cuticle compounds. Indeed
it has already been reported that the autofluorescef lignins and cuticles was due to multiple

fluorophores*’
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Component G (Figure 6G and 7) is present in alestigated stages. The maximum of
emission is observed at 450 nm. Fluorescence sfctirinpound is found in the cell walls of all
outer tissues of the grain at all stages. Only sear@ations of intensities are observed. For
example, the fluorescence is weaker in the nucelpgermis compared to the other tissues. It
increases in the cell walls in the aleurone layemf350 °DAF. Considering the spectral pattern
of this compound and its localization, it can bsigized to hydroxycinnamic acids like ferulic or
para-coumaric ones:*

Analyzing multi-excitation hyperspectral autofluscence imaging data sets with the MCR-
ALS approach has therefore a good potential toimbteore information about molecules and
their localization than with conventional data gsa techniques even if all components are not
interpreted at this time. In this first scenario MCR-ALS optimization, however only non-
negativity constraint has been applied which mase gise to some ambiguities on extracted
spectral profiles and corresponding contributiorpsk is in this sense that the impact of using
the trilinearity constraint in MCR-ALS has to beatvated in the next section.

3.1 Signal unmixing using MCR-ALS using trilineagbnstraint

Trilinearity constraint can potentially guarantycaacy of unique extractions from MCR-
ALS. However, due to the trilinearity constraintetaugmented data set should contain some
similar factors in their modes while the factorsogld be independent from experimental
conditions. Thus profiles of a component in différdata matrices are forced to have common
shape during each ALS optimization but may diffgrabscaling factor. During the ALS iterative
optimization procedure, the constraint forces thapg of the loading vectors to be the same in
all sub-matrices. In order to analyze the above tioeed data sets using MCR-ALS under
trilinearity constraint, it was necessary to hahie same spectral domain of emission. The
spectral region of emission (574-714 nm) commothé&three excitations was then considered.
The common part of three recorded data sets wegenented row-wise and analyzed using
MCR-ALS under non-negativity in both modes andirtahrity in spectral mode. Under these
new conditions, only six components have been etddawith MCR-ALS with a mean LOF
value of 4% and a mearf Ralue of 0.99. Their presence and absence werlgsimilar to the

ones given in Table 1 except for component G whiets absent. In fact, component G was
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effectively present in grain sections but the redumcof the spectral domain prior MCR in this

second scenario has led to the loss of specifictsdenformation. MCR-ALS extracted spectral

profiles under non-negativity and trilinearity ctnagnts of the six components A-F are shown in
figure 8. Generally speaking, we can observe thataf given component, extracted spectral
profiles are more consistent between stages tharonles in Figure 6. Indeed, the trilinearity
constraint drastically decreases rotational ambygafisolutions.

A) Aex:375nm Aex:488 nm Aex:561nm

‘ 614 w4 714 614 (2%

NS~ L=

Om—— BN

wavelength ( nm)

Aex:488 nm Aex: 561 nm

0
wavelength (nm)

00 CO
wavelength (nm)

Figure 8. Extracted spectral profiles of compona&rt when trilinearity and non-negativity
constraints are applied.

Moreover maxima of emission of components A, B &nhdre exactly the same as the ones
observed in Figure 6. It is slightly different foomponent C with a maximum of emission now
observed at 584 nm while it was 544 nm with nonatiedy only. However this difference is not

due to a real spectral shift of this band. Inddesl maximum emission of this component is
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always centered on the same wavelength but thectest spectral domain imposed by the use of
trilinearity constraint only allows us to extrattet bottom of this band. We observe the same
situation for component E with a maximum of emissat 474 nm with the application of non-
negativity constraint becoming 574 nm with trilingéa As already pointed out, emission profile
of component F changes throughout wheat grain dpuatnt certainly due to different chemical
environments. Figure 9 shows extracted contributi@ps when trilinearity constraint is applied.

150 270 350 470 560 630 780
°DA °DAF °DAF °DAF °DAF °DAF °DAF

Mature

Component

A Absent

Absent Absent Absent Absent

Component
B

Component |8
C

Component

D Absent

Absent Absent Absent

Component

E Absent Absent Absent
Component

E Absent Absent Absent

Figure 9. Extracted contribution maps of all comgrats in the wheat grain when trilinearity and
non-negativity constraints are applied. Minimum amakimum values in each contribution maps

are represented with cold and hot colors respdgtive

Compared with Figure 7, we can see that the loatidia of all components for all stages are

almost the same as it was with the first scenaxeept for component G which is naturally

24



533 absent when trilinearity is considered. Howeveeaper analysis (particularly by zooming in on
534  concentration maps) highlights better contrastedges when trilinearity constraint is applied.
535 Indeed in these new conditions, rotational ambygust decreased and purer concentration
536  profiles can be extracted. In other words, moreegonith absence of components are observed.
537 Less ambiguity in spectral profiles allows us tme@mate less biased images of the biological
538 samples. From a data analysis perspective, ituab that applying the trilinearity constraint is
539 agood way to extract better spectral profiles @maesponding contribution maps, component G
540 being absent only because of our specific instrualeetup.

541
542 4. Conclusion
543 This work demonstrates the great potential of rertitation hyperspectral autofluorescence

544  imaging for the exploration of complex biologicalnsples. In the present work, fluorescence
545 properties were followed after UV and visible eatiins in wheat grain outer layer during
546 development. Our instrumental setup allowed ushiaio fluorescence information from this
547 large spectral domain with a high spatial resotutrathout any labelling of the samples with
548 additional fluorophores. There is a great potenitialsuch spectral imaging techniques for
549  comparing set of samples by statistical approache®t of 40 images containing more than 10
550 million emission spectra was acquired to analyzeatlyrains for eight development stages and
551 one of the challenges of the work was to definetrategy of data analysis for multiset
552  hyperspectral images. Having understood the limitsimple integration approaches on such
553  spectral data sets, a signal unmixing techniquebkas evaluated. Two implementations of the
554 MCR-ALS approach were proposed to extract pure @rapt spectra and contribution maps
555 according to development stages. In the first cémefull spectral range was taken into account
556  while in the second one, trilinearity constraintswapplied on the common spectral emission
557 range of the three excitation wavelengths. In hmabes, augmented data sets were obtained by
558 merging the repetition of images of a given develept stage. Pure components could be
559 compared for the two MCR-ALS implementations excépt the component found in the
560 specific emission ranges of the UV excitation. Féairsix pure components were detected
561 depending on the stages. Components were assignégdroxycinnamic acids, lignin and

562  cuticle compounds. Pigments compound were alsdigigkd and found in several tissues of the
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wheat grain. Some compounds were difficult to imtetr requiring additional investigation of the
natural fluorophores encountered in plants. TolBst of our knowledge, it is the first time
MCR-ALS with trilinearity constraint is used to dywe simultaneously multiple hyperspectral
autofluorescence data sets and extract pure spectfles and corresponding contributions
maps of different molecules present in the samplespite the natural spectral overlap of
chemical species and the complexity of biologiahples, it is possible to unmix signals and
extract more information about pure components Witk original concept. With these results,
we are convinced that the combination of multi-eta@n hyperspectral autofluorescence
imaging and MCR-ALS approach represent a real limgagoint in the analysis of complex

biological samples.
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