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Summary 

The epidermis of aerial plant organs is thought to be limiting for growth, as it acts as a 

continuous load-bearing layer, resisting tension. Leaf epidermis contains jigsaw puzzle 

piece-shaped pavement cells whose shape has been proposed to be a result of subcellular 

variations in expansion rate that induce local buckling events.  Paradoxically, such local 

compressive buckling should not occur given the tensile stresses across the epidermis. 

Using computational modeling, we show that the simplest scenario to explain pavement cell 

shapes within an epidermis under tension must involve mechanical wall heterogeneities 

across and along the anticlinal pavement cell walls between adjacent cells. Combining 

genetics, atomic force microscopy, and immunolabeling, we demonstrate that contiguous 

cell walls indeed exhibit hybrid mechano-chemical properties. Such biochemical wall 

heterogeneities precede wall bending. Altogether, this provides a possible mechanism for 

the generation of complex plant cell shapes. 

 

Introduction 

Because epidermis and epithelia are usually mechanically limiting for growth, they are essential 

for shaping organisms (Bai et al., 2010; Dyson et al., 2014; Kutschera and Niklas, 2007; 

Marcotrigiano, 2010; Savaldi-Goldstein and Chory, 2008; Savaldi-Goldstein et al., 2007; Swarup 

et al., 2005). Epidermal layers also display the intrinsic heterogeneity of the composing cells. In 

plants, adjacent cells within the epidermis can grow with various rates and directions (Elsner et 

al., 2012; Uyttewaal et al., 2012). Growth heterogeneity has also been proposed to occur at a 

subcellular scale. In particular, the presence of jigsaw puzzle shaped cells in certain types of 

plant epidermis has been proposed to rely on subcellular variations in expansion rate, inducing 

local buckling events (Fu et al., 2002, 2005). More specifically, the growth in these cells is 

associated with a stereotypical cytoskeleton pattern: cortical microtubules converge in the neck 

regions (indentations) and further mechanically reinforce the cell wall via the guided deposition 

of stiff cellulose microfibrils, thus locally restricting growth, while actin filaments accumulate on 

the opposite side, where a lobe is forming (Armour et al., 2015; Fu et al., 2002; Sampathkumar et 

al., 2014). This multipolar pattern is governed by small Rho GTPases (ROP for Rho of Plants), 

which also display a polar distribution: ROP6, via ROP-INTERACTIVE CRIB MOTIF-

CONTAINING PROTEIN 1 (RIC1) and katanin activity, promotes the formation of the dense 



network of microtubules in the necks, while ROP2, via RIC4, organizes the network of actin 

filaments in the lobes (Fu et al., 2005; Lin et al., 2013). While our understanding of the 

molecular players involved in the formation of these multipolar cells is quite advanced, one is 

left with a mechanical paradox. To some extent, the actin-enriched lobes have been compared to 

the tips of root hairs or pollen tubes, suggesting that cells would push each other. The presence 

of strong tensile stresses in the entire epidermis (Kutschera and Niklas, 2007; Sampathkumar et 

al., 2014) should however hinder such buckling events (Sampathkumar et al., 2014). 

Here we revisit this question, taking the viewpoint of the cell wall, and we explore the possibility 

that such a cell shape emerges from locally established cell wall properties, while being 

constantly under tension. Pavement cells are surrounded by periclinal (parallel to the leaf 

surface) and anticlinal (perpendicular to the leaf surface) walls. The role of periclinal cell walls 

in maintaining cell shape is already well documented and involves a response of cortical 

microtubules to tension in the outer wall (Sampathkumar et al., 2014). The exact mechanical 

contributions of the anticlinal cell walls, consisting of two primary cells walls of neighboring 

cells with the middle lamella in-between, which glues adjacent pavement cells together, still 

remain elusive. The primary cell wall contains a network of interconnected cellulose microfibrils 

and a matrix composed of hemicelluloses, pectins and structural proteins, while the middle 

lamella primarily contains pectins (Cosgrove, 2005, 2014). The exact contribution of these 

different components in determining mechanical properties and final cell shape is the subject of 

many debates (Bidhendi and Geitmann, 2016; Cosgrove, 2016). Cellulose microfibrils are the 

stiffest and the most inert component of the primary cell wall and are thus thought to play a load-

bearing role: their orientation creates mechanical anisotropy in the wall, which in turn restricts 

cell expansion in the microfibril direction (Baskin, 2005; Cosgrove, 2005, 2014, 2016; Geitmann 

and Ortega, 2009; Probine, Preston, 1962). The matrix, which is a dynamic component of cell 

walls, determines their overall mechanical behavior via its properties and interactions with 

cellulose microfibrils (Chanliaud et al., 2002; Fang and Catchmark, 2015; McCartney et al., 

2000; Mikshina et al., 2015; Peaucelle et al., 2011; Ulvskov et al., 2005). 

Since cell walls play an important role in controlling cell morphogenesis, we wanted to 

understand their role in generating wavy cell contours in the presence of tensile stress. To do so, 

we characterized pavement cell shape defects in different cell wall deficient mutants. We 

generated computational models of anticlinal walls in pavement cells, to show how in principle 



structural wall heterogeneities can initiate wavy cell contours in the presence of tension. We then 

validated our model by measuring cell wall mechanical heterogeneities using atomic force 

microscopy and by revealing asymmetric distribution of various cell wall components by 

electron microscopy. 

 

Results 

Wavy cell contours depend on cell wall composition  

Cell wall biosynthesis and remodeling-related mutants display a wide array of defects in 

Arabidopsis thaliana development. To quantify the impact of these mutations on the contours of 

the pavement cells, we studied the cell geometry of 16 selected mutants (Figure 1A). The 

interdigitated shape of the pavement cells was quantitatively analyzed by measuring the 

anticlinal cell wall outlines, using a semi-automated method (Figure S1A). As expected, cell 

areas varied among the wild type and different cell wall mutants (Figure S1D), which might 

influence the measurement of cell circularity and lobing of the pavement cells. Thus, we selected 

mutant cells whose area was similar to fully developed cells in the wild type for analysis of 

circularity and lobe number (Figure S1E; Figure 1B,C). Strikingly, the pavement cells of many 

analyzed cell wall defective mutants such as gal10-1, mur3-1, xxt1/xxt2, xxt1/xxt2/xxt5, kor1-1 

and qua1-1 displayed cell geometry defects with increased circularity, which corresponded to 

decreased interdigitation. We also noticed that the mur1-2 mutant displayed an increase in lobe 

number, which did not influence the circularity of its pavement cells. Moreover, the 35S::GALS-

YFP line showed a decrease in pavement cell circularity, without affecting lobe number, which 

suggests a positive effect of galactan on lobe formation (Figure 1B, C). Altogether, this analysis 

demonstrates that the formation of interdigitation in pavement cells involves an active 

contribution of cell wall remodeling and synthesis. 

 

Wall-like materials bend independently of a buckling process 

Early in their development, epidermal pavement cells are isodiametric and display straight cell 

walls, before forming wavy contours later on (e.g. Fu et al., 2002). We used a computational 

approach to address whether lobe formation requires local heterogeneous mechanical properties 

established earlier in initially straight anticlinal cell wall segments of epidermal pavement cells. 

Mechanical buckling is known to bend thin geometrical structures under compressive forces and 



this phenomenon is also reported to occur in plant tissues (Dumais, 2007; Green, 1999; Shipman 

and Newell, 2004). To understand whether buckling might cause pavement cell interdigitation, 

we tested the influence of compression and tension on the bending process in cell walls with and 

without heterogeneous mechanical properties. To do so, we introduced a finite element methods 

(FEM) model implementing material inhomogeneity of initially straight sections, which bend 

under compressive or tensional loads. We demonstrated that buckling leads to bending of 

homogeneous wall-like structures and requires compressive forces (Figure 2A). Then we 

introduced local wall inhomogeneities composed of elastically stronger and weaker layers, 

whose order in consecutive sections was switched alternately along and across the wall. 

Compressive forces in the presence of inhomogeneities produced bending with the elastically 

stronger layer on the convex side. The direction of the deformation was reversed in the adjacent 

section, where the layer order was switched (Figure 2B). Next we tested the influence of 

tensional forces on bending behavior of homogeneous and heterogeneous walls. Homogeneous 

walls did not bend under tensional forces (Figure 2C). In the case of heterogeneous walls, 

bending was present, but the direction of the bending was altered in comparison to compressive 

loads. This time the elastically stronger layer was on the concave side (Figure 2D). Therefore, 

these simulations indicate that the tensional forces previously described in the Arabidopsis leaf 

(Sampathkumar et al., 2014) and implemented in our model (Figure 2D) can cause a bending of 

anticlinal cell walls, in a different manner than the compression driven buckling process (Figure 

2B) and presents a possible mechanism explaining the bending of heterogeneous cell wall under 

tensional forces.  

 

Dual heterogeneity of anticlinal cell walls generates bending under tensional forces 

To integrate the role of anticlinal wall mechanical heterogeneities in the generation of 

interdigitation under tension, we built a finite element model of complete cell anticlinal walls. 

Since tensional forces act on the organ level (Sampathkumar et al., 2014), we assumed symmetry 

boundary conditions, which allowed us to treat a single cell simulation as a part of larger 

multicellular model. During bending under tension, the tension comes from both sides of the 

composite wall, which however extend to a different degree despite being under the same 

tensional force. This might be a topological consequence of accommodating juxtaposed cell 

walls that extend to different lengths when their elastic deformation reaches equilibrium. To 



illustrate the precise differences in the elasticity of composite wall sections, we used a linear 

elastic material model. The model geometry consisted of an initially square shaped “cell” 

containing anticlinal walls subjected to stretching loads, as described in turgid tissues 

(Sampathkumar et al., 2014) (Figure 2E-G). First, we analyzed the deformation of the walls 

containing homogenous mechanical properties (Figure 2E) and did not observe any change in 

wall curvature. Next, we built a model of walls containing alternating sections of elastically 

stronger and weaker material along the wall (Figure 2F) and still did not detect any bending. We 

then introduced composite walls, built from two layers of material with different elasticity across 

the wall section and only a slight bending of the wall was observed (Figure 2H). Finally, 

heterogeneity of the cell wall mechanical properties along and across the cell wall with stronger 

material alternated between the inner and outer sides of each cell wall was analyzed. Such a 

heterogeneous composition led to a waving curvature in the walls (Figure 2G). Moreover, we 

demonstrated that the period and amplitude of the “lobes” were dependent on the size of the local 

cell wall mechanical heterogeneities (Figure 2G). This suggests that the heterogeneous material 

composition along and across anticlinal cell walls might actively participate in puzzle-like cell 

shape acquisition. Overall, these simulations indicate that mechanical heterogeneity across the 

cell wall thickness, present in alternating segments along the cell wall, can be sufficient to 

initiate the interdigitated shape of pavement cells in an epidermis under tension. To demonstrate 

how the elastic modulus of specified wall zones influences bending capacity of the wall, we 

analyzed in more detail the single wall segment of the composite wall with alternated order of 

elastically weaker and stronger material. We tested the effect of elasticity differences (10% and 

20%) while varying the elastic modulus and observed that the deformation decreased with 

increasing elastic modulus values (Figure 2I). The bending deformation increased with 

increasing relative elasticity difference between the parts (Figure 2J). Thus we conclude that 

lowering the elastic modulus favors the bending behavior of the wall. Additional simulations 

demonstrated that the turgor pressure did not have an essential role in the lobing process (Figure 

2K, L). 

 

Differences in mechanical properties along the cell wall perimeter revealed by AFM 

Because neighboring pavement cells display alternating geometrical patterns formed by lobe and 

neck regions, the connecting anticlinal walls shift from a curved to a straight conformation. 



Moreover, within the curved zone of the cell walls, the concave side (facing the lobe of the cell) 

and the convex side (facing the neck of the neighboring cell) can be defined (Figure 3A). To test 

the importance of the cell wall within cell shape determination, we first analyzed the mechanical 

properties of the contiguous anticlinal walls at a subcellular resolution by using atomic force 

microscopy (AFM) on ultrathin paradermal sections of fully developed epidermal cells from 

Arabidopsis third leaf. In order to access anticlinal cell walls, the sections were fixed and 

embedded in resin, which inevitably modified the native mechanical properties of cell walls. 

However, such a treatment performed at a tissue scale does not change relative stiffness within a 

sample, as shown in other studies (Matsko and Mueller, 2004). AFM images were taken and 

used to quantify the stiffness within the regions of interest (ROIs) as depicted in Figures 3 and 

S2. ROIs were placed consecutively along and across the cell walls as depicted in Figures 3B 

and S2A. The stiffness was measured at multiple points in each ROI (Figures 3C, D and S2B, C). 

Detailed analysis of stiffness measurements for two ROIs is presented in Figures 3E-G and S2D-

F. Remarkably, the mechanical properties of the cell walls were found to be heterogeneous along 

the perimeter of the pavement cells in wild type leaves (Figure 4A-C, Figure 4L and Table S1A). 

This heterogeneity could be correlated to cell wall shape: the straight regions of the anticlinal 

cell walls were softer than the adjacent curved regions (Figure 4B, C, L, and Table S1A). To 

validate the correlation between wall stiffness heterogeneity and cell wall shape, we next 

analyzed a mutant in which the interdigitation pattern is abolished. Here we used the 

constitutively active rop2 (CA-rop2) mutant line in which interdigitation is almost absent (Fu et 

al., 2002; Li et al., 2001). AFM analysis revealed that the mechanical properties of straight 

anticlinal cell walls in fully developed epidermal pavement cells of the CA-rop2 mutant were 

significantly more homogenous than those of the wild type (Figure 4D-F, Figure 4L, Table S1B). 

Note that the measurements are relative and dependent on individual samples. However, the 

alternating stiffness pattern was constant along the cell perimeter in different samples (Table 

S1A). Thus, heterogeneities in cell wall properties along the cell perimeter are correlated to the 

presence of wavy cell contours. 

 

Heterogeneities in mechanical properties across the cell wall 

Next, high-resolution AFM analyses were performed on ultrathin paradermal sections across cell 

walls in fully developed epidermal pavement cells. A detailed examination of mechanical 



properties across the wall was performed by quantifying the stiffness within the concave or 

convex cell wall zones (see Figure 3 and Figure S2 for the method). The distribution of force 

measurements correlated with their localization within the cell wall in different ROIs shown in 

Figures 3B and S2A, revealing a stiffness gradient across the contiguous cell wall of the wild 

type, with the concave side being stiffer than the contiguous convex side (Figure 4G, I, L and 

Table S1C). However, a stiffness gradient could also be detected across the straight region 

(Figure 4H, I, L and Table S1D). Interestingly, only minor mechanical heterogeneities were 

detected across the cell walls in fully developed pavement cells of the CA-rop2 mutant with 

straight anticlinal cell walls (Figure 4J-L and, Table S1E). Overall, these data are consistent with 

our model’s assumption: contiguous walls between adjacent cells display alternating mechanical 

heterogeneities both along their wall perimeter and across their wall width in cells producing 

curved walls under tension (Figure 2D, G), while this was not the case for the CA-rop2 mutant 

with straight walls (Figure 2C, E). Note that the measurements are relative and dependent on 

individual samples and the differences in stiffness vary between different samples (Table S1C-

E). Such variability might be related to the stage of the pavement cells’ development or different 

ages of neighboring cells influencing the cell walls’ stiffness and their capacity to bend. 

However, the alternating stiffness detected across the cell walls in the wild type was constant in 

different samples. To confirm that such mechanical gradients are specific to contiguous walls 

that lobe, we analyzed forces across the anticlinal cell walls of non-lobing root atrichoblast cells 

(Figure S3A-C), in different ROIs shown in Figure S3D. In agreement with our model’s 

assumption, only minor mechanical heterogeneities were found across these straight anticlinal 

cell walls, which seemed randomly distributed (Figure S3E-H).  

 

Polar distribution of galactan and arabinan pectin components 

Mechanical heterogeneities were detected along and across the anticlinal cell walls in fully 

developed interdigitated epidermal pavement cells of the wild type (Figure 4). Given the 

mechanical heterogeneities, similar inhomogeneity might also be present in the cell wall 

component distributions. To investigate the subparietal distribution of different primary cell wall 

components, we performed immunocytochemistry on ultrathin sections and analyzed the 

localization of various epitopes of matrix polysaccharides and cellulose via transmission electron 

microscopy (TEM) in Arabidopsis wild type and CA-rop2 mutant third leaf pavement cells (Key 



Resource Table). In order to maximize the efficiency and scale of the analysis, we generated an 

automated quantitative method for gold particle detection (Figure S4). This allowed us to 

determine the distribution of the epitopes within the different cell wall regions (Figure 5 and 

Figure S5). 

While some of the analyzed epitopes were homogenously distributed across the cell wall (Figure 

S5), low methylesterified homogalacturonan epitopes (detected by the JIM5 antibody) were 

present near the middle lamella, both in the wild type and the CA-rop2 mutant (Figure 5A-F). 

High methylesterified homogalacturonan epitopes (detected by JIM7) were similarly distributed 

in the wild type (Figure 5G-J) and they were less abundant and homogenously distributed in CA-

rop2 (Figure 5K, L). Among seven different wall epitopes we tested (Key Resource Table), two 

displayed a distinct polar localization across the curved part of the wall in the wild type: (1,4)-β-

D-galactan epitopes (detected by LM5 antibody) and (1,5)-α-L-arabinan (detected by LM6) were 

mainly localized at the convex (neck) side of the cell wall and rarely observed on the concave 

(lobe) side (Figure 5M, N, S, T). (1,4)-β-D-galactan epitopes were also heterogeneously 

distributed across the straight cell wall in the wild type and in CA-rop2 mutant, being 

preferentially present in close proximity to both plasma membranes (Figure 5O-R), while the 

density of these epitopes was lower in the mutant in comparison to the wild type. Epitopes of 

(1,5)-α-L-arabinan also displayed heterogeneous distribution across the straight regions, but 

unlike the (1,4)-β-D-galactan epitopes, they were more concentrated near the middle lamella in 

the wild type (Figure 5U, V), and were homogenously distributed in straight regions of cell wall 

in the CA-rop2 mutant (Figure 5W, X). Intriguingly, the crystalline cellulose epitopes themselves 

were homogenously distributed (Figure S5M-R), indicating that their repartition per se is not 

essential for the lobing process, but their orientation and degree of interaction with other cell 

wall components might be. This is however technically difficult to assess. Density analysis of 

gold particles within straight and curved cell wall regions in wild type revealed higher density of 

(1,4)-β-D-galactan epitopes in the straight cell wall zones (Figure 5Y). 

Note that similar heterogeneities in cell wall component distribution could be detected in another 

species: we analyzed the epidermis in camphor tree (Cinnamonum camphora), an early diverging 

angiosperm plant. Both (1,4)-β-D-galactan and (1,5)-α-L-arabinan epitopes displayed a similar 

polar localization in the curved regions (Figure S6A, C) but not in the straight parts of the cell 

walls (Figure S6B, D), while fucosylated xyloglucan epitopes were distributed uniformly in the 



curved and straight zones of the cell wall (Figure S6E, F). Altogether, these results are consistent 

with the presence a mechano-chemical asymmetry across the cell wall of wavy pavement cells in 

plants. 

 

Mechano-chemical polarization of anticlinal cell walls appears before lobe formation 

So far, our results are consistent with a model in which jigsaw puzzle cell shapes require 

mechanical and structural heterogeneities along and across anticlinal walls. Yet, our model infers 

that such heterogeneities should also precede lobing. To test that prediction, we analyzed cell 

wall mechano-chemical properties before bending occurs. In young leaves, the presence of 

meristemoids with stereotypical cell division patterns (Robinson et al., 2011) and cell shapes 

provides the opportunity to predict the position of a wall bending event before it occurs (Figure 

6A). At such positions, we analyzed the mechanical properties along and across the straight or 

early bending cell walls in the wild type. Remarkably, before wall bending was visible, a 

mechanical heterogeneity was detected along the anticlinal wall in the wild type, being softer in 

the middle part where the lobe will develop in the future and stiffer on the two sides closer to the 

corners (Figure 6A-F). This suggests that the initiation of the lobing process might require a local 

softening of the cell wall. These data are in direct correlation with our in silico prediction 

showing that the bending deformation occurs more easily for softer wall zones (Figure 2I). By 

quantifying the stiffness on each side of cell walls that are yet to lobe (Figure 6G-M), 

heterogeneous mechanical properties were also found to be present across straight or early 

bending cell walls, being stiffer at the future concave side (younger cell side) and softer in the 

future convex side (older cell side) of the wall in the wild type (Figure 6M). Our hypothesis is 

that the stiffness gradient precedes lobing, being already present across straight cell walls while 

deformation is not yet visible. However, the range of stiffness needed to initiate the bending 

process remains difficult to address and cannot be resolved using methods analyzing only a 

single time point. 

To further explore whether the structural heterogeneities are also generated before lobing occurs, 

immunogold labelling was performed on straight cell walls of the wild type and CA-rop2 mutant 

at this early developmental stage. In wild type, the occurrence of galactan, arabinan and low 

methylesterified homogalacturonan epitopes varied along the perimeter of the straight cell walls, 

being significantly more abundant in the middle cell wall zone where bending will develop and 



form a curved wall, while fucosylated xyloglucan was less abundant in this zone (Figure 7 and 

S7). In contrast, the CA-rop2 mutant had less galactan, arabinan, low methylesterified 

homogalacturonan and fucosylated xyloglucan signals in the middle zones than in the corner 

regions of cell walls (Figure 7 and S7). The narrow width of the cell walls made the investigation 

of the epitopes’ relative distributions across the walls unfeasible.  

Observations in the wild type indicate that mechanical heterogeneities are present along cell 

walls, being softer in the middle part where the lobe will develop, and these differences also 

occur across straight walls between younger and older cells before the lobing process is initiated. 

Our results also demonstrate that anticlinal cell walls modify their composition along their 

perimeter in a strikingly different way in the wild type and CA-rop2 mutant, showing that wavy 

cell contours involve extensive control of wall mechano-chemical asymmetries. 

 

Discussion 

By analyzing mutants with a wide range of defects related to major cell wall components, we 

first showed that even minor alterations in the cell wall composition lead to severe defects in the 

geometry of the leaf pavement cells. A computational modeling approach suggested that 

mechanical heterogeneity along and across the anticlinal cell wall is needed to initiate the 

interdigitated shape of pavement cells in an epidermis that is under tension. Such heterogeneities 

were detected by AFM in straight cell walls prior to and at a very early stage of lobe formation. 

In addition, the direction of bending from the mechanically stronger towards the mechanically 

weaker cell wall domain, as predicted by the model, was confirmed by AFM in anticlinal walls at 

the very early stage of wall lobing. We detected lower elastic modulus in the cell wall side facing 

the younger cell prior to lobe formation, which corresponds to the future concave side. 

Moreover, these heterogeneous mechanical properties were related to differential distribution of 

specific components such as low methylesterified homogalacturonan, (1,4)--D-galactan and 

(1,5)-α-L-arabinan, suggesting that these components could actively modulate wall elasticity and 

pointing to these epitopes as contributing to the observed cell wall weakening. Furthermore, we 

demonstrated that mechanical heterogeneities as well as altered distributions of cell wall 

components precede wall bending. Observations in older leaves, where the lobes were already 

present, also demonstrated a correlation between the abundance of (1,4)-β-D-galactan and (1,5)-

-L-arabinan at the mechanically weaker concave sites at the lobes, as well as at the 



mechanically weaker straight wall segments, where cell wall expansion likely continues after 

lobe emergence. 

It is well-known that pectins have an impact on the mechanics of the cell wall (Dick-Pérez et al., 

2011; Dyson et al., 2012; Park and Cosgrove, 2012; Peaucelle et al., 2011, 2015) and cell wall 

stiffness likely depends on the relation between pectin and cellulose, cellulose/pectin composites 

being strongly influenced by pectin conformation (Agoda-Tandjawa et al., 2012). Recently, 

pectin-derived mechanical heterogeneities were found to underlie polar (Palin and Geitmann, 

2012) and anisotropic growth (Peaucelle et al., 2015). Mechanistically, it remains to investigate 

if and how pectins trigger the observed mechanical heterogeneities. Our results show that straight 

cell walls display local weakening on the future lobe side, which corresponds to increased 

concentration of low methylesterified homogalacturonan, (1,4)--D-galactan and (1,5)-α-L-

arabinan epitopes. Homogalacturonan methylesterification level and pattern are thought to also 

play a role in regulating cell wall properties, notably by formation of calcium-mediated 

crosslinks (resulting in stiffer walls) (Derbyshire et al., 2007; Ross et al., 2011; Siedlecka et al., 

2007) and by determining sites and pH environment for homogalacturonan degradation 

(resulting in softer walls) (Ha et al., 2005; Jarvis, 1992; Parre and Geitmann, 2005). 

Accumulation of (1,4)-β-D-galactan epitopes near the necks could be explained by several 

factors. First, galactan epitopes are enriched at the proximity of the plasma membrane where new 

wall material is deposited. Moreover, tensile stresses are thought to be highest in the peripheral 

cell wall regions under strain (McCartney et al., 2000), suggesting that such asymmetric 

distribution may depend on stress levels across cell walls. In particular, we found that (1,4)-β-D-

galactans are associated with decreased mechanical stiffness; arguably, this could be due to their 

water retaining viscoelastic character (Ha et al., 2005; McCartney et al., 2000). Galactan and 

arabinan display high dynamicity and modulate primary cell wall microenvironments (Ulvskov 

et al., 2005) during hydrous fluctuations and fast cell wall deformations (Ha et al., 2005; 

MacDougall et al., 1997; Ryden et al., 2000). Cell wall bending in pavement cells may very well 

be consistent with such local environments.  

Altogether, our model and data show that the dynamics and hybrid mechano-chemical nature of 

plant walls might contribute to generating wavy cell contours in the absence of compression. Our 

results also prove that contiguous cells retain a large level of control over their cell walls, adding 

another layer of complexity to their mechanics and chemistry. Because such mechano-chemical 



polarity likely exists in other tissues, this finding may very well have fundamental implications 

for cell polarity in plants in general.  

 

Author Contributions 

M.M., B.Z.M., E.M. and S.R. initiated the work. M.M., P.G., E.M. and S.R. designed the 

experiments. M.M. carried out most of the biological experiments. I.M.S designed the software 

for automated gold particle detection and performed the quantification analysis with the 

assistance of M.M. T.V. developed the confocal image data analysis. P.G. acquired confocal 

images and performed their analysis with the assistance of T.V. H.J. and P.K. performed the 

computational model. P.G. O.H. and P.M. assisted M.M. in the AFM analysis. P.G. and C.V. 

assisted M.M. in the EM analysis. M.M., P.G. and S.R. wrote the manuscript. All authors revised 

the manuscript. 

 

Acknowledgements 

We thank the many researchers who kindly provided us with published Arabidopsis lines and we 

acknowledge the Arabidopsis Biological Resource Center and the Nottingham Arabidopsis Stock 

Centre for distributing seeds. We gratefully acknowledge Grégory Mouille, Jürgen Kleine-Vehn 

and Siamsa M. Doyle for helpful discussions and critical reading of the manuscript. The authors 

acknowledge the access to and technical assistance of the Umeå Core Facility for Electron 

Microscopy (UCEM) at the Chemical Biological Centre (KBC), Umeå University. We 

acknowledge the Biochemical Imaging Center at Umeå University and the National Microscopy 

Infrastructure, NMI (VR-RFI 2016-00968) for providing assistance in microscopy. This work 

was supported by Vetenskapsrådet and Vinnova (Verket för Innovationssystem), (M.M.; T.V.; 

S.R.; E.J.M), Knut och Alice Wallenbergs Stiftelse via “Shapesystem” grant number 2012.0050 

(S.R.; C.V.; H.J.), Kempe stiftelserna (P.G.; M.M.), Gatsby Charitable Foundation 

(GAT3395/PR4), (H.J.), Swedish Research Council (VR2013-4632), (H.J.) and European 

Research Council ERC grant 615739 « MechanoDevo » (O.H.). 

 

References 

Agoda-Tandjawa, G., Durand, S., Gaillard, C., Garnier, C., and Doublier, J.L. (2012). Properties 



of cellulose/pectins composites: implication for structural and mechanical properties of cell wall. 

Carbohydr. Polym. 90, 1081–1091. 

Armour, W.J., Barton, D. a, Law,  a M., and Overall, R.L. (2015). Differential Growth in 

Periclinal and Anticlinal Walls during Lobe Formation in Arabidopsis Cotyledon Pavement 

Cells. Plant Cell 27, 2484–2500. 

Bai, Y., Falk, S., Schnittger, A., Jakoby, M.J., and Hülskamp, M. (2010). Tissue layer specific 

regulation of leaf length and width in Arabidopsis as revealed by the cell autonomous action of 

ANGUSTIFOLIA. Plant J. 61, 191–199. 

Baskin, T.I. (2005). Anisotropic Expansion of the Plant Cell Wall. Annu. Rev. Cell Dev. Biol. 

21, 203–222. 

Bidhendi, A.J., and Geitmann, A. (2016). Relating the mechanics of the primary plant cell wall 

to morphogenesis. J. Exp. Bot. 67, 449–461. 

Bonin, C.P., Potter, I., Vanzin, G.F., and Reiter, W.D. (1997). The MUR1 gene of Arabidopsis 

thaliana encodes an isoform of GDP-D-mannose-4,6-dehydratase, catalyzing the first step in the 

de novo synthesis of GDP-L-fucose. Proc. Natl. Acad. Sci. U. S. A. 94, 2085–2090. 

Bouton, S., Leboeuf, E., Mouille, G., Leydecker, M.-T., Talbotec, J., Granier, F., Lahaye, M., 

Höfte, H., and Truong, H.-N. (2002). QUASIMODO1 encodes a putative membrane-bound 

glycosyltransferase required for normal pectin synthesis and cell adhesion in Arabidopsis. Plant 

Cell 14, 2577–2590. 

Cavalier, D.M., Lerouxel, O., Neumetzler, L., Yamauchi, K., Reinecke, A., Freshour, G., 

Zabotina, O.A., Hahn, M.G., Burgert, I., Pauly, M., et al. (2008). Disrupting Two Arabidopsis 

thaliana Xylosyltransferase Genes Results in Plants Deficient in Xyloglucan, a Major Primary 

Cell Wall Component. Plant Cell Online 20, 1519–1537. 

Chanliaud, E., Burrows, K.M., Jeronimidis, G., and Gidley, M.J. (2002). Mechanical properties 

of primary plant cell wall analogues. Planta 215, 989–996. 

Chen, X.-Y., Liu, L., Lee, E., Han, X., Rim, Y., Chu, H., Kim, S.-W., Sack, F., and Kim, J.-Y. 

(2009). The Arabidopsis callose synthase gene GSL8 is required for cytokinesis and cell 

patterning. Plant Physiol. 150, 105–113. 

Cosgrove, D.J. (2005). Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6, 850–861. 

Cosgrove, D.J. (2014). Re-constructing our models of cellulose and primary cell wall assembly. 

Curr. Opin. Plant Biol. 22, 122–131. 



Cosgrove, D.J. (2016). Plant cell wall extensibility: Connecting plant cell growth with cell wall 

structure, mechanics, and the action of wall-modifying enzymes. J. Exp. Bot. 67, 463–476. 

Derbyshire, P., McCann, M.C., and Roberts, K. (2007). Restricted cell elongation in Arabidopsis 

hypocotyls is associated with a reduced average pectin esterification level. BMC Plant Biol. 7, 

31. 

Derjaguin, B. V, Muller, V.M., and Toporov, Y.. (1975). Effect of contact deformations on the 

adhesion of particles. J. Colloid Interface Sci. 53, 314–326. 

Desnos, T., Orbović, V., Bellini, C., Kronenberger, J., Caboche, M., Traas, J., and Höfte, H. 

(1996). Procuste1 mutants identify two distinct genetic pathways controlling hypocotyl cell 

elongation, respectively in dark- and light-grown Arabidopsis seedlings. Development 122, 683–

693. 

Dick-Pérez, M., Zhang, Y., Hayes, J., Salazar, A., Zabotina, O. a., and Hong, M. (2011). 

Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional 

magic-angle-spinning solid-state NMR. Biochemistry 50, 989–1000. 

Dumais, J. (2007). Can mechanics control pattern formation in plants? Curr. Opin. Plant Biol. 

10, 58–62. 

Dyson, R.J., Band, L.R., and Jensen, O.E. (2012). A model of crosslink kinetics in the expanding 

plant cell wall: Yield stress and enzyme action. J. Theor. Biol. 307, 125–136. 

Dyson, R.J., Vizcay-Barrena, G., Band, L.R., Fernandes, A.N., French, A.P., Fozard, J.A., 

Hodgman, T.C., Kenobi, K., Pridmore, T.P., Stout, M., et al. (2014). Mechanical modelling 

quantifies the functional importance of outer tissue layers during root elongation and bending. 

New Phytol. 202, 1212–1222. 

Elsner, J., Michalski, M., and Kwiatkowska, D. (2012). Spatiotemporal variation of leaf 

epidermal cell growth: A quantitative analysis of Arabidopsis thaliana wild-type and triple 

cyclinD3 mutant plants. Ann. Bot. 109, 897–910. 

Fang, L., and Catchmark, J.M. (2015). Characterization of cellulose and other 

exopolysaccharides produced from Gluconacetobacter strains. Carbohydr. Polym. 115, 663–669. 

Fu, Y., Li, H., and Yang, Z. (2002). The ROP2 GTPase controls the formation of cortical fine F-

actin and the early phase of directional cell expansion during Arabidopsis organogenesis. Plant 

Cell 14, 777–794. 

Fu, Y., Gu, Y., Zheng, Z., Wasteneys, G., and Yang, Z. (2005). Arabidopsis interdigitating cell 



growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell 

120, 687–700. 

Geitmann, A., and Ortega, J.K.E. (2009). Mechanics and modeling of plant cell growth. Trends 

Plant Sci. 14, 467–478. 

Green, P.B. (1999). Expression of pattern in plants: Combining molecular and calculus-based 

biophysical paradigms. Am. J. Bot. 86, 1059–1076. 

Ha, M.A., Viëtor, R.J., Jardine, G.D., Apperley, D.C., and Jarvis, M.C. (2005). Conformation 

and mobility of the arabinan and galactan side-chains of pectin. Phytochemistry 66, 1817–1824. 

Hayot, C.M., Forouzesh, E., Goel, A., Avramova, Z., and Turner, J.A. (2012). Viscoelastic 

properties of cell walls of single living plant cells determined by dynamic nanoindentation. J. 

Exp. Bot. 63, 2525–2540. 

Hutter, J.L., and Bechhoefer, J. (1993). Calibration of Atomic-Force Microscope Tips. Rev. Sci. 

Instrum. 64, 1868–1873. 

Jarvis, M.C. (1992). Control of thickness of collenchyma cell walls by pectins. Planta 187, 218–

220. 

Kutschera, U., and Niklas, K.J. (2007). The epidermal-growth-control theory of stem elongation: 

An old and a new perspective. J. Plant Physiol. 164, 1395–1409. 

Li, H., Shen, J.J., Zheng, Z.L., Lin, Y., and Yang, Z. (2001). The Rop GTPase switch controls 

multiple developmental processes in Arabidopsis. Plant Physiol. 126, 670–684. 

Lin, D., Cao, L., Zhou, Z., Zhu, L., Ehrhardt, D., Yang, Z., and Fu, Y. (2013). Rho GTPase 

signaling activates microtubule severing to promote microtubule ordering in arabidopsis. Curr. 

Biol. 23, 290–297. 

Liwanag, A.J.M., Ebert, B., Verhertbruggen, Y., Rennie, E.A., Rautengarten, C., Oikawa, A., 

Andersen, M.C.F., Clausen, M.H., and Scheller, H. V. (2012). Pectin Biosynthesis: GALS1 in 

Arabidopsis thaliana Is a  -1,4-Galactan  -1,4-Galactosyltransferase. Plant Cell 24, 5024–5036. 

Maaloum, M. Lévy, R. (2002). Measuring the spring constant of atomic force microscope 

cantilevers : thermal R L ´. Nanotechnology 33, 33–37. 

MacDougall, A.J., Rigby, N.M., and Ring, S.G. (1997). Phase Separation of Plant Cell Wall 

Polysaccharides and Its lmplications for Cell Wall Assembly’. Plant Physiol. 114, 353–362. 

Marcotrigiano, M. (2010). A role for leaf epidermis in the control of leaf size and the rate and 

extent of mesophyll cell division. Am. J. Bot. 97, 224–233. 



Matsko, N., and Mueller, M. (2004). AFM of biological material embedded in epoxy resin. J. 

Struct. Biol. 146, 334–343. 

McCartney, L., Ormerod, A.P., Gidley, M.J., and Knox, J.P. (2000). Temporal and spatial 

regulation of pectic (1-4)-β-D-galactan in cell walls of developing pea cotyledons: Implications 

for mechanical properties. Plant J. 22, 105–113. 

Mikshina, P. V., Idiyatullin, B.Z., Petrova, A.A., Shashkov, A.S., Zuev, Y.F., and Gorshkova, 

T.A. (2015). Physicochemical properties of complex rhamnogalacturonan I from gelatinous cell 

walls of flax fibers. Carbohydr. Polym. 117, 853–861. 

Nezhad, A.S., Naghavi, M., Packirisamy, M., Bhat, R., and Geitmann, A. (2013). Quantification 

of the Young’s modulus of the primary plant cell wall using Bending-Lab-On-Chip (BLOC). Lab 

Chip 13, 2599–2608. 

Nicol, F., His, I., Jauneau, A., Vernhettes, S., Canut, H., and Höfte, H. (1998). A plasma 

membrane-bound putative endo-1,4-β-D-glucanase is required for normal wall assembly and cell 

elongation in Arabidopsis. EMBO J. 17, 5563–5576. 

Palin, R., and Geitmann, A. (2012). The role of pectin in plant morphogenesis. BioSystems 109, 

397–402. 

Park, Y.B., and Cosgrove, D.J. (2012). A Revised Architecture of Primary Cell Walls Based on 

Biomechanical Changes Induced by Substrate-Specific Endoglucanases. Plant Physiol. 158, 

1933–1943. 

Parre, E., and Geitmann, A. (2005). Pectin and the role of the physical properties of the cell wall 

in pollen tube growth of Solanum chacoense. Planta 220, 582–592. 

Peaucelle, A., Braybrook, S.A., Le Guillou, L., Bron, E., Kuhlemeier, C., and Höfte, H. (2011). 

Pectin-Induced Changes in Cell Wall Mechanics Underlie Organ Initiation in Arabidopsis. Curr. 

Biol. 21, 1720–1726. 

Peaucelle, A., Wightman, R., and Höfte, H. (2015). The Control of Growth Symmetry Breaking 

in the Arabidopsis Hypocotyl. Curr. Biol. 1746–1752. 

Pound, M.P., French, A.P., Wells, D.M., Bennett, M.J., and Pridmore, T.P. (2012). CellSeT: 

Novel Software to Extract and Analyze Structured Networks of Plant Cells from Confocal 

Images. Plant Cell 24, 1353–1361. 

Probine, Preston (1962). Cell growth and the structure and mechanical properties of the wall in 

internodal cells of Nitella opaca. J Exp Bot 13, 111–127. 



Reiter, W.D., Chapple, C., and Somerville, C.R. (1997). Mutants of Arabidopsis thaliana with 

altered cell wall polysaccharide composition. Plant J. 12, 335–345. 

Robinson, S., Reuille, P.B. De, Chan, J., Bergmann, D., Prusinkiewicz, P., and Coen, E.S. 

(2011). Generation of spatial patterns through cell polarity switching. Science (80-. ). 333, 1436–

1440. 

Ross, H.A., Morris, W.L., Ducreux, L.J.M., Hancock, R.D., Verrall, S.R., Morris, J.A., Tucker, 

G.A., Stewart, D., Hedley, P.E., Mcdougall, G.J., et al. (2011). Pectin engineering to modify 

product quality in potato. Plant Biotechnol. J. 9, 848–856. 

Ryden, P., MacDougall, A.J., Tibbits, C.W., and Ring, S.G. (2000). Hydration of pectic 

polysaccharides. Biopolymers 54, 398–405. 

Sampathkumar, A., Krupinski, P., Wightman, R., Milani, P., Berquand, A., Boudaoud, A., 

Hamant, O., Jönsson, H., and Meyerowitz, E.M. (2014). Subcellular and supracellular 

mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells. 

Elife 3, 1–20. 

Sampedro, J., Gianzo, C., Iglesias, N., Guitian, E., Revilla, G., and Zarra, I. (2012). AtBGAL10 

is the main xyloglucan -galactosidase in arabidopsis, and its absence results in unusual 

xyloglucan subunits and growth defects. Plant Physiol. 158, 1146–1157. 

Savaldi-Goldstein, S., and Chory, J. (2008). Growth coordination and the shoot epidermis. Curr. 

Opin. Plant Biol. 11, 42–48. 

Savaldi-Goldstein, S., Peto, C., and Chory, J. (2007). The epidermis both drives and restricts 

plant shoot growth. Nature 446, 199–202. 

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, 

S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open source platform for biological 

image analysis. Nat. Methods 9, 676–682. 

Schneider, C. a, Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of 

image analysis. Nat. Methods 9, 671–675. 

Shipman, P.D., and Newell, A.C. (2004). Phyllotactic patterns on plants. Phys. Rev. Lett. 92, 

168102–1. 

Siedlecka, A., Wiklund, S., Peronne, M.-A., Micheli, F., Lesniewska, J., Sethson, I., Edlund, U., 

Richard, L., Sundberg, B., and Mellerowicz, E.J. (2007). Pectin Methyl Esterase Inhibits 

Intrusive and Symplastic Cell Growth in Developing Wood Cells of Populus. Plant Physiol. 146, 



554–565. 

Swarup, R., Kramer, E.M., Perry, P., Knox, K., Leyser, H.M.O., Haseloff, J., Beemster, G.T.S., 

Bhalerao, R., and Bennett, M.J. (2005). Root gravitropism requires lateral root cap and epidermal 

cells for transport and response to a mobile auxin signal. Nat. Cell Biol. 7, 1057–1065. 

Ulvskov, P., Wium, H., Bruce, D., Jørgensen, B., Qvist, K.B., Skjøt, M., Hepworth, D., 

Borkhardt, B., and Sørensen, S.O. (2005). Biophysical consequences of remodeling the neutral 

side chains of rhamnogalacturonan I in tubers of transgenic potatoes. Planta 220, 609–620. 

Uyttewaal, M., Burian, A., Alim, K., Landrein, B., Borowska-Wykręt, D., Dedieu, A., Peaucelle, 

A., Ludynia, M., Traas, J., Boudaoud, A., et al. (2012). Mechanical Stress Acts via Katanin to 

Amplify Differences in Growth Rate between Adjacent Cells in Arabidopsis. Cell 149, 439–451. 

Zabotina, O. a., Van De Ven, W.T.G., Freshour, G., Drakakaki, G., Cavalier, D., Mouille, G., 

Hahn, M.G., Keegstra, K., and Raikhel, N. V. (2008). Arabidopsis XXT5 gene encodes a 

putative α-1,6-xylosyltransferase that is involved in xyloglucan biosynthesis. Plant J. 56, 101–

115. 

Zabotina, O. a., Avci, U., Cavalier, D., Pattathil, S., Chou, Y.-H., Eberhard, S., Danhof, L., 

Keegstra, K., and Hahn, M.G. (2012). Mutations in Multiple XXT Genes of Arabidopsis Reveal 

the Complexity of Xyloglucan Biosynthesis. Plant Physiol. 159, 1367–1384. 

Zhong, R., Kays, S.J., Schroeder, B.P., and Ye, Z.-H. (2002). Mutation of a chitinase-like gene 

causes ectopic deposition of lignin, aberrant cell shapes, and overproduction of ethylene. Plant 

Cell 14, 165–179. 

 

Main Figure Titles and Legends 

Figure 1. Cell wall composition controls pavement cell shape definition  

Representative confocal microscopy images (A) and cell shape properties (B, C) of pavement 

cells in the 3rd leaf of two-week-old Arabidopsis wild types and 16 mutants deficient in a wide 

array of cell wall components (Key Resource Table, see Figure S1 for method). Scale bar 

represents 20 μm. Lobe number (B) and circularity (C) of each cell were measured in an 

automated way to characterize the shape of fully developed pavement cells similar in cell area to 

Col-0 (Figure S1). Statistics were performed using ANOVA and Tukey’s test. Means ± SE are 

shown, n values are displayed on the graphs, *P < 0.05; **P < 0.01; ***P < 0.001. 

 



Figure 2. Model of epidermal anticlinal cell wall waving under tension 

Fine element modeling (Key Resource Table) of initially straight segments (black frames) 

consisting of homogeneous (A, C) and heterogeneous (B, D) composites (weaker: blue, stronger: 

red) display different bending under compressive (A, B) and under tensional (C, D) forces (both 

acting along the long axis (red arrows)). The uniaxial compressive forces caused buckling of 

homogenous materials (bending related to the instability of the mechanical equilibrium) (A). 

Uniaxial compression of the material (consisted of two layers characterized by different 

elasticity) led to bending, with elastically stronger layer on the convex side (red) (B). While 

tensional uniaxial loads did not lead to bending of homogeneous walls (C) they did cause 

bending of heterogeneous composite materials (consisted of two layers displaying different 

elasticity), with the elastically stronger layer on the concave side (red) (D). 

Finite element model presenting elastic deformation at equilibrium (final state of the simulation) 

of the anticlinal walls of the initially square “cell” (E-G). The black wireframe shows initial 

position of the walls. The red arrows show the direction of loading forces, while the opposite 

wall ends are fixed in the direction of the forces, effectively realizing symmetry boundary 

conditions. The extension of anticlinal cell walls assuming homogenous material throughout the 

walls - the walls under stretching loads remain straight (E). Material heterogeneity introduced 

along the walls where elastically stronger sections of material (red) are staggered with sections of 

weaker material (blue) - stretching deforms both section types in different proportions but the 

walls remain straight (F). The extension of anticlinal cell walls, where the order of elastically 

stronger (red) and weaker (blue) layers is alternated in sections along the wall length - the 

regions where the stronger material is on the inner side of composite cell walls bend outwards, 

simulating potential initiation of future lobes. The regions where the weaker material is on the 

inner side bend inwards into the cell, simulating potential initiation of future necks. Different 

sizes of local cell wall inhomogeneities along the cell wall modify lobe amplitude. The anticlinal 

walls were built of staggered regions of elastically stronger (red) and weaker (blue) material. The 

number of staggered sections varied in each wall from 4 to 7 (G). Different mechanical 

properties across the cell wall width (cell wall consisted of elastically weaker (blue) and stronger 

(red) segments) led to bending deformation under tensional forces (H). Graph presenting the 

relation between the bending deformation and elastic modulus for 10% (blue line) and 20% (red 

line) differences in the mechanical properties across the walls (absolute stiffness values are 



changed from 50kPa (40kPa for weak part) to 500kPa (400kPa for weak part)) (I). Graph 

presenting the relation between bending deformation and relative elasticity difference (from 0 to 

60%). The elasticity of the hard part was kept constant at 100 kPa (J). Effect of turgor pressure 

on the curving of the wall (K, L). Behavior of heterogeneous wall segments without (K) and 

with (L) application of 1 MPa turgor pressure acting on both sides of the wall. The turgor 

pressure did not affect the bending but did have a slight effect of compressing the wall, 

particularly visible for the weak part of the material (red). 

 

Figure 3. Quantification method for stiffness analysis across the cell wall 

Drawing illustrating different cell wall regions measured along: curved (yellow) and straight 

(white) and across: convex (x) and concave (e) cell wall regions (A). AFM image taken as a 

representative example to explain in detail how the forces were quantified (Key Resource Table) 

(stiffer places with higher apparent elastic modulus Ea are brighter). The white rectangles 

indicate different ROIs (regions of interest) quantified in convex (x) and concave (e) regions 

along the cell walls (positions 1-18) (the same image as in Figure 4G) (B). Table presenting 

stiffness measurement averages, standard errors (SE), and number of samples (n) at different 

ROIs shown in B (C). Graph presenting stiffness in convex (x) and concave (e) regions along the 

walls (1-18) measured in different ROIs shown in B (D). AFM image presenting the cell wall 

stiffness with indicated convex and concave regions (used to extract force curves for F and G). 

The number of quantification points were n=184 for the convex side and n=207 for the concave 

side (E). Distribution of stiffness measured in convex and concave cell wall regions depicted in 

E (F). Graph presenting the normal distribution of stiffness measured between convex and 

concave cell wall regions depicted in E (G). 

 

Figure 4. Mechanical properties are heterogeneous across the wall and along its perimeter 

Representative AFM images of anticlinal pavement cell walls in the wild type (A) and at higher 

resolution (B). White square in A represents magnification shown in B. AFM images of CA-rop2 

mutant (D) and at higher resolution (E). White square in D represents magnification shown in E. 

Graphic representation of stiffness (apparent elastic modulus Ea) quantification along straight 

and curved parts of the cell walls in wild type depicted in B (C) and along straight cell walls in 

CA-rop2 mutant depicted in E (F). The numbers (F) correspond to the measured positions 



depicted in E. Representative high resolution AFM images of anticlinal pavement cell walls of 

the wild type in the curved (G) and straight (H) zones. Graphic representation of stiffness 

quantification across the curved and straight cell walls in the wild type depicted in G, H (I). 

Representative high resolution AFM image of straight cell walls in CA-rop2 mutant (J). Graphic 

representation of stiffness quantification across the straight cell walls in CA-rop2 mutant 

depicted in J (K). The letters A and B (H-K) correspond to sides of the cell wall where stiffness 

was measured. Measured forces were significantly different between various cell wall zones in 

the wild type and in CA-rop2. Table presenting the average stiffness differences detected 

between various cell wall regions (see indicated frequencies), standard errors (SE), frequency of 

curved or concave cell wall regions being stiffer (f) and total number of AFM images measured 

(n) (see Table S1 presenting the values of individual samples) (L). Error bars correspond to ± 

SE. Statistical significance tested by Student’s T-test, (p-value: ***P < 0.001). In the AFM 

images, stiffer places with higher apparent elastic modulus Ea are brighter. 

 

Figure 5. Distribution of low and high methylesterified homogalacturonans, (1,4)-β-D-

galactans and (1,5)-α-L-arabinans in pavement cell walls 

Immunogold labelling of cell wall epitopes in pavement cells in the wild type (A-D, G-J, M-P, 

S-V) and in the CA-rop2 mutant (E, F, K, L, Q, R, W, X) (Key Resource Table). Representative 

TEM images and graphs presenting the distribution of low methylesterified homogalacturonan 

epitopes (JIM5) and high methylesterified homogalacturonan epitopes (JIM7), in curved (A-B 

and G-H, respectively) and straight (C-D and I- J, respectively) cell walls in wild type and 

straight cell walls in the CA-rop2 mutant (E-F and K-L, respectively). Number of images 

analyzed: B=24; D=48; F=15; H=31; J=55; L=24. Representative TEM images presenting polar 

distribution of (1,4)-β-D-galactan (LM5) epitopes at the convex side in curved cell walls in the 

wild type (M) and their distribution close to the plasma membranes in straight cell walls in the 

wild type (O) and in straight cell walls in the CA-rop2 mutant (Q). Representative images 

presenting distribution of (1,5)-α-L-arabinan (LM6) epitopes in curved (S) and in straight (U) 

cell walls in the wild type and homogenous distribution in straight cell walls of the CA-rop2 

mutant (W). Statistical quantification of gold particle distribution across the cell wall in different 

cell wall regions (in the curved parts: convex, middle and concave, in the straight parts: close to 

the plasma membranes (PM) and in the middle): distribution of LM5 recognized epitopes in 



curved (N) and straight (P) cell wall zones in the wild type and straight cell walls in CA-rop2 

mutant (R). Distribution of LM6 recognized epitopes in curved (T) and straight (V) cell wall 

zones in the wild type and straight cell walls in CA-rop2 mutant (X). Values in B, D, F, H, J, L, 

N, P, R, T, V, X represent % of gold particle counts in different zones, sum of all zones = 100%. 

Number of images analyzed: N=55; P=56; R=28; T=50; V=59; X=16. Scale bar represents 0.5 

μm. Indicated quantifications of gold particle distribution were significantly different between 

different cell wall zones in the wild type and in CA-rop2. Density of different cell wall epitopes 

between curved and straight cell wall zones in the wild type (Y). Error bars correspond to ± SE. 

Statistical significance tested by Student’s T-test, *P < 0.05; **P < 0.01; ***P < 0.001). 

 

Figure 6. Mechanical properties of non-lobed cells 

Representative AFM image of anticlinal pavement cell walls in expanding epidermis of young 

leaves in wild type (white rectangles indicate quantified cell walls) (A). White squares in A 

represent magnifications shown in B and D. AFM images of the cell walls in the wild type at 

higher resolution (B, D). White square in D represents magnification shown in F. Graphic 

representation of stiffness (apparent elastic modulus Ea) quantification along cell walls depicted 

in B (C). Graphic representation of stiffness quantified along cell walls in the wild type depicted 

in D (E). High resolution image taken as a representative example to explain in detail how the 

forces were quantified across the cell walls (same sample as image in D) (F, G). White square in 

F represents magnification shown in G.  The white rectangles indicate ROIs (regions of interest) 

quantified on two sides (A and B) along the cell walls (positions 1-9) (G). Table presenting 

averages, standard errors (SE), and number of quantification points (n) for stiffness measured in 

different ROIs shown in G (H). Graph presenting stiffness on two sides (A and B) along the cell 

walls (positions 1-9) measured in different ROIs shown in G (I). AFM image with black 

rectangles indicating the position where samples were taken in zone A (n=182) and in zone B 

(n=169) (J), used to quantify stiffness for K and L. Graph presenting the distribution of stiffness 

measured in convex and concave cell wall regions depicted in J (K). Graph presenting the 

normal distribution of stiffness measured between two cell wall regions depicted in J (L). Graph 

presenting the stiffness measured on two sides (A and B) of the walls depicted in J (M). 

Indicated measured forces were significantly different between various cell wall zones in the 

wild type. Error bars correspond to ± SE. Statistical significance tested by a T-test, (p-value: *P 



< 0.05; ***P < 0.001). In the AFM images, stiffer places with higher apparent elastic modulus 

Ea are brighter. 

 

Figure 7. Distribution of matrix polysaccharides along straight cell walls 

Representative TEM images presenting distribution of (1,4)-β-D-galactan epitopes (LM5) in the 

wild type (A) and in the CA-rop2 mutant (B). Statistical quantification of gold particle 

distribution along the straight cell walls in the wild type (C) and in the CA-rop2 mutant (D). 

Values represent % of gold particles in different cell wall subdomains, all gold particles counted 

= 100%. Number of images analyzed: C=20; D=24. Scale bar = 0.5 μm. Indicated quantifications 

of gold particle distribution showed significantly increased number of gold particles in the 

middle zone of the cell wall in the wild type. Error bars correspond to ± SE. Statistical 

significance tested by Student’s T-test (*P < 0.05; ***P < 0.001). 

 

STAR Methods 

 

CONTACT FOR REAGENT AND RESOURCE SHARING 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Stephanie Robert (Stephanie.Robert@slu.se). 

 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

 Arabidopsis thaliana: Before sowing, Arabidopsis thaliana seeds were sterilized (2 mins in 

70% EtOH with Tween20, replaced with 95% EtOH and left until dry) and stratified at 4°C for 

48 h for uniform germination. Seedlings were grown for 14 days at 22°C with 16 h of light per 

day on vertical plates of growth medium containing 1/2MS and 1% sucrose (Fisher) at pH 5.6 

with 0.7% agar (Duchefa Biochemie). Epidermal pavement cells were analyzed on the adaxial 

side of the 3rd leaf (in order of appearance: cotyledons, leaf 1, leaf 2, leaf 3), which were 6-8 mm 

long and 4-5 mm wide, from 14-day-old Arabidopsis plants as described in (Fu et al., 2002). For 

analysis of non-lobed pavement cell in the wild type, the 5th leaf from 14-day-old Arabidopsis 

plants was used. The CA-rop2 mutant line (Fu et al., 2002) was used in AFM and EM 

experiments. The pavement cell screen was performed on Arabidopsis lines: gal10-1 (Sampedro 

mailto:Stephanie.Robert@slu.se


et al., 2012); gals1, 35S::GALS-YFP (Liwanag et al., 2012); gsl8-2 (Chen et al., 2009); kor1-1 

(Nicol et al., 1998); mur1-2 (Bonin et al., 1997); mur2-1 (Reiter et al., 1997); mur3-1 (Reiter et 

al., 1997); mur4-1 (Reiter et al., 1997); pom1-2 (Zhong et al., 2002); prc1-1 (Desnos et al., 

1996); qua1-1, qua2-1 (Bouton et al., 2002); xxt1/xxt2 (Cavalier et al., 2008); xxt5 (Zabotina et 

al., 2008); xxt1/xxt2/xxt5 (Zabotina et al., 2012). Columbia (Col-0) ecotype was used as wild-

type control in seedling growth experiments, except for kor1-1 and qua1-1 (Wassilewskija (WS) 

ecotype) (Key Resource Table). 

 

Cinnamonum camphora: Five-year-old camphor trees (Cinnamomum camphora, Lauraceae 

family) were cultivated in a greenhouse with non-controlled temperature and lighting. Fully 

developed leaves were collected from five different trees. Epidermal pavement cells were 

analyzed on the adaxial side of the leaf. 

 

 

METHOD DETAILS 

Atomic Force Microscopy 

AFM indentation experiments were carried out with a Catalyst Bioscope (Bruker Nano Surface, 

Santa Barbara, CA), that was mounted on an optical macroscope (MacroFluo, Leica) using the 

objectives 5x and 20x (Plano objective, Leica). To create an elastic modulus map, PeakForce 

Quantitative Nanoscale Mechanical Characterization (QNM) AFM mode was used (Foster, 

2012). A Nanoscope V controller and Nanoscope software version 8.15 were utilized (Key 

Resource Table). All quantitative measurements were performed using standard conical tips 

(ScanAsyst Air, Bruker, Inc.). The tip radius is given by the manufacturer to be between 2 nm 

and 10 nm. The spring constant of cantilevers was measured using the thermal tuning method 

(Hutter and Bechhoefer, 1993; Maaloum, M. Lévy, 2002) and ranged from 0.3–0.7 N/m. The 

deflection sensitivity of the cantilevers was calibrated against clean silicon Safire. Measurements 

were made on leaf sections embedded in LR White (LRW) Resin (aromatic acrylic resin mixture; 

viscosity 8 cps) (see below) at room temperature. The sample was then positioned on an XY 

motorized stage and held by a magnetic clamp. Then, the AFM head was mounted on the stage 

and an approximated positioning with respect to the cantilever was done using the optical 

macroscope. The elasticity of the sample (demonstrated on the images) was estimated using the 



DMT model (Derjaguin, Muller, Toropov modulus (Derjaguin et al., 1975)), which estimates the 

contact area between the tip of the AFM cantilever and the sample (elastically isotropic material) 

by quantifying the load forces and adhesion forces outside the contact area. Nanoscope software 

then converted the elasticity measurements to an image where stiffer areas were represented by 

brighter pixels and more elastic areas by darker pixels.  

 

Resin embedding and sectioning 

Leaf pieces (approx. 1 mm x 1 mm) were fixed in ice-cold fixation solution (4% 

Paraformaldehyde and 0.05% Glutaraldehyde dissolved in 100 mM phosphate buffer, pH 7.2) at 

4°C overnight. The samples were washed 3 times for 10 min with 100 mM phosphate buffer and 

embedded in LRW resin, medium grade - catalyzed (TAAB essentials for microscopy, England, 

UK) according to the manufacturer’s instructions (Key Resource Table). Serial paradermal 

ultrathin sections (thickness of 50 - 70 nm) were prepared using an ultramicrotome (RMC Power 

Tome & Reichert Ultracut Microtome) and mounted on formvar coated grids. 

 

Immunolocalization for electron microscopy 

Grids holding sample sections were incubated in blocking reagent (1% albumin from bovine 

serum (BSA) in Phosphate-buffered saline (PBS), SIGMA-ALDRICH) for 30 minutes, then in 

primary antibodies (Key Resource Table, A to F) diluted 10 times in blocking reagent for one 

hour, washed in PBS (10 min, 3 times), incubated in secondary antibodies (10 nm gold particles 

conjugated to goat either anti-mouse IgG or anti-rat IgG diluted 20 times in the blocking reagent 

(Key Resource Table), rinsed subsequently in blocking reagent, in PBS and in dH2O (10 min, 6 

times) and left to dry on filter paper (30 min). All these steps were carried out at room 

temperature. For better visualization in EM, sections on the grids were incubated with 5% uranyl 

acetate in the dark for 15 min, after which they were rinsed in dH2O and left to dry on filter 

paper. Grids with sections were imaged using an electron microscope (JEOL 1230 TEM, 

accelerating voltage 80 kV, with a Gatan MSC 600CW 2k x 2k CCD camera). 

 

Confocal microscopy image acquisition 

For pavement cell shape analysis, the 3rd leaves of Arabidopsis were imaged on a confocal 

microscope (Zeiss LSM 780) after the leaves had been fixed overnight in a solution of absolute 



ethanol and glacial acetic acid (9:1), rehydrated in descending ethanol concentrations (70%, 

50%, 40%, 30%, 20%, 10%) and stored in 50% glycerol solution. Fixed leaves were treated with 

propidium iodide (Sigma-Aldrich) for visualization of the cell outline. At least 5 leaves and 50 

cells per leaf from the middle of the leaf blade were analyzed from each line. The experiment 

was repeated three times. 

 

Automated TEM image analysis 

Plasma membrane borders were manually outlined using the software GIMP2.8.8 while gold 

particles within the cell wall were automatically detected and analyzed through scripts in Matlab 

(R2012b, The MathWorks, Inc., Natick, Massachusetts, United States), (Key Resource Table). 

The pixel size in each image was derived by manually marking the beginning and end of the 

scale bar and providing the length as input. The midline in the cell wall was extracted by 

applying a watershed transform on a distance transform calculated from the plasma membrane 

borders. The local curvature was measured along the midline by fitting a polygon to points on 

the midline 230 nm ahead of and behind the current midline point and calculating the curvature 

analytically for that polygon. The curvature vector was smoothed using a median filter of length 

5 and the wall region was divided into straight and convex regions based on thresholding the 

curvature values on the midline. Suitable thresholds were chosen by visual assessment of several 

images and then kept constant for all images. Regions of the wall corresponding to midline 

pixels too close to the image border to calculate local curvature were excluded from the analysis. 

The numbers of pixels in the convex and straight regions, multiplied by the pixel size were used 

as area estimates. 

 In order to compensate for different contrast and intensity levels in the micrographs, the 

intensities within the wall region were linearly stretched between the 0.05 and 99.95 percentile 

intensity values. 

 Gold particles were detected as small dark spots surrounded by bright pixels. The image 

was inverted and pixels whose intensity was higher than 200 and at the same time had a local 

contrast of 60, calculated as the difference between the pixel intensity and the 15th darkest 

intensity value in a 5x5 neighborhood, were saved as potential gold particle pixels. Out of these 

potential gold particle pixels, the pixels with intensity higher than 86% of the highest intensity or 

a local contrast higher than 100, were saved as gold particle pixels. This marks pixels in small 



bright regions with dark surroundings. Out of these only the brightest pixel within a radius of 2 

pixels was kept as the center of a gold particle. The automatic gold detection results were 

visually assessed for each image and images where the detection was deemed too poor (too many 

false positives or negatives) were discarded from the analysis. 

 The distance for each gold particle to the two plasma membranes was simply derived by 

extracting that position’s value in the two distance transforms (DTs) calculated from the two 

membranes respectively. The ratio was derived as the distance of the gold particle from one side 

of the plasma membrane divided by its total distance between both plasma membranes. This 

ratio gave the position of the gold particle expressed as a percentage. Then measurements were 

grouped into three groups according to how far the gold particle was located from one plasma 

membrane. 

 

Cell shape analysis 

Laser Scanning Confocal Microscope (LSCM) raw images were pre-processed in order to 

enhance cell wall signal using the following ImageJ 1.49p (Schindelin et al., 2012; Schneider et 

al., 2012) functions: Subtract background and Enhance contrast. Images were segmented using 

CellSeT (Pound et al., 2012) (Key Resource Table). Stomata were then filled with background. 

Area and Circularity were measured for each cell using the Analyze particles function in ImageJ. 

A circularity value of 1.0 corresponds to a perfect circular shape, while a smaller value indicates 

a relative level of interdigitation. Lobe number was estimated automatically using Skeletonize 

function and the plugin Analyze Skeleton. Cell area values were log transformed to reduce 

skewness and compared using ANOVA and Tukey’s test in R software. Circularity and lobe 

number were compared for cells having log (cell area) value between 2.62 and 3.10 (Col-0 and 

associated mutants) and 2.42 and 3.05 (WS and associated mutants) using ANOVA and Tukey’s 

test in R software. 

 

Finite Element Model simulation 

The model of the thin walled initially square “cell” was built and simulated using Abaqus 

(Dassault Systemes Simulia Corp.) v6.12 (Key Resource Table). This software solves continuous 

mechanic equations by a Finite Elements Method (FEM), which, in general, is based on 

linearization and minimization of a strain energy density. The particular form of this energy 



depends on the material model. In our simulations we used a linear elastic material (Saint 

Venant-Kirchhoff model) resulting in the strain energy W in the form 

𝑊(𝜀́) =
𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)
[𝑡𝑟(𝜀́)]2 +

𝐸

2(1 + 𝜈)
𝑡𝑟(𝜀́2), 

where 𝜀́ is a Lagrangian Green strain tensor, E is the Young elastic modulus and ν is the Poisson 

coefficient. 

We used Poisson coefficient 0.3 and Young modulus 50 kPa for weak composite material and 

100kPa for hard material to test the values in the range reported experimentally (Chanliaud et al., 

2002; Hayot et al., 2012; Nezhad et al., 2013) and representing the elasticity difference of about 

50%. The homogenous material Young modulus was chosen as the average of hard and weak 

materials Young moduli, 90 kPa.  

The square “cell” of dimensions 100 μm by 100 μm, depth 50 μm, and wall thickness of 2 μm, 

was modeled with the use of eight-node brick elements with reduced integration. Mesh 

independence of our result was tested by using different coarsens meshes with at least 4 elements 

across the wall thickness. For single slab simulations (Figure 2A-D) we used the same 

dimensions, 100 μm × 50 μm × 2 μm, and the same material properties as for the Figure 2E-G 

simulations. 

We assumed that the turgor pressure in all considered cells is the same so the cumulative effect 

of it on the tissue scale reduces to tensional forces on the anticlinal walls. This allows 

considerably reducing computational complexity of the model and improving stability of the 

simulation. To confirm that presence of compressive forces across the wall thickness coming 

from turgor pressure do not alter our conclusions we performed a simulation of bending of single 

wall segment of inhomogeneous composite wall with pressure loads on both sides of the wall 

(Figure 2K, L) and could not detect any influence of the turgor pressure on the bending process. 

 

The forces used to stretch the walls were in the order of 10 nN and were applied to the four free 

ends of the wall segments (Figure 2E-G) as surface tractions following rotation. The opposite 

ends of the wall segments were constrained in the direction of loading forces. They were free to 

move in a perpendicular direction providing x- and y-symmetry boundary conditions for these 

walls respectively. The bottom edge of the structure was constrained in the z direction. 

 

 



QUANTIFICATION AND STATISTICAL ANALYSIS 

Statistical analyses were preformed using Microsoft Excel and R software (Key Resource Table). 

Statistics were performed using ANOVA and Tukey’s test. Means ± SE are shown, n values are 

displayed on the graphs (Figure 1, S1). Statistical significance was tested by Student’s T-test. 

Error bars correspond to ± SE (Figure 4-7, S5, S7). Significance was defined as *P < 0.05; **P < 

0.01; ***P < 0.001. 

 

DATA AND SOFTWARE AVAILABILITY 

 

 

 

 



KEY RESOURCE TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Mouse monoclonal CCRC M1 CarboSource N/A 

Mouse monoclonal CCRC M89 CarboSource N/A 

Rat monoclonal JIM5 PlantProbes Cat#JIM5 

Rat monoclonal JIM7 PlantProbes Cat#JIM7 

Rat monoclonal LM5 PlantProbes Cat#LM5 

Rat monoclonal LM6 PlantProbes Cat#LM6 

Green Fluorescent Protein-CMB3 Nzytech 14021 

EM Goat anti-Rat IgG: 10 nm Gold BBInternational EM.GAT 

Goat anti-Rat IgG: 10 nm Gold TAAB GEM027 

EM Goat anti-Mouse IgG: 10 nm Gold BBInternational N/A 

Goat anti-Mouse IgG (H+L): 10 nm Gold TAAB GEM025 

Chemicals, Peptides, and Recombinant Proteins 

Paraformaldehyde Sigma-Aldrich N/A 

Glutaraldehyde Sigma-Aldrich N/A 

Albumin from bovine serum (BSA) Sigma-Aldrich N/A 

LRW resin, medium grade - catalyzed TAAB essentials for microscopy, 
England, UK 

N/A 

propidium iodide  Sigma-Aldrich N/A 

Deposited Data 

   

Experimental Models: Organisms/Strains 

Arabidopsis thaliana (Col-0) N/A N/A  

Arabidopsis thaliana (WS) N/A N/A 

CA-rop2 (Fu et al., 2002) N/A 

gal10-1  (Sampedro et al., 2012) N/A 

gals1  (Liwanag et al., 2012) N/A 

35S::GALS-YFP (Liwanag et al., 2012) N/A 

gsl8-2  (Chen et al., 2009) N/A 

kor1-1  (Nicol et al., 1998) N/A 

mur1-2  (Bonin et al., 1997) N/A 

mur2-1  (Reiter et al., 1997) N/A 

mur3-1  (Reiter et al., 1997) N/A 

mur4-1  (Reiter et al., 1997) N/A 

pom1-2  (Zhong et al., 2002) N/A 

prc1-1  (Desnos et al., 1996) N/A 

qua1-1 (Bouton et al., 2002) N/A 

qua2-1 (Bouton et al., 2002) N/A 

xxt1/xxt2  (Cavalier et al., 2008) N/A 

xxt5  (Zabotina et al., 2008) N/A 

xxt1/xxt2/xxt5  (Zabotina et al., 2012) N/A 

Cinnamonum camphora University of Wroclaw N/A 

Software and Algorithms 

R https://www.r-project.org/ N/A 

CellSet 1.5.1.0 https://www.cpib.ac.uk/tools-
resources/software/cellset/ 

N/A 

Matlab R2012b, The MathWorks https://mathworks.com/products/
matlab.html 

N/A 

Nanoscope version 8.15, Bruker https://www.bruker.com N/A 

Key Resource Table



Abaqus (Dassault Systemes Simulia Corp.) 
v6.12. 

https://www.3ds.com/products-
services/simulia/products/abaqu
s/ 

N/A 

Other 

   

 
 



Sample ID stiffer cell wall zone stiffness difference (%)

1 straight 3.62

2 curved 39.00

3 curved 7.35

4 curved 28.53

5 curved 13.55

6 curved 16.77

7 curved 11.49

8 curved 11.23

9 curved 16.65

10 straight 1.10

11 straight 5.78

12 curved 5.60

13 curved 37.90

14 curved 17.60

15 curved 41.50

16 curved 37.50

17 curved 13.50

18 curved 10.80

19 curved 1.50

20 curved 6.85

Table



Sample ID stiffer cell wall zone stiffness difference (%)

1 straight 6.78

2 straight 3.58

3 straight 1.06

4 straight 1.28

5 straight 1.31

6 straight 2.83

7 straight 5.63

8 straight 4.44

9 straight 0.54

10 straight 1.67

11 straight 3.56

12 straight 8.55

13 straight 2.07

14 straight 7.27

15 straight 5.69



Sample ID stiffer cell wall zone stiffness difference (%)

1 concave 16.22

2 concave 6.84

3 concave 4.37

4 convex 1.10

5 concave 4.08

6 concave 6.52

7 convex 13.40

8 concave 1.10

9 concave 11.21

10 convex 7.20

11 concave 8.55

12 concave 8.51

13 convex 12.20

14 convex 53.90

15 concave 23.70

16 concave 12.78

17 convex 24.35

18 concave 4.78

19 concave 12.62

20 concave 27.70

21 convex 31.20

22 concave 6.47

23 concave 7.80

24 concave 19.80

25 concave 7.86

26 convex 18.20



Sample ID stiffness difference (%)

1 12.77

2 0.70

3 1.89

4 4.73

5 16.77

6 10.34

7 7.03

8 3.10

9 16.03

10 2.89

11 17.95

12 27.48

13 3.86

14 5.05

15 0.38



Sample ID stiffness difference (%)

1 4.55

2 0.53

3 1.63

4 1.59

5 4.31

6 0.31

7 2.96

8 0.49

9 1.71

10 1.45

11 3.3

12 5.05

13 4.29

14 6.77

15 2.93



Figure 1 Click here to download Figure Figure 1-PC.tif 
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Figure 2 Click here to download Figure Figure 2-Model.tif 
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Figure 3 Click here to download Figure Figure 3-AFMquant.tif 

http://www.editorialmanager.com/developmental-cell/download.aspx?id=624757&guid=2dcf74c3-643b-4d8f-8e32-ec0669f0c0a7&scheme=1
http://www.editorialmanager.com/developmental-cell/download.aspx?id=624757&guid=2dcf74c3-643b-4d8f-8e32-ec0669f0c0a7&scheme=1


Figure 4 Click here to download Figure Figure 4-AFM-along+across.tif 

http://www.editorialmanager.com/developmental-cell/download.aspx?id=624758&guid=d6a44ce9-c158-4fae-a5f8-857e96399dab&scheme=1
http://www.editorialmanager.com/developmental-cell/download.aspx?id=624758&guid=d6a44ce9-c158-4fae-a5f8-857e96399dab&scheme=1


Figure 5 Click here to download Figure Figure 5-EM.tif 
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Figure 6 Click here to download Figure Figure 6-AFMyoung.tif 
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Figure 7 Click here to download Figure Figure 7-EM-straight-wall.tif 
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