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ABSTRACT The genome of the phytopathogenic fungus Fusarium tricinctum strain
INRA104 was sequenced at a fold-coverage of more than 500�. This led to 23 scaf-
folds, including one scaffold for the mitochondrial genome, for a total genome size
of 42.8 Mb, with an average GC content of 45% and 13,387 predicted genes.

Up to 15 Fusarium spp. can be found on cereal ears with Fusarium head blight (FHB)
symptoms (1). Most of these fungal species are able to produce several types of

mycotoxins that first accumulate in grains and then contaminate processed products in
the food chain, representing both a health risk and an important economic stake. Some
of these fusariotoxins are already subject to international regulation (deoxynivalenol,
fumonisins, and zearalenone). In addition, other mycotoxins are considered emerging
because they were recently found in crops in Europe and Asia (2) and, by their
suspected toxicity, constitute subjects of interest for food security agencies. Regula-
tions setting threshold values for contamination should be published shortly. Indeed,
emerging mycotoxins, such as enniatins, beauvericin, and moniliformin, have been
reported to possess genotoxic effects in vitro (3). Enniatin B1 and beauvericin could be
more hepatotoxic than major and regulated toxins, such as aflatoxin B1 (4). Despite
these significant potential health risks, there are still few data on enniatins, including
the regulation of their biosynthesis and their secretion by the producing species.
Enniatins are cyclohexadepsipeptides synthesized outside the ribosome by multifunc-
tional enzymes, including enniatin synthase (ESyn1, 347 kDa) (5). However, the char-
acterization of the different genes encoding and regulating the enzymes involved in
the production of the 29 enniatins described to date is still a challenge (5). On cereals,
the enniatins are produced by Fusarium avenaceum, for which three reference genomes
are available (6), and Fusarium tricinctum. In this context, the genome of an enniatin-
and other-mycotoxin-producing strain of F. tricinctum was sequenced.

The F. tricinctum strain INRA104 was isolated in 2001 from corn kernels collected in
a French field from an agricultural region located roughly 150 km south of Paris (i.e.,
department number 45, Loiret). Genomic DNA was extracted from freeze-dried mycelia
(1 week of liquid culture in glucose-yeast extract-neopeptone [GYEP] medium) using
the cetyltrimethylammonium bromide (CTAB) method (7). A combination of third-
generation sequencing (PacBio Sequel platform) and next-generation sequencing
(Illumina HiSeq platform) produced more than 22 billion bases. After read correction
(FALCON pipeline v1.8.8-1 [PacBio]), assembly (SMART de novo, for the nuclear
genome, and an in-house modified version of CANU v1.7 [8] for the mitochondrial
genome), and genome polishing (GenomicConsensus package [PacBio] and Pilon
v1.22 [9]), we obtained 22 scaffolds for a genome size of 42.8 Mb (with sizes ranging
from 7,333 bp to 5,080,745 bp; mean size, 1,782,168 bp; N50 value, 2,710,832 bp; N90 value,
1,246,557 bp; GC content, 45%) plus one unique scaffold (GenBank accession number
CM009895) for the mitochondrial genome, consisting of 48,506 bp (GC content, 33%).
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De novo gene prediction using the genome of Fusarium graminearum PH-1 as a
reference (AUGUSTUS v3.3 [10]) identified 13,387 protein-coding genes, with an aver-
age length of 1.7 kbp.

Accession number(s). This whole-genome shotgun project has been deposited at
DDBJ/ENA/GenBank under the accession number QFZF00000000. The version de-
scribed in this paper is version QFZF01000000.
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