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Prediction of genetic value for sweet cherry
fruit maturity among environments using a
6K SNP array
Craig M. Hardner 1, Ben J. Hayes1, Satish Kumar2, Stijn Vanderzande3, Lichun Cai4, Julia Piaskowski3,
José Quero-Garcia5, José Antonio Campoy5, Teresa Barreneche5, Daniela Giovannini6, Alessandro Liverani6,
Gérard Charlot7, Miguel Villamil-Castro1, Nnadozie Oraguzie8 and Cameron P. Peace3

Abstract
The timing of fruit maturity is an important trait in sweet cherry production and breeding. Phenotypic variation for
phenology of fruit maturity in sweet cherry appears to be under strong genetic control, but that control might be
complicated by phenotypic instability across environments. Although such genotype-by-environment interaction (G ×
E) is a common phenomenon in crop plants, knowledge about it is lacking for fruit maturity timing and other sweet
cherry traits. In this study, 1673 genome-wide SNP markers were used to estimate genomic relationships among 597
weakly pedigree-connected individuals evaluated over two seasons at three locations in Europe and one location in
the USA, thus sampling eight ‘environments’. The combined dataset enabled a single meta-analysis to investigate the
environmental stability of genomic predictions. Linkage disequilibrium among marker loci declined rapidly with
physical distance, and ordination of the relationship matrix suggested no strong structure among germplasm. The
most parsimonious G × E model allowed heterogeneous genetic variance and pairwise covariances among
environments. Narrow-sense genomic heritability was very high (0.60–0.83), as was accuracy of predicted breeding
values (>0.62). Average correlation of additive effects among environments was high (0.96) and breeding values were
highly correlated across locations. Results indicated that genomic models can be used in cherry to accurately predict
date of fruit maturity for untested individuals in new environments. Limited G × E for this trait indicated that
phenotypes of individuals will be stable across similar environments. Equivalent analyses for other sweet cherry traits,
for which multiple years of data are commonly available among breeders and cultivar testers, would be informative for
predicting performance of elite selections and cultivars in new environments.

Introduction
The timing of fruit maturity is important for sweet

cherry (Prunus avium L.) production, particularly given
the brief shelf life of the fruit. Fruit of an individual tree
tends to ripen over a narrow window of 3–7 days and
firmness and taste decline rapidly over 4–7 days after

harvest, even under cold storage1–4. Similarly, the harvest
window for cherry is relatively short5–7. Fruit produced in
the early or later part of the production season attracts
higher prices than in the mid-season8.
There is evidence that phenotypic variation in phenology

of fruit maturity in sweet cherry is under strong genetic
control, suggesting breeding opportunities for this trait.
Traditionally, sweet cherry cultivars are divided according
to their maturity date into early (e.g., ‘Burlat’ and ‘Chelan’),
mid- (e.g., ‘Bing’) and late season (e.g., ‘Sumtare’)9. Indi-
vidual broad-sense heritability of fruit maturity timing is
high (0.76–0.83)10,11 and large-effect Quantiatative Trait
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Loci (QTLs) on linkage groups 1, 4, 5, and 6 have been
detected within a full-sib family (‘Regina’ × ‘Lapins’), each
explaining up to 20% of phenotypic variation10,12.
While cherry has been cultivated for more than 2000

years, breeding commenced around the early 1800s13,14.
From the early 20th century, modern breeding involving
selection of elite parents was undertaken in the USA and
Canada, followed by European countries such as the UK,
Russia, Ukraine, and others by the 1950s. In the last 30
years, breeding has progressed rapidly, fuelled in part by
the adoption of dwarfing rootstocks allowing intensive
orchard production15. Sansavini and Lugli16 noted that
during the period 1991–2004, 230 new cultivars were
released, this number being second in stone fruit only to
peach. Nevertheless, some very old selections, such as
‘Burlat’ or ‘Bing’, and cultivars with unclear origin such as
‘Ambrunés’, ‘Emperor Francis’, ‘Germersdorfer’, ‘Hedel-
fingen’, ‘Napoleon’ or ‘0900 Ziraat’, are still widely plan-
ted. Cherry breeding has relied on a narrow genetic base
for the main founders17, and modern cultivars are only a
few generations removed from early ancestors18.
The development of early- and late-maturing cultivars is

a major objective in sweet cherry breeding across the
globe10,13. Replacing ‘Burlat’ has been an important target
for decades, although most new cultivars of the same early
maturity period have undesirable fruit quality in terms of
firmness, tolerance to rain-induced fruit cracking, or post-
harvest shelf life. The breeding program conducted at
Summerland, Canada, has released several commercially
successful late-maturing cultivars, such as ‘Sumtare’
(Sweetheart™), ‘13S2009’ (Staccato™) and ‘13S2101’
(Sovereign™).
Genotype-by-environment interaction (G × E) is a

common phenomenon in crop plants that can complicate
selection19,20. Confirming the degree of G × E is an
important initial step in developing strategies for com-
mercial deployment of improved germplasm in target
production environments19,21. If the degree of G × E is
small, germplasm can be selected for overall mean per-
formance across the target region. Alternatively, if the
magnitude of G × E is large and repeatable factors can be
identified that explain some of the pattern in G × E, higher
gains can be achieved by using those factors to subdivide
production regions into ‘mega-environments’ and select
germplasm targeted for each. Otherwise, the presence of
G × E represents experimental noise, reducing selection
accuracy.
Detection of G × E in plants requires replication of

genetic effects across multi-environment trials (METs).
Commonly, METs in horticulture are established with
individuals that are clonally replicated across environ-
ments, e.g., refs. 22–25, or are within related families con-
nected through a pedigree structure that is used to
estimate an expected relationship matrix26. Thereby, the

performance of an individual in one environment can be
genetically correlated with its performance in other
environments27,28 and that correlation can be used to
predict the performance of genetic treatments (e.g., cul-
tivars, or even specific alleles) in environments in which
they have not been directly tested29. However, conducting
conventional METs in horticultural tree crops is expen-
sive, particularly due to the large size of experimental
units and long juvenility periods. As a consequence, tree
fruit breeding and elite selection or cultivar evaluation
programs are often localised and have limited replication
of germplasm among programs. These features limit the
opportunity to evaluate G × E for horticultural tree crops.
Linear mixed models are the preferred approach for

analysing data from METs30. Such models support esti-
mation of variance and covariances to describe G × E,
incorporation of complex models that might include dif-
ferent experimental designs among trials or spatial effects,
and prediction of unbiased genetic values from unba-
lanced data. A common model used to describe G × E
from METs is a simple main effect and homogeneous
interaction (G+G× E) linear mixed model. However, this
model is restrictive as it unrealistically assumes a common
genetic variance across environments and a common
covariance (and hence correlation) among all pairs of
environments30. More general models allow greater flex-
ibility, although a highly unstructured covariance matrix
might be difficult to estimate, particularly when the
number of dimensions is large and the data for each
dimension are limited31–33. The interaction term in the
simple G+G × E model is an average of the individual
pairwise covariances in the general model34 A parsimo-
nious alternative is the FA parameterisation of the
genetic-by-environment covariance matrix, which esti-
mates environmental loadings for a reduced number of
hypothetical orthogonal dimensions that maximise dif-
ferences among environments (λ), and estimates specific
variances for each environment for genetic effects not
accounted for by the loadings (ψ)31.
Genetic relationships among individuals can be descri-

bed using a DNA marker-based genomic relationship
matrix (GRM)35, to approximate identity-by-descent as
replication of chromosome segments among individuals
deployed across METs. An advantage of the GRM is that
it can describe heterogeneity of realised relationships
within families that occur as a consequence of Mendelian
sampling36. A realised relationship matrix is expected to
be more accurate than a pedigree-derived relationship
matrix, because the latter assumes a mean expected
relationship among relatives. In addition, realised rela-
tionships might capture cryptic or undocumented rela-
tionships37,38. The GRM could therefore be used to
replace the pedigree-derived relationship matrix to study
G × E. Considerations in using the GRM with a factor
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analytic (FA) parameterisation of the genetic-by-
environment covariance matrix to model G × E have
been described previously39.
The aim of this study was to use a G × E model invol-

ving a GRM to combine phenotypic data on fruit maturity
timing collected in multiple locations for cherry germ-
plasm having little clonal replication among locations, to
thereby estimate patterns in G × E and predict perfor-
mance of individuals in environments in which they have
not been tested. By leveraging the information from
existing breeding program datasets in this way, we
hypothesised achieving improved accuracy of genetic
predictions within and across locations compared to
predictions arising from datasets of single breeding
programs.

Methods
Description of data
Germplasm used consisted of 597 sweet cherry culti-

vars, selections and unselected offspring, subsets of which
were grown at four locations: Prosser, WA, USA
(46.291383, −119.746753); Bourran (44.333793, 0.413504)
and Balandran (43.757312, 4.461919), France; and Forlí
(44.216667, 12.05000), Italy (Fig. 1). Fruit maturity timing
was assessed at each location for two seasons (Table 1) to
give eight unique location-by-season environments. Most
individuals at Balandran were also assessed at Bourran,
but there was less overlap among the individuals in
France and those at the Italian and Prosser locations, and
only five individuals were present at all four locations
(Fig. 2).

The 71 individuals assessed at Balandran, France (trial
‘Balandrin.FR’), belonged to sweet cherry trials of the
‘Chart of evaluation of fruit varieties’ program coordi-
nated by Centre Technique Interprofessionnel des Fruits
et Légumes (CTIFL) and involving Institut National de la
Recherche Agronomique (INRA), regional experimental
stations, representatives from growers associations, and
nurserymen and private breeders from France and
beyond. Balandran is one of the three locations in France
where new cultivars are initially evaluated and is 44 m
above sea level. The climate is classified as Mediterranean
and the trial was planted on Costiéeres soil. Each cultivar
was grafted onto rootstock ‘Colt’ and planted as two
clonal replicates, adjacent wherever possible. Trees were
trained to a vase with four to five permanent branches.
The trial was irrigated and managed using standard
approaches. Fruit maturity timing was measured as the
date (in Julian days) on which 50% of the fruit on both
accessions were mature.
The 193 individuals assessed at Bourran, France (trial

‘Bourran.FR’) were accessions of a germplasm collection
maintained by the Prunus Genetic Resources Center of
INRA at Bourran (Lot & Garonne), near Bordeaux40. The
site is 50 m above sea level. The climate is classified as
oceanic and the soil type is clay alluvium. Two replicate
trees for each individual on the rootstock ‘Maxma 14′
were planted adjacently in a random design. Approxi-
mately half were of French breeding origin and the
remainder were from 15 other countries in North
America, Asia and Europe. Accessions were historic
landrace cultivars (n= 85) and recently bred cultivars

Fig. 1 Location of field trials included in this study
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currently planted in Europe (n= 106). Two accessions of
each of the cultivars Noir d’Ecully and Giorgia were also
included, each corresponding to a different period of
introduction into the INRA collection. Trees were trained
to an open vase and were irrigated and managed using a
standard commercial regime. Fruit maturity timing was
measured as the date (in Julian days) on which at least
70% of the fruit on both replicate trees were mature, using
firmness, taste and skin colour indicators.
The pool of 56 individuals assessed at Forlí, Italy (trial

‘Forlí.IT’), was composed of traditional germplasm from
the Emilia-Romagna territory, modern cultivars from
various breeding programs, breeding selections, and a few
clones of known cultivars selected in the 1970s after
irradiation of bud sticks and are part of the sweet cherry
collection at CREA (Council for Agricultural Research
and Economics)—Forlì. The site is 34 m above sea level,
with Mediterranean climate and silty-clay soil with
medium-low organic matter soil. Each individual was
represented by two to three adjacent replicate trees graf-
ted onto the rootstock ‘Colt’. Trees were managed
according to integrated production practices, irrigated
and trained to a vase. Fruit maturity timing was measured
as the date (in Julian days) that the first 10% of fruit on all

replicate trees were ripe for consumption41 using firm-
ness, taste and skin colour indicators.
The 384 individuals evaluated at Prosser, USA (trial

‘Prosser.US’) were within the RosBREED sweet cherry
Crop Reference Set (n= 268)42 and the Pacific Northwest
Sweet Cherry Breeding Program at Washington State
University. The site is ~200m above sea level. The climate
is classified as semi-arid and the soil is well-drained non-
saline from the Aridisols order. The RosBREED Crop
Reference Set consists of cultivars, founders, ancestors,
advanced selections and unselected offspring representing
germplasm used in US breeding programs42,43. A total of
53 Prosser.US individuals were cultivars or breeding
selections, with the remainder consisting of unselected
offspring from 98 families (53 families with two or more
offspring). The germplasm was planted between 2006 and
2008 as single trees of each individual, with offspring
often arranged in families. Trees were managed using
conventional orchard management practices. All indivi-
duals were grown on ‘Gisela 6’ rootstock except for own-
rooted offspring. Fruit maturity timing was measured in
2011 and 2012 within the RosBREED project44 as the date
(in Julian days) at which 50% of fruit on a tree were
mature using firmness, taste and skin colour indicators43.
SNP data generated using the RosBREED cherry 6K

SNP array v145 were available from other projects for the
597 individuals from the four locations described above
(Fig. 2). Briefly, DNA samples had been extracted using
standard methods, e.g.40, and run on the array following
manufacturer’s instructions. Resultant probe intensity
data were used as input for GenomeStudio to obtain
genotype calls for each SNP of each individual46. For SNP
data available from RosBREED45, CREA and CITA
(Centro de Investigación y Tecnología Agroalimentaria de
Aragón, Spain), GenomeStudio results were exported and
used as input to the software program ASSIsT47 to obtain
a subset of robust SNPs with reliable genotype calls. A
multi-step pipeline using FlexQTL, VisualFlexQTL48 and

Table 1 Summary of the phenotypic dataset of fruit maturity timing from eight location-by-season environments

Trial Location Country Trait Season No. of individuals Meana Variancea

Balandran.FR Balandran France Fruit maturity date 1997 61 144 103.8

Balandran.FR Balandran France Fruit maturity date 1998 50 148 100.5

Bourran.FR Bourran France Fruit maturity date 2014 187 150 81.3

Bourran.FR Bourran France Fruit maturity date 2015 192 150 74.6

Forlí.IT Forlí Italy Date of first harvest 2014 50 149 141.0

Forlí.IT Forlí Italy Date of first harvest 2015 55 152 122.5

Prosser.US Prosser USA Fruit maturity date 2011 231 186 60.1

Prosser.US Prosser USA Fruit maturity date 2012 360 184 50.6

aUnits are in Julian days

Fig. 2 Venn diagram of numbers of individuals specific to and shared
among four trial locations. FR France, IT Italy, US USA
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Pedihaplotyper49 to detect genotyping errors was applied
to obtain a high-quality genotypic dataset of 1617 SNPs.
Data for 1215 high-quality SNPs loci were available from
INRA, and for 1636 SNPs from CREA.
A data-curation pipeline was developed to manage

germplasm, SNP and phenotypic data contributed from
the various sources. The first step in the process was
standardisation of names of individuals common across
datasets. Initially, the format of an individual’s name was
simplified by removing special characters, changing all
upper case letters to lower case, and inserting an under-
score between characters separated by a space. Formatted
names were then compared to an existing dictionary of
original names, formatted names and final names (which
were the formatted final names used to link data in cases
of multiple sources of data for the same individual) cre-
ated from previous data sources. Full and partial matching
were used to identify potential matches in the existing
dictionary. New names that could not be reconciled were
added to the dictionary.
Curation of SNP data involved standardisation of SNP

names across the datasets against NCBI standard iden-
tities. SNP data from individuals common to multiple
locations were compared to ensure consistency and fill in
missing genotypic calls. The very few inconsistencies in
genotypes among common individuals were set to miss-
ing, except in one case: ‘Noire de Meched’ genotyped by
INRA and found to be substantially different to an indi-
vidual with the same name in the CREA collection (the

former believed to be the original, true-to-type cultivar
introduced from Iran). In this case, cultivar names were
modified to distinguish the difference. SNP loci with
missing data of >30% or a minor allele frequency <0.05
were removed, leaving 1273 loci for 550 individuals with
unique genome-wide DNA profiles (i.e., 47 of the original
597 individuals were determined to be duplicate geno-
types). The missing 33,704 (4% of the total) individual
SNP locus genotypes were imputed with a hidden Markov
Model implemented in Beagle50,51 in the R package syn-
breed52 using only flanking markers, i.e., without con-
sidering family information.
Phenotypic data curation began with incorporation of

standardised individual names. Next, field names in ori-
ginal data files that identified experimental and sampling
design factors were identified and renamed using stan-
dardised terms (Table 2). A field representing the
experimental unit in each trial was created to identify the
smallest unit to which a unique random genetic treatment
was applied53. Fields not in the list of standard design and
sampling effects were retained. Phenotypic data was
reshaped to long format (i.e., each record represented an
individual observation).

Statistical methods
A multivariate genomic prediction linear mixed model

was implemented to estimate model parameters and
predict fixed and random effects for fruit maturity data
collected from individuals planted across the four

Table 2 Standardised field terms for use in combining phenotypic datasets

Field Description

Location Spatial unit containing one or more trials for which genetic effects are assumed to be homogeneous (i.e., homogeneous genetic

variance and genetic correlation of 1)

Trial Spatial unit that contains experimental units grouped by a particular factor (usually planting date)

Section Spatial unit within location for which experimental units are contiguous

Row Spatial coordinate within section that indexes the distribution of experimental unit along the planting row dimension

Position Spatial coordinate within section that indexes experimental unit along dimension perpendicular to planting row

Block Design unit within section that indexes group of experimental units grouped to account for spatial variation

Plot Design unit within block that indexes group of experimental units grouped to account for spatial variation

Plant Individual unit that represents unique propagation event

Planting date Date at which experimental unit was established

REF_ID Standardised genetic treatment

Experimental unit Unit at which genetic treatment is applied, i.e., unit on which sampling may be temporally repeated. Created as the unit

combination of design units and genetic treatment

Year Year at which observation is made

Observation unit Created as unit combination of experimental unit and factor defining repeated observations on experimental unit

y Untransformed observation
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locations and assessed over Table 3 two seasons, i.e., in
eight location-by-season environments. The general
mixed model for predicting genomic breeding values of
nG individuals, evaluated at nL locations and nSj seasons
within the jth location, was:

y ¼ Xbþ Zuþ r;

where y was a vector of observations, b was vector of
unknown fixed effects (mean effect of location-by-season
environment, and year of planting at the Balandran
location—the only location where this factor was rele-
vant), X was the design matrix for fixed effects, u was a
vector of unknown random effects (genomic breeding
value for each of the nG individuals, at each of the nE
location-by-season environments), Z was the design
matrix for random effects and r was a vector of unknown
residual effects, with variation of observations assumed to
follow a multivariate normal distribution:

var yð Þ ¼ ZGZT þ R;

where G was the variance–covariance of additive genomic
effects for the nG individuals among the nE location-by-
season environments and R was the variance–covariance
among residual effects.

The (nG × nE) × (nG × nE) matrix G was separated into
the nG × nG additive genomic relationship matrix (GA),
estimated following VanRaden35 method 1 using the
complete imputed individual-by-SNP matrix and the nE ×
nE additive genetic-by-environment covariance matrix
(GA×E), i.e.:

G ¼ GA � GA ´E ;

where ⊗ was the Kronecker product matrix operation.
The nE × nE additive genomic-by-environment covariance

matrix, GA×E, can be modelled using various structures30.
Assuming homogeneous genomic variances across all
environments and perfect genomic correlations (i.e., rA=
1) among all pairwise environmental combinations leads
to GA ´E ¼ σ2

A � 1nE , where 1nE was a nE × nE matrix of
1 s. A compound structure, i.e., homogeneous variances
on the diagonal and homogenous covariances on the off-
diagonals, is equivalent to a main effect interaction model
(i.e., A+A × E)30. Alternatively, a FA parameterisation
models GA×E as a reduced set of parameters that are
environmental loadings (ΛA ´ E) on hypothetical orthogo-
nal environmental dimensions that explain the maximum
variation at each observed environmental dimension and
environment-specific variation not explained by the
loadings (ΨA×E). In this study, only a first-order FA model
was examined. The variance–covariance matrix of resi-
dual effects (R) was modelled as independent blocks with
each block representing the variance–covariance among
observations across the seasons at the jth location (Rj),
which was separated into RSj (residual-by-season covar-
iance matrix for the jth location) and Inj (the correlation
matrix of residuals, an identity matrix of dimensions nj,
the number of experimental units evaluated at the jth

location).
Parameters of the random and residual models were

estimated using average information approaches imple-
mented in the statistical software ASReml54. Independent
analyses for each specific location-by-season environment
were undertaken to review the distribution of residuals.
Best linear unbiased estimates (E-BLUEs) of fixed effects
and best linear unbiased predictions (E-BLUPs) of ran-
dom effects (breeding value) were produced following
Henderson’s55 mixed model equations using estimated G
and R matrices.
The pattern of linkage disequilibrium across the

experimental population was examined by plotting indi-
vidual pairwise squared correlations of SNP locus geno-
types among individuals (ρ2) estimated using the software
PLINK56 against pairwise physical distances. Average
linkage disequilibrium (LD) decay in physical distance was
converted to genetic distance using the map presented in
Guajardo et al.57

An eigen-value decomposition of the individual-by-
location GRM (C) was undertaken to examine the
germplasm genetic structure across the four locations.
The matrix C was estimated as:

MGAM
T

where M was an m × nG incidence matrix (where m was
the number of unique individual-by-location realisations
and nG was previously defined) that mapped the incidence
of an individual onto specific individual-by-environment
realisations. A pedigree-derived additive genetic

Table 3 Estimates of additive genomic variation (vG),
residual variation (vR), phenotypic variation (vP) and
narrow-sense heritability (h2) for eight location-by-season
environments

Location Season vG vR vP h2

Balandran.FR 1997 111.3 13.8 125.1 0.89

Balandran.FR 1999 101.4 10.5 111.9 0.91

Bourran.FR 2014 60.3 12.7 73.0 0.83

Bourran.FR 2015 57.1 8.1 65.2 0.88

Forlí.IT 2014 110.4 19.3 129.7 0.85

Forlí.IT 2015 98.4 20.0 118.4 0.83

Prosser.US 2011 27.6 18.1 45.7 0.60

Prosser.US 2012 26.5 17.6 44.1 0.60
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relationship matrix was estimated from known pedigree
records to examine the similarity between expected
(pedigree-derived) and estimated realised GRMs.
The average additive genomic correlation among the

eight location-by-season environments was estimated as:

rA ´ E ¼ σ2
A

σ2A þ σA ´E2
;

where σ̂2
A was the off-diagonals of the compound sym-

metry GA×E structure, or the variance of the additive
genetic main effect across environments for the A+A × E
model, and σ̂2A ´ E was the difference between the diagonal
and the off-diagonals, or the average additive genomic-by-
environment variance.

The additive genomic-by-environment covariance
matrix of the FA model was estimated as:

bGA ´ E ¼ bΛA ´ EbΛ
T
A ´ E þ bΨA ´E ;

where bΛA ´Ewas the nE × k matrix of estimated loadings
for the hypothetical orthogonal factor for the additive
genomic variance at the nE environments, and bΨA is a
nE × nE diagonal matrix of environment-specific variances.

Individual narrow-sense genomic estimated heritability
for the kth season at the jth location was estimated as:

ĥ2jk ¼
σ̂2
Ajk

σ̂2
Ajk

þ σ̂2Rjk

;

where σ̂2Ajk
and σ̂2

Rjk
were the estimated additive genomic

and residual variances for each of the nE location-by-
season environments. Genomic breeding values for fruit
maturity timing were predicted using estimated para-
meters from the FA model.

Two cross-validation scenarios were used to estimate
prediction accuracy (PACC). Firstly, a within-location
validation population was created by subsampling indi-
viduals within locations, as the main interest of this study
was performance predictions of individuals in environ-
ments in which they have not been tested, but phenotypes
of other genotyped individuals have been used to char-
acterise the environment of interest. Five-fold validation
within locations was used. Adjusted phenotypes were
obtained by removing from the phenotypic observations
the effects of location, season, location-by-season, and
year of planting at the Balandran location estimated from
the fit of the FA model to the full dataset. Individuals at
each location were then randomly assigned to one of the
five sets to define location-by-set validation populations.
For each validation analysis, adjusted phenotypes for the
individuals in the particular location-by-set validation
population were set to missing and parameters for the FA
A × E model were re-estimated using the training

population and then used to predict additive genomic
values for the validation population. Predictive ability
(PA) was estimated as the correlation between the geno-
mic predicted breeding values for the particular location-
by-set validation population and the original adjusted
phenotypes. Prediction accuracy was estimated for the
particular location-by-set validation population by divid-
ing PA by the square-root of the individual narrow-sense
genomic estimated heritability of genomic values from the
fit of the FA A × E model to the full dataset, as indepen-
dent heritability estimates were unavailable. Standard
error of PACC was estimated as 1=

ffiffiffiffiffiffiffiffiffiffiffiffi

nG ´ Lk
p

; where nG×Lk
was the number of individuals in the location-by-set
validation population58.
A fourfold cross-validation was undertaken for a second

scenario of dropping out the complete phenotypic data
from one entire location for each validation iteration.
Predictive ability was estimated as the correlation among
the adjusted phenotypic performance of individuals in the
removed location and the mean of the predicted breeding
values for these individuals across the three preserved
locations. Prediction accuracy was again estimated using
genomic narrow-sense heritability of the removed envir-
onments estimated from the fit to the full dataset.

Results
Structure of germplasm
The average LD between SNPs within a 100-kb window

was 0.36 with the value for 20% of pairs being >0.80
(Fig. 3). There was a rapid decay in LD with distance
within 250–500 kb with observed ρ2-value <0.2 between
140 and 240 kb, which corresponds to ~0.30 and 0.52 cM.
At 1 cM/465 kb, LD declined to <0.14.
The first two vectors of an eigen decomposition of the

estimated individual-by-location GRM explained 12% of
the variation in the matrix (Fig. 4). No obvious structure
was apparent in the overall relationships among and
within germplasm assessed at the four locations. Dis-
tributions of elements of the relationship matrix esti-
mated from pedigree information were quite different

Distance (kb)

LD
 (ρ
2 )

Fig. 3 Linkage disequilibrium (LD) by physical distance (kb) for
individual loci (grey dots) and averaged for each set of 1000 SNP pairs
ranked according to the distance between SNPs (black dots)
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from the distributions for realised relationships estimated
using SNP data (Fig. 5). While the mode for the dis-
tribution of diagonal elements for both the pedigree- and
SNP-derived relationship coefficients was one, and 0 for
the off-diagonals, the distributions of pedigree-derived
coefficients were highly skewed towards these values, in

contrast to the more balanced distribution of GRM
coefficients (both diagonal and off-diagonal) around the
mode. The highest value for the pedigree-derived diag-
onals was 1.5, compared to 1.8 for the estimated realised
relationship coefficients. The variance of diagonal ele-
ments was greater for the GRM matrix (0.0228) compared
to the pedigree-derived relationship matrix (0.0024), as
was the case for the off-diagonals (0.0160 compared to
0.0103).

Model fit
The compound symmetry A+A × E model (log-like-

lihood=−2554.2) was a significantly (p < 0.001) better fit
to the data than a model that did not account for A × E
(logl=−2560.7). Estimated average rA ´E was 0.96. The
FA A × E model (logl=−2519.2) was a significantly better
fit (p < 0.001) than the compound symmetry (A+A × E)
model.
Best linear unbiased estimation of the location-by-

season environment effects for fruit maturity timing using
the FA A × E model (Fig. 6) indicated that on average, and
after accounting for unbalanced genetic treatments across

Fig. 4 Plot of the first two vectors from an eigen decomposition of the
individual-by-location genomic relationship matrix by testing location

GRM - diagonals GRM – off-diagonals 

A - diagonals A – off-diagonals 

Fig. 5 Diagonal and off-diagonal estimated realised (SNP-derived, GRM) and expected (pedigree-derived, A) additive relationship matrices elements
for germplasm evaluated in this study
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environments, fruit maturity was significantly earlier at
Balandran, France, in 1997 (144 Julian days) than all other
environments. However, there was little absolute differ-
ence among the European environments, averaging
<9 days. In contrast, average timing of fruit maturity at
Prosser USA differed only by 2 days between year, but was
around 36 days later than in Europe.
Estimated phenotypic variance differed among loca-

tions, but was more consistent between seasons within
locations (Table 3). The most variable locations were
Balandran and Forlí, with Prosser the least. The hetero-
geneity in phenotypic variance was mostly a consequence
of heterogeneity in estimated additive genomic variance,
particularly the lower additive genetic variance at Prosser.
Estimates of individual narrow-sense heritability were
>0.83 for all European environments, but lower (0.60) for
the Prosser environments.

Estimated additive genomic correlations among the
European locations and between years within these loca-
tions from a FA A × E model with the GRM were close to
1 (Table 4). In contrast, the lowest estimated additive
genomic correlation was between seasons at the Prosser
location (rA= 0.8). Estimates of the correlations between
the Prosser and European environments were between
0.87 and 0.92.

Accuracy
The overall mean genomic predictive ability of using

genome-wide SNP information from phenotyped indivi-
duals at a particular location to predict performance of
individuals untested at that location was 0.81, with mean
PACC 0.91 ± 0.24 (Table 5, within location). Predictive
ability of individual location-by-set-by-season validation
populations ranged from 0.60 to 0.98, with individual
PACC between 0.65 ± 0.30 to 1.06 ± 0.15 (full results not
presented). Predictive ability averaged across sets within
seasons was positively correlated (r= 0.80, n= 8) with
estimated narrow-sense heritability.
Predictive ability and accuracy for the second examined

scenario of predicting into an environment for which no
phenotypic information is available (Table 5, across
location) was generally lower than for the first scenario,
except for prediction into the Forlí location. The lowest
prediction accuracy was observed for prediction of
genomic breeding value at Prosser.

Predicted G × E effects
The high estimates of additive genomic correlation

among environments supported accurate prediction of
genomic breeding values for fruit maturity timing into the
various environments for all individuals, even if they had
not been phenotypically assessed in those environments
(Fig. 7). As suggested by the high estimated additive
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Fig. 6 Least square means of location-by-season effects from most
parsimonious G × E model. Environments with the same letter were
not significantly different (p= 0.05)

Table 4 Estimates of additive genomic correlation of fruit maturity timing (Julian days) among eight location-by-season
environments from the fit of a FA A × E model using a genomic relationship matrix

Balandran.FR Bourran.FR Forlí.IT Prosser.US

1997 1999 2014 2015 2014 2015 2011 2012

Balandran.FR 1997 1 1 0.98 1 1 0.89 0.92

1999 1 0.98 1 1 0.89 0.92

Bourran.FR 2014 0.98 1 1 0.89 0.92

2015 0.98 0.98 0.87 0.90

Forlí.IT 2014 1 0.89 0.92

2015 0.89 0.92

Prosser.US 2011 0.82

2012
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genomic correlations between the European environ-
ments and Prosser, the relative ranking of predictions for
individuals of average fruit maturity timing across the
three European locations was largely consistent with the
ranking at Prosser. The earliest predicted average fruit
maturity timings across the three European locations were
for ‘Precoce d’Isigny’, ‘Belle de St Denis’, ‘Abouriou’,
‘Guigne Précoce du Marché’ and ‘Scwecja’, which were
22–25 days earlier than the mean (30 May). Individuals
predicted to the latest (19–23 days later than the mean)
across the European locations were ‘Ambrunés’ and four
selections from the Pacific Northwest Sweet Cherry

Breeding Program. At Prosser, the five predicted earliest
individuals were four of the five earliest across the Eur-
opean locations (all except ‘Scwecja’) and one selection
from the US breeding program, which compared to the
mean fruit maturity date for Prosser (2 July) were
12–13 days earlier. The five individuals predicted to be
the latest in the European locations were also those pre-
dicted to be the latest at Prosser (13–14 days later than
the mean date).

Discussion
Genetic structure of germplasm
The degree of decay in LD among loci with increasing

physical distance across the sweet cherry germplasm in
this study is comparable, but slightly weaker, than that
reported for only the Bourran germplasm40. In this cur-
rent study, the threshold for which LD was <0.2 occurred
between 140 and 240 kb, suggesting slightly stronger LD
than observed in Campoy et al.40 (0.2 threshold around
100 kb). The stronger LD in our study might be a con-
sequence of the inclusion of full-sib families from the
Prosser location. The degree of decay in LD with
increasing distance observed in this study and that of
Campoy et al.40 is similar to that recently reported in a
Belgian apple collection59, but higher than that reported
for peach (<0.2 between 800 and 1800 kb60) and an earlier
study in apple 1000 kb61. Campoy et al.40 suggested that a
lower LD decay reported for peach is a consequence of the
presence of self-compatibility in that crop leading to
longer regions of homozygosity from inbreeding through
selfing. Higher LD in the apple study61 was likely a con-
sequence of small effective population size in the seven
pedigree-connected full-sib families used.
The lack of obvious genetic structure among germplasm

displayed as the first two eigenvalue loadings for the SNP-

Table 5 Predictive ability, prediction accuracy and standard error of prediction accuracy by location and season
estimated from within-location and across-location validation

Location Season Within location Across location

nG × L nG × LS PA PACC se.PACC nG × L nG × LS PA PACC se.PACC

Balandran.FR 1997 14 12 0.86 0.90 0.29 63 61 0.67 0.70 0.13

1999 10 0.88 0.91 0.32 50 0.76 0.79 0.14

Bourran.FR 2014 38 37 0.81 0.89 0.16 193 187 0.59 0.65 0.07

2015 38 0.84 0.90 0.16 192 0.64 0.68 0.07

Forli.IT 2014 11 10 0.81 0.88 0.32 56 50 0.84 0.91 0.14

2015 11 0.79 0.86 0.30 55 0.86 0.94 0.13

Prosser.US 2011 76 46 0.79 1.02 0.15 384 231 0.43 0.55 0.07

2012 71 0.73 0.95 0.12 360 0.44 0.57 0.05

Also shown is the average number of individuals in each validation population per location (nG × L) and per location-by-season (nG × LS) for each validation approach
PA predictive ability, PACC prediction accuracy, se.PACC standard error of prediction accuracy

Fig. 7 Scatter plot of genomic predicted breeding value of 550
individuals for fruit maturity timing (Julian days) averaged across three
locations in Europe compared to genomic predicted breeding value
in Prosser, USA
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derived relationship matrix suggests that there is con-
siderable identity of chromosome segments among
germplasm evaluated in the four locations, with indivi-
duals being as related across locations as within the same
location. These results are consistent with the hypothesis
of a bottleneck during domestication of this crop62. Using
the same genetic data for the Bourran population as used
here, Campoy et al.40 identified two main groups of
individuals representing landraces and bred cultivars.
Further analyses decomposed the groups into nine clus-
ters, with North American-derived cultivars in the Bour-
ran collection allocated to only two of these clusters40.
The observed wider diversity of the RosBREED germ-
plasm is not surprising as individuals were deliberately
chosen to maximise diversity by including germplasm that
had not been commonly used previously in North
American breeding programs along with standard North
American cultivars and their available ancestors42.
The contrast in distribution of diagonals and off-

diagonals between the SNP and pedigree-derived rela-
tionship matrices observed here has been discussed by
others63. The SNP-derived relationship matrix (GRM) is
able to capture unknown pedigree relationships, and
heterogeneity in relationships due to Mendelian sampling,
that is not possible using only pedigree information to
estimate relationship coefficients 36. Differences between
the pedigree-derived and SNP-derived relationship
matrices might also be a consequence of incorrect or
incomplete pedigree information or improper scaling.
The high frequency of pedigree-derived pairwise rela-
tionship coefficients (off-diagonals) with a value of 0,
compared to the more balanced distribution of realised
relationships estimated from genotypic data, suggests that
pedigree records are incomplete. Germplasm individuals
are generally assumed to be unrelated in the base gen-
eration of the pedigree-derived relationship matrix, but
they might instead be related and those relationships can
be captured in the GRM. Estimation of the GRM is also
dependent on the estimated allele frequency for each
SNP35. Ideally, allele frequencies for the base population
are needed, but they are difficult to obtain. Allele fre-
quencies in our study were computed from available
genotyped accessions and not from a base population,
which could have resulted in improper scaling. None-
theless, Wang et al.64 suggests with strong quality control
(e.g., call rate ≥0.9, addressing parent-progeny conflicts,
minor allele frequency >0.05, good pedigree depth), dif-
ferences between the elements of matrices can be
reduced.
The higher variance of the GRM diagonal and off-

diagonal elements, compared to those for A, suggests
predictions using a realised relationship matrix will be
more accurate36. In this study in particular, the GRM
might also more accurately estimate additive effects

compared to a relationship matrix based on expected
relationship coefficients derived from pedigree informa-
tion, as there were only a small number of offspring per
family and so there might have been insufficient replica-
tion of Mendelian sampling events within each family to
accurately obtain a family average, which is an important
source of information for prediction of genetic effects65.
Estimates >1 for the expected relationship coefficients

of an individual with itself dervied from pedigree infor-
mation, and large realised relationship coefficients esti-
mated from genotypic data, suggest that some individuals
included in this study are inbred, as was also observed in
western larch by, e.g., Klápste et al.66 This conclusion
agrees with general knowledge of sweet cherry cultivar
pedigrees, which involved a strong bottleneck, repeated
use of a small number of parents, and crossing of indi-
viduals that shared recent ancestors40,62. For example,
breeding programs have continuously used the cultivar
‘Stella’ and its descendants in breeding for self-compat-
ibility, presumably dramatically reducing the genetic
diversity of released cultivars14.

Model fitting
This study employed a FA parameterisation to estimate

parameters of the genetic-by-environment covariance
matrix. While FA models have similarities with additive
main effects multiplicative interactions (AMMI)30,67

approaches, AMMI is a fixed effects approach, whereas
FA mixed models offer more flexibility such as fitting
genotypes and genotype-by-environment interaction as
random effects30. A mixed model approach more easily
deals with unbalanced datasets and supports incorpora-
tion of heterogeneous variances and covariances among
environments—all of which are essential features of our
dataset. Superiority of FA models over AMMI models
have been demonstrated using empirical MET eucalypt
and teak datasets68.
Despite the high average additive genomic correlation

among environments (rA ´E) estimated from a simple
compound symmetry model, the FA G × E model was a
significantly better fit to the data as it allowed hetero-
geneous variances among locations and heterogeneous
pairwise covariances (and hence correlations) among
locations. The compound symmetry structure constrains
all variances and all covariances to be the same, which is
an unrealistic assumption particularly when the environ-
mental sampling is complex as demonstrated here. In
contrast, the FA model captured the greater stability of
genetic effects among and within the European locations
compared to genetic effects at the Prosser location.
This study only applied an additive genetic effects

model. Theoretically, inclusion of significant non-additive
effects, if present, is expected to increase PACC and
support selection for clonal value (i.e., total genetic effects
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= additive+ non-additive genetic effects) where indivi-
duals can be vegetatively propagated69–71 as sweet cherry
can be and is commercially. However, separating additive
and non-additive genetic effects requires powerful designs
or clonal replication of individuals. Moreover, fitting these
effects separately in genomic prediction models have not
shown meaningful improvement in accuracy, e.g. ref. 72,
unless dominance was the predominant genetic effect and
broad-sense heritability was >0.671. Dominance effects for
days to maturity have been estimated to compose a minor
component of genetic variance in sweet cherry11.
The FA G × E model supported the combination of

adjustment of phenotypes for fixed effects and estimation
of genetic parameters into a multivariate single-step
analysis. The realised relationship matrix was used to
describe correlated genetic effects across environments so
that data from various sources could be combined. Pre-
diction accuracy from multivariate approaches is generally
higher than that from univariate approaches and supports
the prediction of genetic effects for individuals in envir-
onments in which they have not been tested by leveraging
of correlated information29,73,74. In contrast to the single-
step approach taken here, other studies have applied a
two-stage analysis which adjusts phenotypes for fixed
effects prior to fitting of the genetic model, e.g., refs. 36,72.
A single-step analysis as reported here was possible due to
the small size of the population. Single-step analyses allow
incorporation of complex models in the analysis75. While
Welham et al.76 suggest that PACC from a single-step
analysis is similar to that from a two-stage analysis, de los
Campos et al.77 have reported that two-stage approaches
for genomic prediction might produce biased genetic
marker effects and correlation among residuals.
The estimates of PACC in all environments reported

here are considerably higher than those reported pre-
viously for other traits in other horticultural tree
crops72,78,79. The within-location validation strategy
adopted here is similar to the second validation strategy
adopted by Kumar et al.72 Here, training populations were
constructed by excluding a subset of individuals within a
location to simulate the strategy of predicting the per-
formance of an individual within a target environment for
which phenotypic data was available from other geno-
typed individuals. The high accuracy of this strategy (>0.8)
might be explained in part by the high apparent herit-
ability of fruit maturity timing (>0.60). The high predic-
tion accuracies of the model for individuals at the
Balandran and Bourran locations (>0.85) are also likely to
be a consequence of the high genomic correlation (0.98),
and large number of individuals replicated (68), between
these locations. The high PACC for individuals at the
Prosser location (>0.95) is likely to be a consequence of
the random sampling strategy used to form the validation
population as we did not account for the known complex

family (and ancestral) structure. It is well known that
close relationships between the training and validation
populations increases PACC80. The lower accuracy of the
across-location validation strategy of predicting across
environments (0.50–0.95) is probably a consequence of
the confounding of G × E with within-environment
PACC.

Implications of results for germplasm management
This study appears to be the first to quantify differences

among locations in timing of fruit maturity in sweet
cherry, particularly on a global scale. The advantage of
undertaking a combined multivariate analysis like pre-
sented here is that location means are unbiased because
they are adjusted for differences in germplasm composi-
tion among environments. In this way, comparisons are
not confounded by the use of different germplasm in each
environment. Differences among seasons within a loca-
tion were not as great as differences between the Eur-
opean locations and Prosser, suggesting that fruit
maturity across the European locations is generally earlier
than at the Prosser location, at least for the seasons
sampled here. More locations and seasons evaluated could
be used to develop a more general predictive equation. A
joint analysis of flowering timing and fruit maturity timing
could help determine the extent of this phenological
phenomenon.
High heritability estimates for timing of fruit maturity in

sweet cherry have been reported previously10, suggesting
that an individual’s breeding value for timing of fruit
maturity is reliably predicted from the phenotype of that
individual. However, our model only included additive
genetic effects, and others72,81 have demonstrated that
heritability estimates can be inflated if large non-additive
effects are present but omitted from the training model.
Deflated estimates of additive genetic variances in com-
plex models might also be a consequence of correlation
among additive and non-additive genetic effects82.
We are not aware of any previously published estimates

of G × E for any traits, including fruit maturity timing, in
cherry. Despite the detection of significant G × E in this
study, G × E is somewhat low compared to the degree
reported for most other traits in horticultural tree crops,
e.g., ref. 83. Differences in ranking between seasons at
Prosser was the major source of G × E detected in this
study. The limited number of locations in this study
prohibits the development and testing of a hypothesis to
explain this pattern. The generally high correlation among
all locations suggests that the timing of fruit maturity of
an individual relative to other individuals is expected to be
stable across production environments similar to these
test locations. This conclusion is supported by the high
correlation of predicted genetic values at Prosser with the
average of predicted values across the three European
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locations (Fig. 7). Results also fit with the general obser-
vation that traits with high heritability exhibit low levels of
G × E, which might be due in part to numerical
constraints22.
The high narrow-sense heritability for fruit maturity

timing reported here provides clear evidence of the large
genetic gain that can be achieved by selecting for parti-
cular fruit maturity timing. The high genetic correlation
among environments for this trait (>0.82) suggests that
individuals can be selected for elite average performance
across environments similar to those examined here, and
elite germplasm in one environment for fruit maturity is
expected to be elite in other environments. However, it is
difficult to generalise this recommendation to new
environments. In addition, other traits might exhibit dif-
ferent G × E patterns. However, the genetic potential of
genotyped but untested individuals can be predicted using
the methods outlined here if genomic and phenotypic
data are available for other individuals and are used to
estimate a prediction model.

Extension of method
This study is based on a model of individual SNP loci in

linkage disequilibrium with chromosome segments con-
taining numerous small-effect QTLs such that replication
of SNP alleles across environments models the replication
of causal alleles at the small-effect QTLs. However, as
previous studies10,12 have suggested the presence of large-
effect QTLs contributing to genetic variation of fruit
maturity timing, the model of genetic architecture used in
this study might not be accurate. Incorporation of known
QTL effects in the linear model should improve accuracy,
as it is expected that such a model would more closely
approximate the true distribution of QTL effects77. One of
the challenges of building these models is that char-
acterisation of the variation around QTL regions as
individual biallelic SNPs might not capture the complexity
of variation in the region. This variation might be better
modelled using the same genotypic data by describing
SNP haplotypes that contain QTL regions. The level of
LD in cherry is sufficiently high that this information
could be used to phase the SNP genotypes (for example,
with Beagle51). Otherwise, the model could use separately
obtained genotypic data that describes the allelic com-
position of each individual at large-effect QTLs with
multiple effective alleles.
Incorporation of data from additional environments

would be useful to develop a more general description of
G × E patterns for the trait, enable development and
testing of hypotheses to explain the G × E patterns, and
increase PACC. Only a minor degree of G × E was
detected in this study and thus there is insufficient var-
iation to develop and test hypotheses of environmental
drivers of G × E for fruit maturity timing. Increasing the

environmental range might induce greater G × E. In this
case, it might be that repeatable prediction of G × E could
be achieved through incorporation of environmental
variables or through use of crop growth models that
associate variability in underlying physiological process
with variation in environmental drivers84,85.
This study has demonstrated that genome-wide SNP-

derived relationship matrices can be used to quantitatively
describe cryptic genetic relationships. In addition, this
study has demonstrated that such realised relationships
can be used to combine phenotypic data collected on
individuals evaluated across disparate locations into a
single analysis without the need for clonal replication or
knowledge of pedigree relationships. These approaches
now allow the latent value of existing, otherwise uncon-
nected, historical phenotypic datasets collected by
numerous local breeding and cultivar testing programs to
be exploited. Such analyses can increase knowledge of the
genetic architecture of important traits to support ongo-
ing genetic improvement, as well as having the immediate
practical value of predicting genetic effects of individuals
(i.e., breeding or clonal value) in untested environments.
This type of analysis would be informative for other
important horticultural traits of sweet cherry, such as
bloom timing, productivity, fruit size, fruit firmness, fruit
sweetness and fruit acidity, for which phenotypic data are
largely available among breeders and cultivar testers.
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