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Abstract. Fluid flow in a charged porous medium generates
electric potentials called streaming potential (SP). The SP
signal is related to both hydraulic and electrical properties of
the soil. In this work, global sensitivity analysis (GSA) and
parameter estimation procedures are performed to assess the
influence of hydraulic and geophysical parameters on the SP
signals and to investigate the identifiability of these parame-
ters from SP measurements. Both procedures are applied to
a synthetic column experiment involving a falling head infil-
tration phase followed by a drainage phase.

GSA is used through variance-based sensitivity indices,
calculated using sparse polynomial chaos expansion (PCE).
To allow high PCE orders, we use an efficient sparse PCE
algorithm which selects the best sparse PCE from a given
data set using the Kashyap information criterion (KIC). Pa-
rameter identifiability is performed using two approaches:
the Bayesian approach based on the Markov chain Monte
Carlo (MCMC) method and the first-order approximation
(FOA) approach based on the Levenberg–Marquardt algo-
rithm. The comparison between both approaches allows us
to check whether FOA can provide a reliable estimation of
parameters and associated uncertainties for the highly non-
linear hydrogeophysical problem investigated.

GSA results show that in short time periods, the saturated
hydraulic conductivity (Ks) and the voltage coupling coeffi-
cient at saturation (Csat) are the most influential parameters,
whereas in long time periods, the residual water content (θs),
the Mualem–van Genuchten parameter (n) and the Archie
saturation exponent (na) become influential, with strong in-
teractions between them. The Mualem–van Genuchten pa-

rameter (α) has a very weak influence on the SP signals dur-
ing the whole experiment.

Results of parameter estimation show that although the
studied problem is highly nonlinear, when several SP data
collected at different altitudes inside the column are used
to calibrate the model, all hydraulic (Ks,θs,α,n) and geo-
physical parameters (na,Csat) can be reasonably estimated
from the SP measurements. Further, in this case, the FOA ap-
proach provides accurate estimations of both mean parameter
values and uncertainty regions. Conversely, when the num-
ber of SP measurements used for the calibration is strongly
reduced, the FOA approach yields accurate mean parame-
ter values (in agreement with MCMC results) but inaccurate
and even unphysical confidence intervals for parameters with
large uncertainty regions.

1 Introduction

Flow through a charged porous medium can generate an elec-
tric potential (Zablocki, 1978; Ishido and Mizutani, 1981; Al-
lègre et al., 2010; Jougnot and Linde, 2013), called streaming
potential (SP). SP signals play an important role in several
applications related to hydrogeology and geothermal reser-
voir engineering as they are useful for examining subsurface
flow dynamics. During the last decade, surface SP anoma-
lies have been widely used to estimate aquifers’ hydraulic
properties (Darnet et al., 2003). Interest in SP is motivated
by its low cost and its high sensitivity to water flow. Either
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coupled or uncoupled approaches can be used for hydraulic
parameter estimation from SP signals (Mboh et al., 2012). In
the uncoupled approach, Darcy velocities (e.g., Jardani et al.,
2007; Bolève et al., 2009) are obtained from the tomographic
inversion of SP signals and are then used for the calibration
of the hydrologic model. In the coupled approach, anomalies
related to the tomographic inversion are avoided by invert-
ing the full coupled hydrogeophysical model (Hinnell et al.,
2010).

The SP signals have been widely studied in saturated
porous media (Bogoslovsky and Ogilvy, 1973; Patella, 1997;
Sailhac and Marquis, 2001; Richards et al., 2010; Bolève et
al., 2009, among others). Fewer studies focused on the appli-
cation of the SP signal in unsaturated flow despite the large
interest in such nonlinear problems (Linde et al., 2007; Allè-
gre et al., 2010; Mboh et al., 2012; Jougnot and Linde, 2013).
Hence, in this work we are interested in the SP signals in
unsaturated porous media. Our main objective is to investi-
gate the usefulness of the SP signals for the characterization
of soil parameters. For this purpose, we evaluate the impact
of uncertain hydraulic and geophysical parameters on the SP
signals and assess the identifiability of these parameters from
the SP measurements.

The impact of soil parameters on SP signals is investi-
gated using global sensitivity analysis (GSA). This is a use-
ful tool for characterizing the influential parameters that con-
tribute the most to the variability of model outputs (Saltelli et
al.,1999; Sudret, 2008) and for understanding the behavior of
the modeled system. GSA has been applied in several areas,
for risk assessment for groundwater pollution (e.g., Volkova
et al., 2008), nonreactive (Fajraoui et al., 2011) and reac-
tive transport experiments (Fajraoui et al., 2012; Younes et
al., 2016), for unsaturated flow experiments (Younes et al.,
2013), natural convection in porous media (Fajraoui et al.,
2017) and seawater intrusion (Rajabi et al., 2015; Riva et al.,
2015). To the best of our knowledge, GSA has never been
used for SP signals in unsaturated porous media. Hence, in
the first part of this study, GSA is performed on a conceptual
model inspired from the laboratory experiment of Mboh et
al. (2012) in which SP signals are measured at different alti-
tudes in a sandy soil column during a falling-head infiltration
phase followed by a drainage phase. Four uncertain hydraulic
parameters, saturated hydraulic conductivity (Ks), residual
water content (θr), fitting Mualem–van Genuchten parame-
ters (α,n) and two geophysical parameters (Archie’s satura-
tion exponent (na) and voltage coupling coefficient at satura-
tion (Csat)), are investigated. GSA of SP signals is performed
by computing the variance-based sensitivity indices using
polynomial chaos expansion (PCE). To reduce the number
of PCE coefficients while maintaining high PCE orders, we
use the efficient sparse PCE algorithm developed by Shao et
al. (2017) which selects the best sparse PCE from a given
data set using the Kashyap information criterion (KIC).

In the second part of this study, we investigate the identi-
fiability of hydrogeophysical parameters from SP measure-

Figure 1. Illustration of the experimental device.

ments. For this purpose, parameter estimation is performed
using two different approaches. The first is a Bayesian ap-
proach in which model parameters are treated as random
variables and characterized by their probability density func-
tions. With this approach, the prior knowledge about the
model and the observed data is merged to define the joint
posterior probability distribution function of the parame-
ters. In the sequel, Bayesian analysis is conducted using the
DREAM(ZS) software (Laloy and Vrugt, 2012; Vrugt, 2016)
based on the Markov chain Monte Carlo (MCMC) method.
MCMC has been successfully used in various inverse prob-
lems (e.g., Vrugt et al., 2003, 2008; Arora et al., 2012;
Younes et al., 2017). The MCMC method yields an ensem-
ble of possible parameter sets that satisfactorily fit the avail-
able data. These sets are then employed to estimate the pos-
terior parameter distributions and hence the optimal parame-
ter values and the associated 95 % confidence intervals (CIs)
in order to quantify the parameters’ uncertainty. The second
inversion approach is the commonly used first-order approx-
imation (FOA) approach based on the standard Levenberg–
Marquardt algorithm. Two scenarios are considered to check
whether FOA can provide a reliable estimation of parame-
ters and associated uncertainties for the highly nonlinear hy-
drogeophysical problem investigated in the case of abundant
data (small uncertainty regions) and in the case of scarcity of
data (large uncertainty regions). In the first scenario, SP data
collected from sensors at five different locations are taken
into account for the calibration. In the second scenario, only
the SP data from one sensor are used for model calibration.

The present study is set out as follows. Section 2 presents
the hydrogeophysical model and the reference solution. Sec-
tion 3 reports on the GSA results of SP signals. Then, Sect. 4
discusses results of parameter estimation with both MCMC
and FOA approaches for the two investigated scenarios.
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2 Test case description and numerical solution

2.1 Test case description

The test case considered in this work is similar to the labo-
ratory experiment developed in Mboh et al. (2012), involv-
ing a falling-head infiltration phase followed by a drainage
phase (Fig. 1). This experiment is representative of several
laboratory SP experiments (Linde et al., 2007; Allègre et al.,
2010; Jougnot and Linde, 2013, among others). Quartz sand
is evenly packed in a plastic tube with an internal diameter
of 5 cm to a height of Ls = 117.5 cm. The column is initially
saturated with a ponding of Lw = 48 cm above the soil sur-
face. Five sensors allowing SP measurements are installed 5,
29, 53, 77 and 101 cm from the surface, respectively. The col-
umn has a zero pressure head maintained at its bottom. At the
top of the column, the boundary condition corresponds to a
Dirichlet condition with a prescribed pressure head condition
during the falling-head phase, followed by a Neumann con-
dition with zero infiltration flux during the drainage phase.
During the falling-head phase, the prescribed pressure head
htop = 48 cm has an exponential behavior driven by the satu-

rated conductivity htop = (Ls+Lw)e
−
Ks
Ls t −Ls. The falling-

head phase remains until the ponding vanishes at the critical
time tc =−Ls

Ks
ln
(

Ls
Ls+Lw

)
.

2.2 Mathematical model

The total electrical current density j (Am−2) is determined
from the generalized Ohm’s law as follows:

j =−σ∇ϕ+ js, (1)

where ϕ (V) is the streaming potential, js (Am−2) is the
streaming current density and σ (Sm−1) is the electrical con-
ductivity distribution that is assumed to be isotropic.

Hence, the conservation equation (∇ · j = 0) is written as

∇ · (σ∇ϕ)=∇ · js. (2)

In addition, the electrical conductivity distribution can be es-
timated using the saturation Sw = θ/θs as follows (Mboh et
al., 2012):

σ = σsatS
na
w , (3)

where σsat (Sm−1) is the electric conductivity at saturation
and na is the Archie saturation exponent (Archie, 1942).

The streaming current density (js) can be related to the
Darcy velocity

(
q (cmmin−1)

)
by (Linde et al., 2007; Revil

et al., 2007)

js =

(
−σsat

ρg

Ks
CsatSw

)
q, (4)

whereKs (cmmin−1) is the saturated hydraulic conductivity,
ρ (kgmin−3) is the water density, g (ms−1) is the gravita-
tional acceleration and Csat (VPa−1) is the voltage coupling
coefficient at saturation.

Hence, the combination of the previous Eqs. (1)–(4) leads
to the following partial differential equation governing the
SP signals:

∇ ·
(
Sna

w ∇ϕ
)
=∇ ·

(
−
ρgCsatSw

Ks
q

)
. (5)

However, the flow through an unsaturated soil column can be
modeled by the one-dimensional Richard’s equation:

∂θ

∂t
=

(
c (h)+ Ss

θ

θs

)
∂H

∂t
=−∇ · q, (6)

where H (cm) and h (cm) are, respectively, the hydraulic
and pressure head, such that H = h− z; z (cm) is the
depth (downward positive); Ss (–) is the specific storage;
θs (cm3 cm−3) and θ (cm3 cm−3) are the saturated and ac-
tual water contents, respectively; c(h) (cm−1) is the specific
moisture capacity; and K(h) (cmmin−1) is the hydraulic
conductivity.

The water velocity (q) is given from Darcy’s law:

q =−K (h)∇H. (7)

In the current study, the standard models of Mualem (1976)
and van Genuchten (1980) are used to relate pressure head,
hydraulic conductivity and water content:

Se (h)=
θ (h)− θr

θs− θr
=


1(

1+ |αh|n
)m h < 0

1h≥ 0

K (Se)=KsS
1/2
e

[
1−

(
1− S1/m

e

)m]2
, (8)

where Se (–) is the effective saturation, θr (cm3 cm−3) is the
residual water content, Ks (cmmin−1) is the saturated hy-
draulic conductivity, m= 1− 1/n, and α (cm−1) and n (–)
are the Mualem–van Genuchten-shaped parameters.

2.3 Numerical model

Although several numerical techniques have been developed
for the solution of the multidimensional Richards equation
(e.g., Fahs et al., 2009; Belfort et al., 2009; Younes et al.,
2013; Deng and Wang, 2017), the standard finite volume
method is used here for the spatial discretization of the one-
dimensional Richard’s equation (Eq. 6). The integration of
this equation over the finite volume (i) between (i− 1/2)
and (i+ 1/2) gives

i+1/2∫
i−1/2

(
c (h)+ Ss

θ

θs

)
∂H

∂t
dz= qi−1/2− qi+1/2. (9)

Using expressions of the Darcy velocity at the ele-

ment interfaces qi−1/2 =−
K
i− 1

2
1z

(Hi −Hi−1) and qi+1/2 =
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Figure 2. Reference SP signals. Solid lines represent the reference
SP solution and dots represent the sets of perturbed data serving as
conditioning information for model calibration.

−

K
i+ 1

2
1z

(Hi+1−Hi) in the case of a uniform spatial discretiza-
tion with a spatial step, we obtain

1z

(
ci + Ss

θi

θs

)
∂Hi

∂t
=Ki+1/2 (Hi+1−Hi) (10)

−Ki−1/2 (Hi −Hi−1) . (11)

Using τ = Sna
w and δ = ρgCsatSw

Ks
, the integration of Eq. (5)

over the finite volume (i) yields

τi+1/2

1z
(ϕi+1−ϕi)−

τi−1/2

1z
(ϕi −ϕi−1) (12)

− δi+1/2Ki+1/2 (Hi+1−Hi) (13)
+ δi−1/2Ki−1/2 (Hi −Hi−1)= 0, (14)

where the values at the interface τi±1/2, δi±1/2 and Ki±1/2
are calculated using the arithmetic mean between adjacent
elements (for instance, τi+1/2 = (τi + τi+1)/2).

Then, the temporal discretization of the obtained nonlin-
ear ODE/DAE system (9–10) is performed with the method
of lines (MOL) using the DASPK (Brown et al., 1994) time
solver. The MOL is suitable for strongly nonlinear systems
since it allows high-order temporal integration methods with
formal error estimation and control (Miller et al., 1998;
Younes et al., 2009; Fahs et al., 2009, 2011). In the current
study, the relative and absolute local error tolerances are fixed
to 10−6.

Numerical simulations are performed assuming typical
MVG hydraulic parameters for the sandy soil with (accord-
ing to Carsel and Parrish, 1988) Ks = 0.495 cm min−1, θs =

0.43 cm3 cm−3, θr = 0.045 cm3 cm−3, α = 0.145 cm−1 and
n= 2.68. The voltage coupling coefficient at saturation is
Csat =−2.9× 10−7V Pa−1 and the Archie saturation expo-
nent is na = 1.6.

Based on these hydraulic and geophysical parameters, a
reference (mesh-independent) solution is obtained using a
uniform mesh of 235 cells of 0.5 cm length. Data are gen-
erated by sampling the output SP signals every 10 min dur-
ing 1800 min. Figure 2 shows that the SP signals have an
almost linear behavior in the saturated falling-head phase.
During the drainage phase, they have a nonlinear behavior
and approach zero voltage for the dry conditions occurring
toward the end of the experiment. The SP signals are inde-
pendent Gaussian random noises with a standard deviation
of 2.73 10−5 V. This noise level was obtained by Mboh et
al. (2012) from laboratory measurements. The noised data
(Fig. 2) are used as “observations” in the calibration exer-
cise.

3 Global sensitivity analysis of SP signals

3.1 GSA method

The aim of GSA is to assess the effect of the variation of
parameters on the model output (Mara and Tarantola, 2008).
Such knowledge is important for determining the most in-
fluential parameters as well as their regions and periods of
influence (Fajraoui et al., 2011). The sensitivity of a model
to its parameters can be assessed using variance-based sensi-
tivity indices. These indices evaluate the contribution of each
parameter to the variance of the model (Sobol’, 2001). Poly-
nomial chaos theory (Wiener, 1938) has been largely used
to perform variance-based sensitivity analysis of computer
models (see for instance, Sudret, 2008; Blatman and Sudret,
2010; Fajraoui et al., 2012; Younes et al., 2016; Shao et al.,
2017; Mara et al., 2017). It can be stated that the PCE method
is a surrogate-based approach. However, we argue that this
method employs ANOVA (analysis Of variance) decomposi-
tion and hence can be considered as a spectral method (such
as the Fourier amplitude sensitivity test; Cukier et al., 1973;
Saltelli et al., 1999). Indeed, with this method, the sensitiv-
ity indices are directly obtained from the PCE coefficients
without needing to run the surrogate model.

Let us consider a mathematical model with a random re-
sponse f (ξ) which depends on (d) independent random pa-
rameters ξ = {ξ1,ξ2, . . ., ξd}. With PCE, f (ξ) is expanded
using a set of orthonormal multivariate polynomials (up to
a polynomial degree p):

f (ξ)≈

sα9α(ξ)∑
|α|≤p

, (15)

where α = α1. . .αd ∈ R
d is a dth-dimensional index. Sα rep-

resents the polynomial coefficients and 9α represents the
generalized polynomial chaos of degree |α| =

∑d
i=1αi , such

as Hermite, Legendre and Jacobi polynomials, for instance.
In this work, Legendre polynomials are employed because
uniform distributions are considered for the parameters. The

Hydrol. Earth Syst. Sci., 22, 3561–3574, 2018 www.hydrol-earth-syst-sci.net/22/3561/2018/
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noninformative uniform distributions are used here to ex-
press the absence of prior information, which makes all pos-
sible values of the parameter equally likely.

Equation (12) is similar to an ANOVA representation of
the original model (Sobol’ 1993), from which it is straight-
forward to express V [f (ξ)], the variance of f (ξ) as the sum
of the partial contribution of the inputs, as follows:

V
[
f (ξ)

]
=

s2
α∑
α

. (16)

The first-order sensitivity index Si and the total sensitivity
index STi are defined by

Si =
V
[
E
[
f (ξ)|ξi

]]
V
[
f (ξ)

] ∈ [0,1] (17)

STi =
E
[
V
[
f (ξ)|ξ−i

]]
V
[
f (ξ)

] ∈ [0,1] , (18)

where ξ−i = ξξi , E(|) is the conditional expectation operator
and V (|) the conditional variance. Si measures the amount of
variance of f (ξ) due to ξi alone, while STi ≥ Si measures
the amount of all contributions of ξi to the variance off (ξ),
including its cooperative nonlinear contributions with the
other parameters ξj . The input/output relationship is said to
be additive when STi = Si, ∀, i = 1, . . .,d , and in this case∑d
i=1Si = 1.
In the sequel, a PCE is constructed for each SP signal at

each observable time. The number of coefficients for a full
PCE representation is P = (d +p) !/(d!p!). The evaluation
of the PCE coefficients requires at least P simulations of
the nonlinear hydrogeophysical model. Note that P increases
quickly with the order of the PCE and the number of param-
eters. Hence, several sparse PCE representations, in which
only the significant coefficients are sought, have been pro-
posed in the literature in order to reduce the computational
cost of the estimation of the Sobol indices. For instance, Blat-
man and Sudret (2010) developed a sparse PCE representa-
tion using an iterative forward–backward approach based on
nonintrusive regression. Fajraoui et al. (2012) developed a
technique whereby only the sensitive coefficients (that affect
significantly model variance) are retained in the PCE. Re-
cently, Shao et al. (2017) developed an algorithm based on
Bayesian model averaging (BMA) to select the best sparse
PCE from a given data set using the KIC (Kayshap, 1982).
The main idea of this algorithm is to increase the degree of
an initial PCE progressively and compute the KIC until a sat-
isfactory representation of the model responses is obtained.
This algorithm is used hereafter to compute the sensitivity
indices of the SP signals.

3.2 GSA results

The SP responses are considered for uniformly distributed
parameters over the large intervals shown in Table 1. These

Figure 3. Time distribution of the SP variance at 5 cm (a) and 77 cm
(b) depth. The shaded area under the variance curve represents the
partial marginal contributions of the random input parameters; the
contribution of interactions between parameters is represented by
the blank region between the shaded area and the variance curve.

intervals include the reference values reported in Mboh et
al. (2012). The sensitivity indices of the six input parame-
ters (Ks,θrα,n,na,Csat) are estimated using an experimental
design formed by N = 212

= 4096 parameter sets. The order
of the sparse PCE is automatically adapted for each observ-
able time and location. For some observable times, the PCE
is highly sparse; it reaches a degree of 31 but only contains
112 nonzero coefficients.

Figure 3 depicts the temporal distribution of the stream-
ing potential variance, represented by the blue curve, and the
relative contribution of the parameters, represented by the
shaded area. This figure corresponds to the temporal ANOVA
decomposition for sensor 1 (5 cm from the soil surface) and

www.hydrol-earth-syst-sci.net/22/3561/2018/ Hydrol. Earth Syst. Sci., 22, 3561–3574, 2018
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Table 1. Reference values, lower and upper bounds for hydraulic and geophysical parameters.

Parameters Lower bounds Upper bounds Reference values

Ks (cm min−1) 0.1 2 0.495
θr (cm3 min−3) 0 0.2 0.045
α (cm−1) 0.01 0.2 0.145
n 1.5 7 2.68
na (–) 1 3 1.6
Csat ×

(
−10−7) (V Pa−1) 2 4 2.9

for sensor 4 (77 cm from the soil surface). Interactions be-
tween parameters are represented by the blank region be-
tween the variance curves and the shaded area. Note that be-
cause a Dirichlet boundary condition with zero SP is main-
tained at the outlet boundary, the variance of the SP signal is
zero at the bottom and reaches its maximum value near the
soil surface. Hence, the variance is higher for the first sensor,
located 5 cm from the soil surface (Fig. 3a) than for sensor 4,
located 77 cm from the soil surface (Fig. 3b).

The SP signals at different altitudes exhibit similar behav-
ior (Fig. 3). In the following, we comment on the results
of sensor 1 (Fig. 3a). Because Ks varies between 0.1 and
2 cm min−1, the saturated falling-head phase remains until
the ponding vanishes at tc =−Ls

Ks
ln
(

Ls
Ls+Lw

)
. Depending on

the value of Ks (see Table 1), tc varies between t1 = 20 min
and t2 = 403 min. Thus, in Fig. 3a, we can see that during
the first time period (t ≤ t1), the SP signal is strongly influ-
enced by the value of the parameter Csat. The first-order and
total sensitivity indices at t = 10 min (Table 2a) confirm that
only the saturated parametersKs and Csat are influential. Csat
is about 17 times more influential than Ks. As expected, the
remaining parameters have no influence during the first pe-
riod. The total variance is 0.72 mv, and there is no interaction
between the two parameters Ks and Csat since STi = Si for
both of them and

∑d
i=1Si = 1.

During the second period (t1 ≤ t ≤ t2), the flow is either
saturated or unsaturated depending on the value of Ks. Fig-
ure 3a shows that the variance of the SP signal exhibits its
maximum value around 2.4 mv, with strong influences of
the parameters Ks and Csat and weak interactions between
them (small blank region between the variance curve and the
shaded area). These results are confirmed by the sensitivity
indices calculated at t = 70 min and reported in Table 2a for
sensor 1. Both first-order and total sensitivity indices indi-
cate that Ks is the most influential parameter. The second
influential parameter is Csat, which has a total sensitivity in-
dex about 12 times less than Ks. The parameter α is irrele-
vant since its total sensitivity index is 109 times less than Ks
and its partial variance is Vi = Si ×Vi = 0.01 mv, which is
less than the 95 % confidence interval associated with the SP
measurement (±0.055mv). The total variance at t = 70 min
is calculated to be 2.17 mv, and the output–input relationship
is close to being additive since

∑d
i=1Si = 0.94, which means

that interactions between parameters exist but are not signif-
icant.

During the third period (t ≥ t2), the variance of the SP sig-
nal reduces to 0.3 mv (Fig. 3a) and significant interactions are
observed between parameters (large blank region between
the shaded area and the variance curve). Table 2a shows that
for t = 800 min, which corresponds to dry conditions, the to-
tal variance is 0.22. First-order sensitivity indices are very
small, except for θr. The latter is highly influential since it
has a significant first-order sensitivity index (Si = 0.27) and
a more significant total-sensitivity index (STi = 0.74). The
parameters Csat andKs are irrelevant as they have very small
first-order and total sensitivity indices. Further, strong inter-
actions are observed between the parameters since the sum
of the first-order indices is far from 1

(∑d
i=1Si = 0.47

)
. The

total sensitivity indices are significantly different from first-
order sensitivity indices for almost all parameters. For in-
stance, the ratio between these two indices is around 4 for α,
5 for na and 7 for n. The total sensitivity index of α remains
small (0.065), whereas significant total sensitivity indices are
obtained for n(STi = 0.27) and na (STi = 0.47), which indi-
cates that these two parameters are influential (although their
first-order sensitivity indices are small) because of the inter-
action between the parameters.

Figure 3b shows similar behavior for sensor 4 located
77 cm from the soil surface. The results in Table 2b indicate
that the total variance observed at t = 10, 70 and 800 min
are around 8 times less than for sensor 1. For the first time
period, the first and total sensitivity indices are identical to
those observed for sensor 1 since saturated conditions occur
inside the whole column and the same effect of Ks and Csat
can be observed whatever the location inside the column. For
the second time period, the sensitivity indices for sensor 4
(Table 2b) are similar to those observed for sensor 1. How-
ever, the results for the third time period show an improve-
ment of the relevance of the parameter α, with an increase
of both first and total sensitivity indices. Indeed, compared
to the results of sensor 1, both first-order and total sensitiv-
ity indices tripled. Moreover, the total sensitivity index for
α (STi = 0.22) becomes close to that of n(STi = 0.24).

In summary, the GSA applied to SP signals identifies
the influential parameters and their periods of influence and
shows that
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Table 2. The first-order sensitivity index Si and the total sensitivity index STi for the SP signal 5 (a) and 77 cm (b) below the soil surface at
different times.

Ks θr α n na Csat
(cm min−1) (cm3 min−3) (cm−1) (V Pa−1)

(a) Sensor 1 (5 cm from the soil surface)

t = 10 min (total variance= 0.72)

Si 0.055 0 0 0 0 0.942
STi 0.057 0 0 0 0 0.945

t = 70 min (total variance= 2.17)

Si 0.841 0.217 0.005 0.014 0.008 0.045
STi 0.894 0.043 0.008 0.028 0.021 0.078

t = 800 min (total variance= 0.224)

Si 0.053 0.266 0.015 0.038 0.094 0.008
STi 0.085 0.738 0.065 0.266 0.472 0.041

(b) Sensor 4 (77 cm from the soil surface)

t = 10 min (total variance= 0.094)

Si 0.055 0 0 0 0 0.942
STi 0.057 0 0 0 0 0.945

t = 70 min (total variance= 0.2744)

Si 0.839 0.015 0.014 0.013 0.005 0.053
STi 0.891 0.028 0.024 0.025 0.011 0.086

t = 800 min (total variance= 0.224)

Si 0.099 0.225 0.054 0.043 0.085 0.01
STi 0.138 0.621 0.218 0.238 0.379 0.043

– the parameter Csat is highly influential during the first
time period (t ≤ t1) during which no interactions are ob-
served between parameters;

– the parameter Ks is highly influential during the sec-
ond time period (t1 ≤ t ≤ t2) during which small inter-
actions occur between parameters;

– the parameters θr,n and na are influential during the
third time period (t ≥ t2) during which dry conditions
occur; during this period, strong interactions take place
between parameters;

– the parameter α has no influence on the SP signals dur-
ing the two first periods and presents a very small in-
fluence (Si = 0.015 and STi = 0.065) during the third
period on sensor 1 (near the surface of the column);

– the relevance of the parameter α improves with the dis-
tance from the soil surface, although the total variance
diminishes with respect to this distance. The influence
of α becomes significant (STi = 0.22) on sensor 4 (lo-
cated 77 cm from the soil surface) during the third pe-
riod.

4 Parameters’ estimation

4.1 MCMC and FOA approaches

Calibration of computer models is an essential task since
some parameters (like the Mualem–van Genuchten-shaped
parameters α and n) cannot be directly measured. In such
an exercise, the unknown model parameters are investigated
by comparing the model responses to the observations. Re-
cently, Mboh et al. (2012) showed that the inversion of SP
signals can yield an accurate estimate of the saturated hy-
draulic conductivity Ks, the MVG fitting parameters α and
n and the Archie saturation exponent (na). Moreover, they
showed that the quality of the estimation was comparable to
that obtained from the calibration of pressure heads. In their
study, Mboh et al. (2012) used the FOA approach with the
shuffled complex evolution optimization algorithm SCE-UA
(Duan et al., 1993).

As important as the determination of the optimal parame-
ter sets are the associated 95 % confidence intervals (CIs) to
quantify the uncertainty of the estimated values. The deter-
mination of CIs is not straightforward if the observed model
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responses are highly nonlinear functions of model parame-
ters (Christensen and Cooley, 1999). In the sequel, the pa-
rameter estimation is performed using two approaches: the
popular FOA approach and the Bayesian approach based on
the MCMC sampler. Contrarily to FOA, the MCMC method
is robust since no assumptions of model linearity or differen-
tiability are required. Furthermore, prior information avail-
able for the parameters can be included. MCMC provides not
only an optimal point estimate of the parameters but also a
quantification of the entire parameter space. Several MCMC
strategies have been developed for Bayesian sampling of
the parameter space (Gallagher and Doherty, 2007; Vrugt,
2016). In a groundwater and vadose zone modeling context,
the most widely used of these strategies is the Metropolis–
Hastings algorithm (Metropolis et al., 1953; Hastings, 1970).
It proceeds as follows (Gelman et al., 1996).

i. Choose an initial candidate x0
=
(
ξ0,σ 0) formed by the

initial estimate of the parameter set ξ0 and the hyperpa-
rameter σ 0 and a proposal distribution q that depends
on the previous accepted candidate.

ii. A new candidate xi =
(
ξ i,σ i

)
is generated from the

current one xi−1 with the generator q
(
xi
∣∣xi−1 ) asso-

ciated with the transition probability p
(
ξ i |ymes,σ

)
.

iii. Calculate p
(
ξ i |ymes,σ

)
and compute the ratio α =

p
(
ξ i |ymes,σ

)
q
(
xi
∣∣xi−1 )

p(ξ i−1|ymes,σ)q(xi−1|xi )
. Additionally, draw a random

number u ∈ [0,1] from a uniform distribution.

iv. If α ≥ u, then accept the new candidate, otherwise it is
rejected.

v. Resume from (ii) until the chain
{
x0, . . .,xk

}
converges

or a prescribed number of iterations imax is reached.

Many improvements have been proposed in the literature
to accelerate the MCMC convergence rate (e.g., Haario et al.,
2006; ter Braak and Vrugt, 2008; Dostert et al., 2009, among
others). Vrugt et al. (2009a, b) developed the DREAM
MCMC sampler based on the differential evolution–Markov
chain method of ter Braak (2006) to improve sampling ef-
ficiency. DREAM runs multiple Markov chains in paral-
lel and uses subspace sampling and outlier chain correction
to speed up MCMC convergence (Vrugt, 2016). Laloy and
Vrugt (2012) developed the DREAM(ZS) MCMC sampler, in
which a candidate for each chain is drawn from an archive of
past states denoted Z, which plays the role of the generator
q. Interested readers are referred to Vrugt (2016) for more
details about the properties and implementation of DREAM
and DREAM(ZS). In the current study, the DREAM(ZS) soft-
ware is used for the MCMC estimation of the hydrogeo-
physical parameters. Note that because of the large number
of model evaluations required, the MCMC method remains
rarely used in practical applications compared to the FOA
approach. Indeed, with FOA, the CIs are estimated once by

assuming that the Jacobian remains constant within the CIs.
This assumption was found to be reasonably accurate in non-
linear problems by Donaldson and Scnabel (1987). However,
recently, several authors stated that parameter interdepen-
dences and model nonlinearities violate this assumption (see,
for instance, Vrugt and Bouten, 2002; Vurgin et al. 2007;
Gallagher and Doherty, 2007; Mertens et al., 2009; Kahl et
al., 2015).

In the following, both MCMC and FOA approaches are
employed for the inversion of the highly nonlinear hydro-
geophysical problem using SP measurements.

4.2 Parameters estimation results

Hydrogeophysical parameters are estimated using the
DREAM(ZS) MCMC sampler (Laloy and Vrugt, 2012). In-
dependent uniform distributions are considered for model pa-
rameter priors and likelihood hyperparameters (see Table 1).
The parameter posterior distribution is written as

p(ξ |ymes,σ )∝ σ
−N exp

(
−

SS(ξ)
2σ 2

)
, (19)

where SS(ξ)=
∑N
k=1

(
y
(k)
mes− y

(k)
mod (ξ)

)2
is the sum of the

squared differences between the observed y(k)mes and modeled
y
(k)
mod SP signals at time tk for N , the total number of SP ob-

servations.
The DREAM(ZS) software computes multiple sub-chains

in parallel to thoroughly explore the parameter space. Taking
the last 25 % of individuals (when the chains have converged)
yields multiple sets used to estimate the updated parameter
distributions and therefore the optimal parameter values and
their CIs. In the sequel, the DREAM(ZS) MCMC sampler is
used with three parallel chains.

We assume that the saturated water content has been ini-
tially measured with a fair degree of accuracy. However,
instead of fixing its value (as in Kool et al. , 1987, van
Dam et al., 1994, and Nützmann et al., 1998, among oth-
ers), we assign a Gaussian distribution to θs to take asso-
ciated uncertainty and its effect on the estimation of the
rest of the parameters into account. It is assumed here that
the saturated water content was accurately measured to be
θs = 0.43 cm3 cm−3 by weighing the saturated soil. The cor-
responding error measurements are independently and nor-
mally distributed with a zero mean and a standard devia-
tion σθ = 0.01 cm3 cm−3. Hence a Gaussian distribution is
assigned to θs, with a mean value of 0.43 cm3 cm−3 and a
95 % CI [0.41− 0.45] cm3 cm−3. The rest of the hydrogeo-
physical parameters have noninformative uniform distribu-
tions over the ranges reported in Table 1. The error (mea-
surement) variance is also considered to be unknown and is
simultaneously estimated with the physical parameters. Two
scenarios are considered to check whether the FOA approach
can provide a reliable estimation of parameters and associ-
ated uncertainties for the highly nonlinear hydrogeophysi-
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Table 3. Estimated mean values (bold), confidence intervals (CIs)
and size of the posterior CIs (italic) with MCMC and FOA ap-
proaches for scenario 1.

MCMC FOA

Ks 0.49 0.49
(cm min−1) (0.487–0.498) (0.487–0.497)

0.01 0.01

θs 0.43 0.43
(cm3 min−3) (0.41–0.45) (0.41–0.45)

0.04 0.04

θr 0.046 0.046
(cm3 min−3) (0.025–0.068) (0.026–0.066)

0.04 0.04

α 0.14 0.14
(cm−1) (0.12–0.17) (0.12–0.16)

0.05 0.04

n 2.64 2.64
(2.54–2.77) (2.54–2.76)

0.23 0.22

na 1.64 1.64
(1.37–1.98) (1.38–1.90)

0.6 0.5

Csat 2.90 2.90
(V Pa−1) (2.89–2.91) (2.89–2.91)

0.02 0.02

cal problem investigated, both in the case of abundant data
(small uncertainty regions) and in the case of scarcity of data
(large uncertainty regions). In the first scenario, SP data col-
lected from the sensors located at the five locations are taken
into account for the calibration. In the second scenario, only
the SP data from the first sensor located 5 cm from the soil
surface serve as conditioning information for model calibra-
tion. Results of the MCMC sampler are compared to those of
the FOA approach for both scenarios.

4.2.1 Scenario 1: inversion using all SP measurements

Figure 4 shows the results obtained with MCMC when the SP
data of the five sensors are used for the calibration. The “on-
diagonal” plots in this figure display the posterior parameter
distributions, whereas the “off-diagonal” plots represent the
correlations between parameters in the MCMC sample. Fig-
ure 4 shows nearly bell-shaped posterior distributions for all
parameters. A strong correlation is observed between θr and
na (r = 0.98).

From the obtained MCMC sample, it is straightforward to
estimate the posterior 95 % confidence interval of each pa-
rameter. This as well as the mean estimate value of each pa-
rameter obtained with both MCMC and FOA approaches are
reported in Table 3.

Table 4. Estimated mean values (bold), confidence intervals (CIs)
and size of the posterior CIs (italic) with MCMC and FOA ap-
proaches for scenario 2.

MCMC FOA

Ks 0.49 0.49
(cm min−1) (0.481–0.495) (0.474–0.503)

0.014 0.029

θs 0.43 0.43
(cm3 min−3) (0.41–0.45) (0.41–0.45)

0.04 0.04

θr 0.053 0.053
(cm3 min−3) (0.011–0.093) (0.002–0.103)

0.08 0.1

α 0.13 0.13
(cm−1) (0.07–0.20) (-0.15–0.43)

0.13 0.58

n 2.54 2.56
(2.44–2.68) (2.44–2.68)

0.24 0.24

na 1.82 1.78
(1.36–2.41) (1.29–2.27)

1.05 0.98

Csat 2.89 2.89
(V Pa−1) (2.88–2.91) (2.88–2.91)

0.03 0.03

The results of this table show that the parameters are
well estimated from the SP measurements since (i) identi-
fied mean values are very close to the reference solution,
(ii) all confidence intervals include the reference solution and
(iii) the confidence intervals are rather narrow. The saturated
parameters Ks and Csat are very well estimated (with CIs
around 2 %) because of data collected during the falling-head
phase during which only these two parameters are influential.

The posterior CI of the parameter θs is similar to its prior
CI. The parameter α is reasonably well estimated, with a CI
around 35 %. Recall that this parameter had very small first-
order and total sensitivity indices for sensor 1 but had more
significant sensitivity indices for the sensors away from the
soil surface (see results for sensor 4 in Table 2b). The pa-
rameter θr is estimated with a CI around 90 % although it
was highly influential for all sensors (for instance, a first-
order sensitivity index of 0.27 and a total order of 0.74 for
sensor 1). The parameters n and na had similar GSA behav-
ior to small first-order sensitivities (0.038 and 0.094, respec-
tively, for sensor 1) and large total sensitivities (0.266 and
0.4715, respectively, for sensor 1); however, the inversion
shows that the parameter n is well estimated with a CI less
than 10 %, whereas the parameter na is less well estimated
with a CI around 35 %. These results suggest that GSA out-
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Figure 4. MCMC solutions in which all SP data are considered for the calibration. The diagonal plots represent the inferred posterior
probability distribution of the model parameters. The off-diagonal scatterplots represent the pairwise correlations in the MCMC drawing.

Figure 5. MCMC solutions in which calibration is performed using only SP data located 5 cm from the surface. The diagonal plots represent
the posterior probability distribution of the parameters. The off-diagonal scatterplots represent the pairwise correlations in the MCMC
drawing.
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comes should be interpreted with caution in the context of
parameter estimation since (i) a parameter which is not rel-
evant for the model output in one sensor can be influential
for another sensor and (ii) GSA does not presume the quality
of the estimation since two parameters with similar sensitiv-
ity indices can have a different quality of estimation with the
inversion procedure.

Further, the results of Table 3 show that FOA and MCMC
approaches yield similar mean estimated values. Moreover,
very good agreement is observed between FOA and MCMC
uncertainty bounds. Concerning the efficiency of the two cal-
ibration methods for this scenario, the FOA approach is by
far the most efficient method since it requires only 95 s of
CPU time. The MCMC method was terminated after 16 000
model runs, which required 14 116 s. The convergence was
reached at around 12 000 model runs. The last 4000 runs
were used to estimate the statistical measures of the poste-
rior distribution. Recall that contrarily to FOA, MCMC can
include prior information available for the parameters and al-
lows a quantification of the entire parameter space.

4.2.2 Scenario 2: inversion using only SP
measurements near the surface

In this scenario, the number of measurements used for the
calibration is strongly reduced. Only SP measurements from
sensor 1 (located 5 cm below the soil surface) are considered.

The results of MCMC are plotted in Fig. 5. The correlation
observed between θr and na decreases slightly to r = 0.95.
Almost bell-shaped posterior distributions are observed for
all parameters except for the parameters θr and α.

The results obtained with MCMC and FOA approaches
depicted in Table 4 show the following.

– The FOA approach yields accurate mean estimated val-
ues similar to MCMC results for all parameters.

– The MCMC and FOA mean estimated values are close
to the reference solution and to the previous scenario.
The maximum difference is observed for θr for which
the mean estimated value with scenario 2 is 15 % greater
than for scenario 1.

– The MCMC CIs for the parametersKs, θs, n andCsat are
close to the previous scenario. The parameters θs and n
are well estimated (CIs< 10 %) and the parameters Ks
and Csat are very well estimated (CIs≤ 5 %).

– Due to the reduction of the number of data used for
model calibration in scenario 2, the MCMC CIs for the
parameters na, α and θr are much larger than in the pre-
vious scenario. Indeed, compared to scenario 1, the CI
for na and θr increases by around 60 %, whereas the CI
of α is 3 times larger than for scenario 1.

– The FOA method yields accurate CIs for the parameters
θs, n, na and Csat, whereas it overestimates the CIs of

θr (by 24 %), Ks (by 100 %) and α (by 427 %). An un-
physical uncertainty region (including negative values)
is obtained for the parameter α.

These results show that the FOA can fail to provide realis-
tic parameter uncertainties and can yield larger CIs than their
corresponding nonlinear MCMC counterpart. Indeed, the lin-
earization in the FOA method assumes that the Jacobian re-
mains constant across the CIs. This assumption was fulfilled
for the first scenario in which a large number of measure-
ments ensured small uncertainty regions. However, the as-
sumption is not fulfilled for some parameters of the current
scenario because of the large uncertainty regions induced by
the reduction of the number of SP measurements.

Concerning the efficiency of the calibration methods, the
FOA required approximately 174 s of CPU time, and the
MCMC required many more runs to reach the convergence
than in the previous scenario. Indeed, the sampler was used
with 50 000 runs (35 000 runs were necessary to reach the
convergence).

5 Conclusions

In this work, a synthetic test case dealing with SP signals
during a drainage experiment has been studied. The test case
is similar to the laboratory experiment developed in Mboh
et al. (2012), involving a falling-head infiltration phase fol-
lowed by a drainage phase. GSA and Bayesian parameter
inference have been applied to investigate (i) the influence
of hydraulic and geophysical parameters on the SP signals
and (ii) the identifiability of hydrogeophysical parameters us-
ing only SP measurements. The GSA was performed using
variance-based sensitivity indices which allow the contribu-
tion of each parameter (alone or by interaction with other pa-
rameters) to the output variance to be measured. The sensitiv-
ity indices have been calculated using a PCE representation
of the SP signals. To reduce the number of coefficients and
explore PCE with high orders, we used the efficient sparse
PCE algorithm developed by Shao et al. (2017), which se-
lects the best sparse PCE from a given data set using the
Kashyap information criterion (KIC).

The GSA applied to SP signals showed that the parameters
Csat and Ks are highly influential during the first period cor-
responding to saturated conditions. The parameters θr, n and
na are influential when dry conditions occur. In such condi-
tions, strong interactions take place between these parame-
ters. The parameter α has a very small influence on the SP
signals near the soil surface but its sensitivity increases with
depth although the total variance decreases with depth.

Parameter estimation has been performed using MCMC
and FOA approaches to check whether FOA can provide a re-
liable estimation of parameters and associated uncertainties
for the highly nonlinear hydrogeophysical problem investi-
gated. All hydraulic (Ks, θr, α and n) and geophysical (na and
Csat) parameters can be reasonably estimated in the first sce-
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nario for which the whole SP data (measured at five different
locations) are used as conditioning information for the model
calibration. The confrontation with GSA results shows that
the latter should be interpreted with caution when used in the
context of parameter estimation since (i) a parameter which
is not relevant for the model output in one sensor can be influ-
ential for another sensor and (ii) GSA does not presume the
quality of the estimation since two parameters with similar
sensitivity indices can have a different quality of estimation
with the inversion procedure (see, for instance, parameters n
and na). Furthermore, although the studied problem is highly
nonlinear, the FOA approach provides accurate estimations
of both mean parameter values and CIs in the first scenario.
These results are identical to those obtained with MCMC.

When the number of SP measurements used for the cal-
ibration is considerably reduced (i.e., data are scarce), the
MCMC inversion provides larger uncertainty regions of the
parameters. The FOA approach yields accurate mean param-
eter values (in agreement with MCMC results) but inaccurate
and even unphysical CIs for some parameters with large un-
certainty regions.
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