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Abstract 35 

Clumping index (CI) is a measure of foliage aggregation relative to a random distribution 36 

of leaves in space. The CI can help with estimating fractions of sunlit and shaded leaves 37 

for a given leaf area index (LAI) value. Both the CI and LAI can be obtained from global 38 

Earth Observation data from sensors such as the Moderate Resolution Imaging 39 

Spectrometer (MODIS). Here, the synergy between a MODIS-based CI and a MODIS LAI 40 

product is examined using the theory of spectral invariants, also referred to as photon 41 

recollision probability (‘p-theory’), along with raw LAI-2000/2200 Plant Canopy Analyzer 42 

data from 75 sites distributed across a range of plant functional types. The p-theory 43 

describes the probability (p-value) that a photon, having intercepted an element in the 44 

canopy, will recollide with another canopy element rather than escape the canopy. We 45 

show that empirically-based CI maps can be integrated with the MODIS LAI product. Our 46 

results indicate that it is feasible to derive approximate p-values  for any location solely 47 

from Earth Observation data. This approximation is  relevant for future applications of 48 

the photon recollision probability concept for global and local monitoring of vegetation 49 

using Earth Observation data.   50 

51 

Keywords: Photon recollision probability; Foliage clumping index; Leaf area index; Multi-52 

angle remote sensing  53 

54 

55 

1. Introduction56 
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Clumping index (CI) is a measure of foliage aggregation relative to a random 57 

distribution of leaves in space (Nilson, 1971; Chen and Black, 1992). The CI is an 58 

important factor for the correct quantification of true leaf area index (LAI). The CI is also 59 

needed for estimating fractions of sunlit and shaded leaves in the canopy (Norman, 60 

1982) - an effective way for upscaling from leaf to canopy for modeling vegetation 61 

photosynthesis (Bonan et al., 2014; He et al., 2017; Jiang and Ryu, 2016). Global and 62 

regional scale CI maps have been generated from various multi-angle sensors (e.g. He et 63 

al., 2012; Pisek et al., 2010; 2013a; Wei and Fang, 2016) based on an empirical 64 

relationship with the normalized difference between hotspot and darkspot (NDHD) 65 

index (Chen et al., 2005). Ryu et al. (2011) suggested that the adequate representation 66 

of canopy radiative transfer, important for the simulation of gross primary productivity 67 

and evapotranspiration (Baldocchi and Harley, 1995), is possible by integrating CI with 68 

incoming solar irradiance and LAI from Moderate Resolution Imaging Spectrometer 69 

(MODIS) land and atmosphere products. It should be noted that the MODIS LAI/FPAR 70 

product (MOD15A2H) uses internal a set of non-empirical, stochastic equations for the 71 

parameterization of foliage clumping (Shabanov et al., 2003). Our objective is to find out 72 

if the MODIS LAI product with its non-empirical, stochastic clumping parameterization 73 

can be used together with empirically-based CI maps, e.g. for the calculation of 74 

sunlit/shaded fractions of LAI.  75 

Here, we assess the synergy between a MODIS-based CI (He et al., 2012) and a 76 

MODIS LAI product (Yan et al., 2016a,b) using the theory of spectral invariants or ‘p-77 

theory’ (Knyazikhin et al., 1998) along with raw LAI-2000/2200 Plant Canopy Analyzer 78 
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(PCA; LI-COR Biosciences, Lincoln, NE, USA) data from 75 sites surveyed across a range 79 

of plant functional types (PFTs). The p-theory predicts that the amount of radiation 80 

scattered (reflected or transmitted) within a canopy depends only on the wavelength 81 

and the spectrally invariant canopy structural parameter p. It can be interpreted as the 82 

probability of a photon, having intercepted an element in the canopy, to recollide with 83 

another canopy element rather than escape the canopy (Smolander and Stenberg, 84 

2005). The parameter p is linked to the foliage clumping (Stenberg et al., 2016). 85 

Simulation studies by Mõttus et al. (2009) and Smolander and Stenberg (2005) showed 86 

the recollision probability is closely related to LAI, with p-LAI relationships varying with 87 

the degree of clumping in the spatial distribution of leaf (needle) area. At a fixed LAI, p-88 

value is larger the more aggregated the leaves in a canopy, or the smaller the canopy CI. 89 

The p-theory is intuitive and connected to the radiative transfer theory through the 90 

eigenvalues of the radiative transfer equation (Knyazikhin et al., 1998). Stenberg et al. 91 

(2016) provide an excellent review of the photon recollision probability concept in 92 

modelling the radiation regime of canopies. 93 

94 

2. Materials and methods95 

2.1 Method 96 

Stenberg (2007) proposed to approximate a photon recollision probability for a 97 

canopy (p-value) from the Plant Canopy Analyzer (PCA) as: 98 

p=1-(i0/LAItrue)       (1)   99 
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where p is photon recollision probability, LAItrue is true leaf area index, and i0 is canopy 100 

interceptance (the portion of the incoming radiation (photons) that is intercepted by the 101 

leaves), which can be expressed as: 102 

 i0=1-t0        (2) 103 

where i0 and t0 are canopy interceptance and transmittance under diffuse, isotropic 104 

illumination conditions with constant directional intensity (Stenberg, 2007). Both i0 and 105 

t0 describe first interactions (with the canopy or the ground) only, and do not include 106 

photons which escape or interact again after being scattered from a leaf or the ground 107 

(Stenberg, pers. comm). Stenberg (2007) and Smolander and Stenberg (2005) further 108 

assume the canopy to have spherical leaf/shoot orientation and to be bounded 109 

underneath by a non-reflecting surface. t0 is obtained as:  110 

 (3) 111 

where          is the canopy gap fraction at zenith angle θ (averaged over azimuth angle 112 

and horizontal area). Eqs. (1,2) can be combined to give: 113 

(4) 114 

It should be noted that p as defined by Stenberg (2007) is a canopy structural 115 

characteristic which is independent of the above canopy radiation conditions. The PCA-116 

based LAI estimate (LAIPCA) is calculated here as the mean of the logarithms of the gap 117 

fraction values with clumping effects partially considered (Ryu et al., 2010): 118 

(5)119 
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 For the coniferous sites, the PCA estimate (LAIPCA) is further converted to true LAI using 120 

a shoot-scale grouping correction factor γE (LAItrue=LAIPCA*γE) before calculating p 121 

(Rautiainen et al., 2009).  122 

Alternatively, t0 can be also estimated for an effective zenith angle θ as a 123 

function of LAI, mean projection of unit foliage area (G) (Ross, 1981), and clumping 124 

index (CI) (Chen et al., 2005): 125 

t0(θ)=exp[-G(θ)CI LAItrue/cosθ]     (6) 126 

Combining Eqs. (1) and (2) with (6), photon recollision probability p can then be 127 

calculated with CI and LAI estimated from Earth Observation data as: 128 

p=1-(1- exp[-G(θ)CI LAItrue/cosθ])/LAItrue    (7) 129 

with G(θ)=0.5 and θ set as 57.3° to minimize the uncertainty about leaf angle 130 

orientation information (Pisek et al., 2013b) and assuming that t0 in Eq. (2) for the upper 131 

hemisphere can be approximated by t0 (57.3°). Eqs. (4) and (7) provide a simple way to 132 

evaluate the synergy of MODIS LAI (Yan et al., 2016a) and CI (He et al., 2012) products 133 

with independent PCA estimates. In case of needleleaf forests, Eq. (7) needs to be 134 

further modified when used in combination with the MODIS LAI product (LAIMODIS): 135 

p=1-(1- exp[-G(θ) CI γE LAIMODIS/cosθ])/(LAIMODIS γE)   (8) 136 

as vegetation clumping is not accounted for at the shoot scale in the original MODIS LAI 137 

product (Yan et al., 2016b).   138 

139 

2.2  MODIS LAI data 140 
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The current version of the MODIS LAI/FPAR product (MOD15A2H) is Collection 6 141 

(C6) (Yan et al., 2016a). The main algorithm is based on look-up tables (LUTs) simulated 142 

from a three-dimensional radiative transfer (3D RT) model (Knyazikhin et al., 1999; 143 

Myneni et al., 2002). The algorithm finds the best LAI and FPAR estimates with biome-144 

specific LUTs using daily land surface Bi-directional Reflectance Factors (BRFs) along with 145 

their uncertainties. A back-up empirical method utilizes relationships between the 146 

Normalized Difference Vegetation Index and LAI/FPAR to produce lower quality LAI 147 

estimates. The LAI value corresponding to the maximum FPAR is selected over the 148 

compositing period of four or eight days. Vegetation clumping in the 3D RT is accounted 149 

for at plant and canopy scales.  150 

The most important improvement in MOD15A2H C6 compared to previous 151 

versions is the increase from 1 km to 500 m spatial resolution. In addition, a new version 152 

of MODIS surface reflectances (MOD09GA C6) is used to replace the previous 1 km 153 

intermediate dataset (MODAGAGG). In C6 the 1 km static land cover input is replaced 154 

with new multi-year MODIS land cover product (MCD12Q1) at 500 m resolution. 155 

Only MODIS LAI retrievals produced with the main RT algorithm closest to the 156 

date of PCA measurements (see Section 2.4) were used in this study. 157 

158 

2.3 MODIS CI data 159 

He et al. (2012) derived a global CI map at 500 m spatial resolution using the red 160 

band (620-670 nm) from the MODIS BRDF Model Parameters product (MCD43A1; 161 

Schaaf et al., 2002). Since MODIS does not observe near the hotspot and the angular 162 
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kernels used to construct the MODIS BRDF product do not include the complete hotspot 163 

physics and consistently underestimate the hotspot, He et al. (2012) developed an 164 

approach to correct the MODIS hotspot magnitude with synchronous co-registered 165 

POLDER-3 data. After the MODIS hotspot correction, CI is derived using two coefficients 166 

calculated from the second-order polynomial fit of the tabulated relationship between 167 

CI and NDHD by Chen et al. (2005). He et al. (2012) assigned a single annual CI value, the 168 

median from its noisy seasonal trajectory, to each pixel in the final map. This global CI 169 

map is provided using the same pixel grid and projection as the MODIS LAI product 170 

(Section 2.2). 171 

 172 

2.4 Plant Canopy Analyzer data 173 

 Ryu et al. (2010) compiled raw PCA instrument data from 41 sites distributed 174 

across six plant functional types ranging from boreal to tropical ecoclimatic zones. PCA 175 

data from 34 sites from their synthesis data set were retained after assessing their 176 

suitability for our study (e.g. representativeness of the area at the scale of 177 

corresponding overlapping 500 m MODIS pixel footprint verified with Google Earth 178 

Engine (Gorelick et al., 2017); temporal overlap with MODIS LAI product) (Table 1). In 179 

addition to the retained sites from Ryu et al. (2010), PCA measurements from 41 180 

additional sites were included in this study. The available raw PCA data were used to 181 

approximate p-value at each site using Eq. (4). The corresponding γE values for given 182 

coniferous species were obtained from literature and are provided in Table 1. 183 

Table 1. Characteristics and results for 75 sites with raw PCA measurements. PFT is plant 184 

functional type. Lat is latitude (in degrees). Lon is longitude (in degrees). PCA is Plant 185 
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Canopy Analyzer. LAIPCA is LAI estimate from PCA data. p is the photon recollison 186 

probability. γE is the needle-to-shoot area ratio. 187 
PFT Country Site name Lat Lon Species raw PCA data source LAIPCA t0 p γE 

CRO Austria Marchfeld_B 48.16N 16.7E Beet Vuolo et al. (2016) 2.87 0.095 0.72   

CRO Austria Marchfeld_M 48.18N 16.92E Maize Vuolo et al. (2016) 3.10 0.089 0.72   

CRO Austria Marchfeld_W 48.18N 16.91E Wheat Vuolo et al. (2016) 0.55 0.683 0.48   

CRO China Heilongjiang 48.13N 126.96E Corn Qu et al. (2016) 0.72 0.548 0.42   

CRO Costa Rica Aquiares 9.93N 83.71W Coffee Taugordeau et al. (2014) 2.66 0.107 0.70   

CRO Japan Nagaoka 37.48N 138.78E Rice – early planted Kobayashi (unpublished) 2.72 0.124 0.70   

CRO Japan Nagaoka 37.48N 138.78E Rice – later planted Kobayashi (unpublished) 2.84 0.111 0.71   

CRO Spain Barrax C-3 39.06N 2.09W Corn Verger et al. (2009) 0.36 0.746 0.35   

CRO Spain Barrax C-2 39.05N 2.09W Corn Verger et al. (2009) 0.42 0.715 0.37   

DBF Estonia Järvselja 58.29N 27.26E Silver birch Kodar et al. (2008) 3.78 0.081 0.76   

DBF Germany Hohes Holz 52.08N 11.22E Beech Piayda (unpublished) 4.44 0.025 0.79   

DBF Germany Merzalben 49.26N 7.8E Beech, oak Pueschel et al. (2012) 4.24 0.029 0.77   

DBF Italy Ro1 42.41N 11.93E Oak Tedeschi et al. (2006) 3.70 0.052 0.75   

DBF Italy Ro2 42.39N 11.92E Oak Tedeschi et al. (2006) 4.57 0.028 0.79   

DBF Japan Takayama 36.14N 137.42E Mongolian oak Nasahara et al. (2008) 3.66 0.045 0.74   

DBF Korea Gwangneung 37.76N 127.15E Oak Kwon (unpublished) 4.57 0.018 0.79   

DBF Switzerland Bettlachstock 47.23N 7.41E Beech Thimonier et al. (2010) 4.53 0.02 0.79   

DBF Switzerland Isone 46.13N 9.01E Beech Thimonier et al. (2010) 3.81 0.035 0.76   

DBF Switzerland Lausanne 46.58N 6.66E Beech Thimonier et al. (2010) 5.45 0.012 0.82   

DBF Switzerland Neunkirch 47.68N 8.53E Beech Thimonier et al. (2010) 3.76 0.04 0.75   

DBF Switzerland Schänis 47.16N 9.06E Beech Thimonier et al. (2010) 4.07 0.03 0.76   

DBF Switzerland Novaggio 46.01N 8.83E Oak Thimonier et al. (2010) 3.21 0.059 0.72   

DBF Switzerland Jussy 46.23N 6.28E Oak, hornbeam Thimonier et al. (2010) 4.12 0.031 0.78   

DBF USA Chestnut 35.93N 84.45W Chestnut Heuer (unpublished) 3.53 0.052 0.73   

DBF USA Harvard 42.53N 72.17W Oak Urbanski et al. (2007) 4.69 0.022 0.79   

DBF USA Coweeta 35.05N 83.45W Oak-hickory Hwang et al. (2009) 5.51 0.03 0.83   

EBF France Puechabon 43.74N 3.6E Oak Rambal et al. (2003) 3.06 0.081 0.70   

EBF Portugal Coruche 39.13N 8.33W Oak Piayda et. al (2015) 0.73 0.559 0.49   

EBF Thailand Kog-Ma 18.8N 98.9E Lithocarpus Tanaka et al. (2008) 3.65 0.048 0.74   

ENF Canada Scotty Creek 61.31N 121.3W Black spruce Sonnentag (unpublished) 0.83 0.514 0.75 1.36 

ENF Canada Thompson_1850 55.87N 98.47W Black spruce Serbin et al. (2009) 2.28 0.206 0.73 1.36 

ENF Canada Thompson_1930 55.89N 98.51W Black spruce Serbin et al. (2009) 2.07 0.214 0.63 1.36 

ENF Canada Campbell river 49.51N 124.9W Douglas fir - young Chen et al. (2006) 2.75 0.108 0.82 1.66 

ENF Estonia Järvselja 58.3N 27.24E Norway spruce Kodar et al. (2008) 3.12 0.095 0.82 1.42 

ENF Estonia Järvselja 58.3N 27.26E Scots pine Kodar et al. (2008) 2.51 0.156 0.80 1.7 

ENF Korea Gwangneung 37.76N 127.16E Korean pine Kwon (unpublished) 4.44 0.021 0.76 1.21 

ENF Norway Østmarka_1 59.81N 11.0E Norway spruce Solberg et al. (2009) 2.17 0.216 0.70 1.42 

ENF Norway Østmarka_2 59.81N 10.99E Norway spruce Solberg et al. (2009) 1.17 0.488 0.87 1.42 

ENF Norway Østmarka_3 59.82N 11.0E Norway spruce Solberg et al. (2009) 5.17 0.021 0.81 1.42 

ENF Norway Østmarka_5 59.82N 11.02E Norway spruce Solberg et al. (2009) 3.26 0.09 0.81 1.42 

ENF Norway Østmarka_6 59.82N 11.02E Norway spruce Solberg et al. (2009) 3.28 0.085 0.84 1.42 

ENF Norway Østmarka_7 59.81N 11.02E Norway spruce Solberg et al. (2009) 4.07 0.05 0.80 1.42 

ENF Norway Østmarka_8 59.83N 11.03E Norway spruce Solberg et al. (2009) 3.11 0.096 0.79 1.42 

ENF Norway Østmarka_9 59.83N 11.01E Norway spruce Solberg et al. (2009) 2.88 0.117 0.80 1.42 

ENF Norway Østmarka_6_2003 59.82N 11.02E Norway spruce Solberg et al. (2009) 3.15 0.104 0.87 1.42 

ENF Norway Østmarka_3_2003 59.82N 11.0E Norway spruce Solberg et al. (2009) 5.27 0.019 0.68 1.42 

ENF Norway Østmarka_2_2003 59.81N 10.99E Norway spruce Solberg et al. (2009) 0.95 0.561 0.78 1.42 

ENF Norway Østmarka_1_2003 59.81N 11.0E Norway spruce Solberg et al. (2009) 2.13 0.219 0.75 1.42 

ENF Switzerland Alptal 47.05N 8.71E Norway spruce Thimonier et al. (2010) 2.73 0.1 0.77 1.42 

ENF Switzerland Chironico 46.45N 8.81E Norway spruce Thimonier et al. (2010) 2.60 0.109 0.72 1.42 

ENF Switzerland Lens 46.26N 7.43E Scots pine Thimonier et al. (2010) 2.09 0.164 0.67 1.7 

ENF Switzerland Visp 46.3N 7.86E Scots pine Thimonier et al. (2010) 1.58 0.248 0.78 1.7 

ENF Switzerland Vordemwald 47.28N 7.88E Silver fir Thimonier et al. (2010) 3.64 0.05 0.79 1.91 

ENF USA US-NC2 35.48N 76.4W Loblolly pine Noormets et al. (2009) 4.23 0.034 0.87 1.21 

ENF USA Howland 45.21N 68.74W Red spruce Richardson (unpublished) 1.94 0.2 0.81 1.6 

ENF USA SJ57 47.13N 116.18W Cedar, spruce, larch, pine  Jensen et al. (2011) 2.18 0.175 0.65 1.01 

ENF USA 527 46.22N 116.79W Fir, pine, spruce, larch  Jensen et al. (2011) 1.94 0.189 0.59 1.01 
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GRA Canada Sandhill 53.79N 104.62W Sedges Sonnentag et al. (2010) 1.10 0.459 0.54   

GRA USA Vaira 38.41N 120.95W Annual grass Ryu et al. (2010) 0.99 0.416 0.53   

GRA USA Sherman 38.04N 121.75W Invasive weed Sonnentag (unpublished) 0.61 0.641 0.48   

MF Canada Timins 48.21N 82.15W Aspen, spruce, birch, fir Chen et al. (2006) 3.50 0.068 0.80 1.36 

MF Canada Thompson_1964 55.91N 98.38W Spruce, pine, aspen, willow Serbin et al. (2009) 1.55 0.305 0.65 1.36 

MF Canada Thompson_1981 55.85N 98.85W Willow, jack pine, aspen Serbin et al. (2009) 1.35 0.352 0.62 1.36 

MF Canada Thompson_1989_1 55.90N 98.95W Willow, jack pine, aspen Serbin et al. (2009) 0.91 0.489 0.58 1.36 

MF Canada Thompson_1989_2 55.91N 98.97W Willow, jack pine, aspen Serbin et al. (2009) 0.91 0.489 0.58 1.36 

MF Canada Thompson_1994 56.16N 96.71W Willow, jack pine, aspen Serbin et al. (2009) 0.68 0.578 0.53 1.36 

MF China SB 47.19N 128.87E Birch, larch, pine Liu et al. (2016) 2.32 0.179 0.74 1.08 

MF China SC 47.19N 128.89E Pine, birch, beech, elm Liu et al. (2016) 3.60 0.053 0.80 1.28 

MF China KP 47.18N 128.88E Pine, birch, larch Liu et al. (2016) 3.23 0.086 0.79 1.46 

MF China BK 47.18N 128.9E Pine, birch, maple, tilia Liu et al. (2016) 3.62 0.054 0.80 1.41 

MF Estonia Järvselja 58.29N 27.25E Birch, spruce Kodar et al. (2008) 3.59 0.06 0.81 1.42 

MF USA WPA 47.63N 122.29W Fir, maple, cedar, hemlock Richardson et al. (2009) 2.91 0.082 0.68 1.36 

OSH Canada Mer Bleue 45.4N 75.5W Shrub (peatland) Talbot et al. (2014) 2.69 0.104 0.68   

OSH Canada Thompson_2003 55.9N 98.18W Wild rose, fireweed Serbin et al. (2009) 0.48 0.671 0.41   

WSA USA Tonzi 38.43N 120.97W Blue oak Ryu et al. (2010) 0.68 0.583 0.47   

CRO: crop, DBF: deciduous broadleaf forest, EBF: evergreen broadleaf forest, ENF: evergreen needleleaf forest, GRA: grass, MF: mixed forest, 188 
OSH: open shrubland, WSA: woody savanna.    189 
 190 

3. Results and Discussion 191 

 The relationship between LAI and photon recollision probability p approximated 192 

with PCA data using Eq. (4) is shown in Fig. 1. The nature of the p-LAIPCA relationship is 193 

different between evergreen needleleaf (ENF) and other PFTs due to the inclusion of the 194 

shoot-scale correction factor (Chen, 1996). Compared to Rautiainen et al. (2009), the p-195 

values representing needleleaf stands with greater variety of tree species were more 196 

dispersed. Our results support the notion by Rautiainen et al. (2009) that establishing 197 

species-specific p-LAIPCA functions would require further research on the role of shoot-198 

scale (shoot level) clumping and its documented variability between species (e.g. Chen 199 

et al., 2006; Stenberg et al., 1999; 2001) on photon recollision probability. 200 



 11 

 201 

Fig. 1. Relationship between Plant Canopy Analyzer (PCA)-derived leaf area index 202 

(LAIPCA) and approximated photon recollision probability p. The abbreviations used in 203 

the figure legend are explained in the caption of Table 1. 204 

 205 

 206 

Fig. 2. Comparison between the transmittance (t0; Eq. (3)) and gap fraction from the 207 

fourth ring of Plant Canopy Analyzer (PCA) data. 208 

 209 

Eq. (7) assumes that t0 in Eq. (3) for the upper hemisphere can be approximated 210 

by t0 (57.3°). A regression between the gap fraction from the fourth ring (47–58° from 211 

zenith) and t0 obtained from all five rings (Eq. (3)) for all sites is shown in Fig. 2. The tight 212 

linear relationship close to the 1:1 line indicates that this ring alone (or 57.3° as its 213 

representative) is indeed a reasonable approximation for t0 of the upper hemisphere, 214 
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while simultaneously reducing the uncertainty introduced through an assumed leaf 215 

inclination angle distribution. It should be noted that previous research by Leblanc and 216 

Chen (2001) also found that the fourth ring itself provides a good approximation of 217 

LAIPCA under both direct and diffuse light conditions. 218 

Fig. 3A shows a strong linear relationship (R2=0.95; Mean Absolute Error (MAE)= 219 

0.018; intercept 0.0043) between the p-values derived from Eqs. (4) and (7) 220 

 221 

Fig. 3. Relationships between photon recollision probabilities p derived with Eqs. (4) and 222 

(7) using Plant Canopy Analyzer (PCA) data (A) and MODIS LAI C6 product (B) as LAI 223 

input into Eq. (7).   224 

 225 

using the PCA and γE data from Table 1 as the source of information about LAI, and CI 226 

values retrieved from He et al. (2012).  Fig. 3A confirms the agreement between the two 227 

approaches (Eqs. (4) and (7)) to obtain p-value. The observed variation stems mainly 228 

from the uncertainty in G-function, CI values and approximation of t0(57.3°) to t0 of the 229 

upper hemisphere (Fig. 2). The clumping may change with season (Sprintsin et al., 2011; 230 

Pisek et al., 2015; Lang et al., 2017), while He et al. (2012) provide only the seasonal 231 

trajectory median value. 232 
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The linear relationship close to the 1:1 line (slope 1.0093; intercept -0.034) 233 

between the p-values derived from PCA and MODIS-only data (Fig. 3B) suggests a 234 

general compatibility of MODIS LAI and CI maps by He et al. (2012). Our results supports 235 

that a) the MODIS algorithm indeed uses the recollision probability to account for 236 

clumping, and b) the approach integrating the empirically based CI information with 237 

MODIS LAI suggested by Ryu et al. (2011) appears to be feasible. The difference 238 

between Figs. 3A and 3B is the inclusion of the MODIS LAI product in the latter one. 239 

Since the clumping in MODIS LAI is accounted for at the plant and canopy scales only, 240 

knowledge about the shoot-scale grouping correction factor γE is needed to retrieve the 241 

non-underestimated p-values in case of needleleaf forests.  242 

 243 

 244 
Fig. 4. Relationship between Plant Canopy Analyzer (PCA)-derived leaf area index 245 

(LAIPCA) and MODIS LAI C6 product (LAIMODIS). Both PCA and MODIS LAI data are not 246 

corrected for the shoot-scale grouping correction factor γE.. 247 

 248 

 Fig. 4 shows the scatterplot between LAI estimates from PCA and MODIS LAI C6 249 

product. The increase in mean absolute error in Fig. 3B (MAE=0.049) compared to Fig. 250 

3A (MAE=0.018) is linked to the different estimates and sources of LAI information for 251 
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Eq. (4) (PCA) and Eqs. (7) and (8) (MODIS LAI) as illustrated in Fig. 4. Furthermore, Fig. 1 252 

shows that accurate LAI information for photon recollision probability estimation is 253 

particularly critical at lower LAI values. Since reflectance values are not saturated within 254 

LAI range of 0-2, LAI algorithms perform well within this domain (Yan et al., 2016b) and 255 

should be able to provide high quality input data. Importantly, it should be verified if the 256 

LAI input indeed corresponds to true LAI. 257 

Our findings illustrate that it might be possible to obtain approximate p-values 258 

for any location solely from Earth Observation data, given availability of high quality LAI 259 

retrievals. In the future, the relationship could be possibly strengthened by further 260 

improved CI retrieval algorithms from Earth Observation data (e.g. Wei and Fang, 2016), 261 

by accounting for seasonal variation of clumping (He et al., 2016) and by knowing site 262 

specific G-function values (Raabe et al., 2015). It is envisioned that our findings provide a 263 

stimulus for future applications of the photon recollision probability concept for global 264 

and local monitoring of vegetation using Earth Observation data (Stenberg et al., 2016).   265 

 266 

4. Conclusion 267 

 Our results indicate that the integration of a MODIS LAI product with empirically-268 

based CI maps is feasible. Their synergy was assessed using the p-theory along with raw 269 

LAI-2000/2200 Plant Canopy Analyzer data gathered across a wide range of plant 270 

functional types. Importantly, for the first time it is shown that it might be possible to 271 

obtain approximate p-values for any location solely from Earth Observation data. This 272 

approximation is relevant for future applications of photon recollision probability 273 
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concept for global and local monitoring of vegetation using Earth Observation data 274 

(Stenberg et al., 2016).   275 
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Abstract 35 

Clumping index (CI) is a measure of foliage aggregation relative to a random distribution 36 

of leaves in space. The CI can help with estimating fractions of sunlit and shaded leaves 37 

for a given leaf area index (LAI) value. Both the CI and LAI can be obtained from global 38 

Earth Observation data from sensors such as the Moderate Resolution Imaging 39 

Spectrometer (MODIS). Here, the synergy between a MODIS-based CI and a MODIS LAI 40 

product is examined using the theory of spectral invariants, also referred to as photon 41 

recollision probability (‘p-theory’), along with raw LAI-2000/2200 Plant Canopy Analyzer 42 

data from 75 sites distributed across a range of plant functional types. The p-theory 43 

describes the probability (p-value) that a photon, having intercepted an element in the 44 

canopy, will recollide with another canopy element rather than escape the canopy. We 45 

show that empirically-based CI maps can be integrated with the MODIS LAI product. Our 46 

results indicate that it is feasible to derive approximate p-values  for any location solely 47 

from Earth Observation data. This approximation is  relevant for future applications of 48 

the photon recollision probability concept for global and local monitoring of vegetation 49 

using Earth Observation data.   50 

 51 

Keywords: Photon recollision probability; Foliage clumping index; Leaf area index; Multi-52 

angle remote sensing  53 

 54 

 55 

1. Introduction  56 
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 Clumping index (CI) is a measure of foliage aggregation relative to a random 57 

distribution of leaves in space (Nilson, 1971; Chen and Black, 1992). The CI is an 58 

important factor for the correct quantification of true leaf area index (LAI). The CI is also 59 

needed for estimating fractions of sunlit and shaded leaves in the canopy (Norman, 60 

1982) - an effective way for upscaling from leaf to canopy for modeling vegetation 61 

photosynthesis (Bonan et al., 2014; He et al., 2017; Jiang and Ryu, 2016). Global and 62 

regional scale CI maps have been generated from various multi-angle sensors (e.g. He et 63 

al., 2012; Pisek et al., 2010; 2013a; Wei and Fang, 2016) based on an empirical 64 

relationship with the normalized difference between hotspot and darkspot (NDHD) 65 

index (Chen et al., 2005). Ryu et al. (2011) suggested that the adequate representation 66 

of canopy radiative transfer, important for the simulation of gross primary productivity 67 

and evapotranspiration (Baldocchi and Harley, 1995), is possible by integrating CI with 68 

incoming solar irradiance and LAI from Moderate Resolution Imaging Spectrometer 69 

(MODIS) land and atmosphere products. It should be noted that the MODIS LAI/FPAR 70 

product (MOD15A2H) uses internal a set of non-empirical, stochastic equations for the 71 

parameterization of foliage clumping (Shabanov et al., 2003). Our objective is to find out  72 

if the MODIS LAI product with its non-empirical, stochastic clumping parameterization 73 

can be used together with empirically-based CI maps, e.g. for the calculation of 74 

sunlit/shaded fractions of LAI.  75 

 Here, we assess the synergy between a MODIS-based CI (He et al., 2012) and a 76 

MODIS LAI product (Yan et al., 2016a,b) using the theory of spectral invariants or ‘p-77 

theory’ (Knyazikhin et al., 1998) along with raw LAI-2000/2200 Plant Canopy Analyzer 78 
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(PCA; LI-COR Biosciences, Lincoln, NE, USA) data from 75 sites surveyed across a range 79 

of plant functional types (PFTs). The p-theory predicts that the amount of radiation 80 

scattered (reflected or transmitted) within a canopy depends only on the wavelength 81 

and the spectrally invariant canopy structural parameter p. It can be interpreted as the 82 

probability of a photon, having intercepted an element in the canopy, to recollide with 83 

another canopy element rather than escape the canopy (Smolander and Stenberg, 84 

2005). The parameter p is linked to the foliage clumping (Stenberg et al., 2016). 85 

Simulation studies by Mõttus et al. (2009) and Smolander and Stenberg (2005) showed 86 

the recollision probability is closely related to LAI, with p-LAI relationships varying with 87 

the degree of clumping in the spatial distribution of leaf (needle) area. At a fixed LAI, p-88 

value is larger the more aggregated the leaves in a canopy, or the smaller the canopy CI. 89 

The p-theory is intuitive and connected to the radiative transfer theory through the 90 

eigenvalues of the radiative transfer equation (Knyazikhin et al., 1998). Stenberg et al. 91 

(2016) provide an excellent review of the photon recollision probability concept in 92 

modelling the radiation regime of canopies. 93 

 94 

2. Materials and methods 95 

2.1 Method 96 

 Stenberg (2007) proposed to approximate a photon recollision probability for a 97 

canopy (p-value) from the Plant Canopy Analyzer (PCA) as: 98 

p=1-(i0/LAItrue)       (1)   99 
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where p is photon recollision probability, LAItrue is true leaf area index, and i0 is canopy 100 

interceptance (the portion of the incoming radiation (photons) that is intercepted by the 101 

leaves), which can be expressed as: 102 

 i0=1-t0        (2) 103 

where i0 and t0 are canopy interceptance and transmittance under diffuse, isotropic 104 

illumination conditions with constant directional intensity (Stenberg, 2007). Both i0 and 105 

t0 describe first interactions (with the canopy or the ground) only, and do not include 106 

photons which escape or interact again after being scattered from a leaf or the ground 107 

(Stenberg, pers. comm). Stenberg (2007) and Smolander and Stenberg (2005) further 108 

assume the canopy to have spherical leaf/shoot orientation and to be bounded 109 

underneath by a non-reflecting surface. t0 is obtained as:  110 

                              
 

 
 

      (3) 111 

where          is the canopy gap fraction at zenith angle θ (averaged over azimuth angle 112 

and horizontal area). Eqs. (1,2) can be combined to give: 113 

     
                               

 
 
 

       
     (4) 114 

It should be noted that p as defined by Stenberg (2007) is a canopy structural 115 

characteristic which is independent of the above canopy radiation conditions. The PCA-116 

based LAI estimate (LAIPCA) is calculated here as the mean of the logarithms of the gap 117 

fraction values with clumping effects partially considered (Ryu et al., 2010): 118 

                                  
 

 
 

    (5) 119 
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 For the coniferous sites, the PCA estimate (LAIPCA) is further converted to true LAI using 120 

a shoot-scale grouping correction factor γE (LAItrue=LAIPCA*γE) before calculating p 121 

(Rautiainen et al., 2009).  122 

 Alternatively, t0 can be also estimated for an effective zenith angle θ as a 123 

function of LAI, mean projection of unit foliage area (G) (Ross, 1981), and clumping 124 

index (CI) (Chen et al., 2005): 125 

t0(θ)=exp[-G(θ)CI LAItrue/cosθ]     (6) 126 

Combining Eqs. (1) and (2) with (6), photon recollision probability p can then be 127 

calculated with CI and LAI estimated from Earth Observation data as: 128 

p=1-(1- exp[-G(θ)CI LAItrue/cosθ])/LAItrue    (7) 129 

with G(θ)=0.5 and θ set as 57.3° to minimize the uncertainty about leaf angle 130 

orientation information (Pisek et al., 2013b) and assuming that t0 in Eq. (2) for the upper 131 

hemisphere can be approximated by t0 (57.3°). Eqs. (4) and (7) provide a simple way to 132 

evaluate the synergy of MODIS LAI (Yan et al., 2016a) and CI (He et al., 2012) products 133 

with independent PCA estimates. In case of needleleaf forests, Eq. (7) needs to be 134 

further modified when used in combination with the MODIS LAI product (LAIMODIS): 135 

p=1-(1- exp[-G(θ) CI γE LAIMODIS/cosθ])/(LAIMODIS γE)   (8) 136 

as vegetation clumping is not accounted for at the shoot scale in the original MODIS LAI 137 

product (Yan et al., 2016b).   138 

 139 

2.2  MODIS LAI data 140 
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 The current version of the MODIS LAI/FPAR product (MOD15A2H) is Collection 6 141 

(C6) (Yan et al., 2016a). The main algorithm is based on look-up tables (LUTs) simulated 142 

from a three-dimensional radiative transfer (3D RT) model (Knyazikhin et al., 1999; 143 

Myneni et al., 2002). The algorithm finds the best LAI and FPAR estimates with biome-144 

specific LUTs using daily land surface Bi-directional Reflectance Factors (BRFs) along with 145 

their uncertainties. A back-up empirical method utilizes relationships between the 146 

Normalized Difference Vegetation Index and LAI/FPAR to produce lower quality LAI 147 

estimates. The LAI value corresponding to the maximum FPAR is selected over the 148 

compositing period of four or eight days. Vegetation clumping in the 3D RT is accounted 149 

for at plant and canopy scales.  150 

 The most important improvement in MOD15A2H C6 compared to previous 151 

versions is the increase from 1 km to 500 m spatial resolution. In addition, a new version 152 

of MODIS surface reflectances (MOD09GA C6) is used to replace the previous 1 km 153 

intermediate dataset (MODAGAGG). In C6 the 1 km static land cover input is replaced 154 

with new multi-year MODIS land cover product (MCD12Q1) at 500 m resolution. 155 

 Only MODIS LAI retrievals produced with the main RT algorithm closest to the 156 

date of PCA measurements (see Section 2.4) were used in this study. 157 

   158 

2.3 MODIS CI data 159 

 He et al. (2012) derived a global CI map at 500 m spatial resolution using the red 160 

band (620-670 nm) from the MODIS BRDF Model Parameters product (MCD43A1; 161 

Schaaf et al., 2002). Since MODIS does not observe near the hotspot and the angular 162 
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kernels used to construct the MODIS BRDF product do not include the complete hotspot 163 

physics and consistently underestimate the hotspot, He et al. (2012) developed an 164 

approach to correct the MODIS hotspot magnitude with synchronous co-registered 165 

POLDER-3 data. After the MODIS hotspot correction, CI is derived using two coefficients 166 

calculated from the second-order polynomial fit of the tabulated relationship between 167 

CI and NDHD by Chen et al. (2005). He et al. (2012) assigned a single annual CI value, the 168 

median from its noisy seasonal trajectory, to each pixel in the final map. This global CI 169 

map is provided using the same pixel grid and projection as the MODIS LAI product 170 

(Section 2.2). 171 

 172 

2.4 Plant Canopy Analyzer data 173 

 Ryu et al. (2010) compiled raw PCA instrument data from 41 sites distributed 174 

across six plant functional types ranging from boreal to tropical ecoclimatic zones. PCA 175 

data from 34 sites from their synthesis data set were retained after assessing their 176 

suitability for our study (e.g. representativeness of the area at the scale of 177 

corresponding overlapping 500 m MODIS pixel footprint verified with Google Earth 178 

Engine (Gorelick et al., 2017); temporal overlap with MODIS LAI product) (Table 1). In 179 

addition to the retained sites from Ryu et al. (2010), PCA measurements from 41 180 

additional sites were included in this study. The available raw PCA data were used to 181 

approximate p-value at each site using Eq. (4). The corresponding γE values for given 182 

coniferous species were obtained from literature and are provided in Table 1. 183 

Table 1. Characteristics and results for 75 sites with raw PCA measurements. PFT is plant 184 

functional type. Lat is latitude (in degrees). Lon is longitude (in degrees). PCA is Plant 185 
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Canopy Analyzer. LAIPCA is LAI estimate from PCA data. p is the photon recollison 186 

probability. γE is the needle-to-shoot area ratio. 187 
PFT Country Site name Lat Lon Species raw PCA data source LAIPCA t0 p γE 

CRO Austria Marchfeld_B 48.16N 16.7E Beet Vuolo et al. (2016) 2.87 0.095 0.72   

CRO Austria Marchfeld_M 48.18N 16.92E Maize Vuolo et al. (2016) 3.10 0.089 0.72   

CRO Austria Marchfeld_W 48.18N 16.91E Wheat Vuolo et al. (2016) 0.55 0.683 0.48   

CRO China Heilongjiang 48.13N 126.96E Corn Qu et al. (2016) 0.72 0.548 0.42   

CRO Costa Rica Aquiares 9.93N 83.71W Coffee Taugordeau et al. (2014) 2.66 0.107 0.70   

CRO Japan Nagaoka 37.48N 138.78E Rice – early planted Kobayashi (unpublished) 2.72 0.124 0.70   

CRO Japan Nagaoka 37.48N 138.78E Rice – later planted Kobayashi (unpublished) 2.84 0.111 0.71   

CRO Spain Barrax C-3 39.06N 2.09W Corn Verger et al. (2009) 0.36 0.746 0.35   

CRO Spain Barrax C-2 39.05N 2.09W Corn Verger et al. (2009) 0.42 0.715 0.37   

DBF Estonia Järvselja 58.29N 27.26E Silver birch Kodar et al. (2008) 3.78 0.081 0.76   

DBF Germany Hohes Holz 52.08N 11.22E Beech Piayda (unpublished) 4.44 0.025 0.79   

DBF Germany Merzalben 49.26N 7.8E Beech, oak Pueschel et al. (2012) 4.24 0.029 0.77   

DBF Italy Ro1 42.41N 11.93E Oak Tedeschi et al. (2006) 3.70 0.052 0.75   

DBF Italy Ro2 42.39N 11.92E Oak Tedeschi et al. (2006) 4.57 0.028 0.79   

DBF Japan Takayama 36.14N 137.42E Mongolian oak Nasahara et al. (2008) 3.66 0.045 0.74   

DBF Korea Gwangneung 37.76N 127.15E Oak Kwon (unpublished) 4.57 0.018 0.79   

DBF Switzerland Bettlachstock 47.23N 7.41E Beech Thimonier et al. (2010) 4.53 0.02 0.79   

DBF Switzerland Isone 46.13N 9.01E Beech Thimonier et al. (2010) 3.81 0.035 0.76   

DBF Switzerland Lausanne 46.58N 6.66E Beech Thimonier et al. (2010) 5.45 0.012 0.82   

DBF Switzerland Neunkirch 47.68N 8.53E Beech Thimonier et al. (2010) 3.76 0.04 0.75   

DBF Switzerland Schänis 47.16N 9.06E Beech Thimonier et al. (2010) 4.07 0.03 0.76   

DBF Switzerland Novaggio 46.01N 8.83E Oak Thimonier et al. (2010) 3.21 0.059 0.72   

DBF Switzerland Jussy 46.23N 6.28E Oak, hornbeam Thimonier et al. (2010) 4.12 0.031 0.78   

DBF USA Chestnut 35.93N 84.45W Chestnut Heuer (unpublished) 3.53 0.052 0.73   

DBF USA Harvard 42.53N 72.17W Oak Urbanski et al. (2007) 4.69 0.022 0.79   

DBF USA Coweeta 35.05N 83.45W Oak-hickory Hwang et al. (2009) 5.51 0.03 0.83   

EBF France Puechabon 43.74N 3.6E Oak Rambal et al. (2003) 3.06 0.081 0.70   

EBF Portugal Coruche 39.13N 8.33W Oak Piayda et. al (2015) 0.73 0.559 0.49   

EBF Thailand Kog-Ma 18.8N 98.9E Lithocarpus Tanaka et al. (2008) 3.65 0.048 0.74   

ENF Canada Scotty Creek 61.31N 121.3W Black spruce Sonnentag (unpublished) 0.83 0.514 0.75 1.36 

ENF Canada Thompson_1850 55.87N 98.47W Black spruce Serbin et al. (2009) 2.28 0.206 0.73 1.36 

ENF Canada Thompson_1930 55.89N 98.51W Black spruce Serbin et al. (2009) 2.07 0.214 0.63 1.36 

ENF Canada Campbell river 49.51N 124.9W Douglas fir - young Chen et al. (2006) 2.75 0.108 0.82 1.66 

ENF Estonia Järvselja 58.3N 27.24E Norway spruce Kodar et al. (2008) 3.12 0.095 0.82 1.42 

ENF Estonia Järvselja 58.3N 27.26E Scots pine Kodar et al. (2008) 2.51 0.156 0.80 1.7 

ENF Korea Gwangneung 37.76N 127.16E Korean pine Kwon (unpublished) 4.44 0.021 0.76 1.21 

ENF Norway Østmarka_1 59.81N 11.0E Norway spruce Solberg et al. (2009) 2.17 0.216 0.70 1.42 

ENF Norway Østmarka_2 59.81N 10.99E Norway spruce Solberg et al. (2009) 1.17 0.488 0.87 1.42 

ENF Norway Østmarka_3 59.82N 11.0E Norway spruce Solberg et al. (2009) 5.17 0.021 0.81 1.42 

ENF Norway Østmarka_5 59.82N 11.02E Norway spruce Solberg et al. (2009) 3.26 0.09 0.81 1.42 

ENF Norway Østmarka_6 59.82N 11.02E Norway spruce Solberg et al. (2009) 3.28 0.085 0.84 1.42 

ENF Norway Østmarka_7 59.81N 11.02E Norway spruce Solberg et al. (2009) 4.07 0.05 0.80 1.42 

ENF Norway Østmarka_8 59.83N 11.03E Norway spruce Solberg et al. (2009) 3.11 0.096 0.79 1.42 

ENF Norway Østmarka_9 59.83N 11.01E Norway spruce Solberg et al. (2009) 2.88 0.117 0.80 1.42 

ENF Norway Østmarka_6_2003 59.82N 11.02E Norway spruce Solberg et al. (2009) 3.15 0.104 0.87 1.42 

ENF Norway Østmarka_3_2003 59.82N 11.0E Norway spruce Solberg et al. (2009) 5.27 0.019 0.68 1.42 

ENF Norway Østmarka_2_2003 59.81N 10.99E Norway spruce Solberg et al. (2009) 0.95 0.561 0.78 1.42 

ENF Norway Østmarka_1_2003 59.81N 11.0E Norway spruce Solberg et al. (2009) 2.13 0.219 0.75 1.42 

ENF Switzerland Alptal 47.05N 8.71E Norway spruce Thimonier et al. (2010) 2.73 0.1 0.77 1.42 

ENF Switzerland Chironico 46.45N 8.81E Norway spruce Thimonier et al. (2010) 2.60 0.109 0.72 1.42 

ENF Switzerland Lens 46.26N 7.43E Scots pine Thimonier et al. (2010) 2.09 0.164 0.67 1.7 

ENF Switzerland Visp 46.3N 7.86E Scots pine Thimonier et al. (2010) 1.58 0.248 0.78 1.7 

ENF Switzerland Vordemwald 47.28N 7.88E Silver fir Thimonier et al. (2010) 3.64 0.05 0.79 1.91 

ENF USA US-NC2 35.48N 76.4W Loblolly pine Noormets et al. (2009) 4.23 0.034 0.87 1.21 

ENF USA Howland 45.21N 68.74W Red spruce Richardson (unpublished) 1.94 0.2 0.81 1.6 

ENF USA SJ57 47.13N 116.18W Cedar, spruce, larch, pine  Jensen et al. (2011) 2.18 0.175 0.65 1.01 

ENF USA 527 46.22N 116.79W Fir, pine, spruce, larch  Jensen et al. (2011) 1.94 0.189 0.59 1.01 
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GRA Canada Sandhill 53.79N 104.62W Sedges Sonnentag et al. (2010) 1.10 0.459 0.54   

GRA USA Vaira 38.41N 120.95W Annual grass Ryu et al. (2010) 0.99 0.416 0.53   

GRA USA Sherman 38.04N 121.75W Invasive weed Sonnentag (unpublished) 0.61 0.641 0.48   

MF Canada Timins 48.21N 82.15W Aspen, spruce, birch, fir Chen et al. (2006) 3.50 0.068 0.80 1.36 

MF Canada Thompson_1964 55.91N 98.38W Spruce, pine, aspen, willow Serbin et al. (2009) 1.55 0.305 0.65 1.36 

MF Canada Thompson_1981 55.85N 98.85W Willow, jack pine, aspen Serbin et al. (2009) 1.35 0.352 0.62 1.36 

MF Canada Thompson_1989_1 55.90N 98.95W Willow, jack pine, aspen Serbin et al. (2009) 0.91 0.489 0.58 1.36 

MF Canada Thompson_1989_2 55.91N 98.97W Willow, jack pine, aspen Serbin et al. (2009) 0.91 0.489 0.58 1.36 

MF Canada Thompson_1994 56.16N 96.71W Willow, jack pine, aspen Serbin et al. (2009) 0.68 0.578 0.53 1.36 

MF China SB 47.19N 128.87E Birch, larch, pine Liu et al. (2016) 2.32 0.179 0.74 1.08 

MF China SC 47.19N 128.89E Pine, birch, beech, elm Liu et al. (2016) 3.60 0.053 0.80 1.28 

MF China KP 47.18N 128.88E Pine, birch, larch Liu et al. (2016) 3.23 0.086 0.79 1.46 

MF China BK 47.18N 128.9E Pine, birch, maple, tilia Liu et al. (2016) 3.62 0.054 0.80 1.41 

MF Estonia Järvselja 58.29N 27.25E Birch, spruce Kodar et al. (2008) 3.59 0.06 0.81 1.42 

MF USA WPA 47.63N 122.29W Fir, maple, cedar, hemlock Richardson et al. (2009) 2.91 0.082 0.68 1.36 

OSH Canada Mer Bleue 45.4N 75.5W Shrub (peatland) Talbot et al. (2014) 2.69 0.104 0.68   

OSH Canada Thompson_2003 55.9N 98.18W Wild rose, fireweed Serbin et al. (2009) 0.48 0.671 0.41   

WSA USA Tonzi 38.43N 120.97W Blue oak Ryu et al. (2010) 0.68 0.583 0.47   

CRO: crop, DBF: deciduous broadleaf forest, EBF: evergreen broadleaf forest, ENF: evergreen needleleaf forest, GRA: grass, MF: mixed forest, 188 
OSH: open shrubland, WSA: woody savanna.    189 
 190 

3. Results and Discussion 191 

 The relationship between LAI and photon recollision probability p approximated 192 

with PCA data using Eq. (4) is shown in Fig. 1. The nature of the p-LAIPCA relationship is 193 

different between evergreen needleleaf (ENF) and other PFTs due to the inclusion of the 194 

shoot-scale correction factor (Chen, 1996). Compared to Rautiainen et al. (2009), the p-195 

values representing needleleaf stands with greater variety of tree species were more 196 

dispersed. Our results support the notion by Rautiainen et al. (2009) that establishing 197 

species-specific p-LAIPCA functions would require further research on the role of shoot-198 

scale (shoot level) clumping and its documented variability between species (e.g. Chen 199 

et al., 2006; Stenberg et al., 1999; 2001) on photon recollision probability. 200 
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 201 

Fig. 1. Relationship between Plant Canopy Analyzer (PCA)-derived leaf area index 202 

(LAIPCA) and approximated photon recollision probability p. The abbreviations used in 203 

the figure legend are explained in the caption of Table 1. 204 

 205 

 206 

Fig. 2. Comparison between the transmittance (t0; Eq. (3)) and gap fraction from the 207 

fourth ring of Plant Canopy Analyzer (PCA) data. 208 

 209 

Eq. (7) assumes that t0 in Eq. (3) for the upper hemisphere can be approximated 210 

by t0 (57.3°). A regression between the gap fraction from the fourth ring (47–58° from 211 

zenith) and t0 obtained from all five rings (Eq. (3)) for all sites is shown in Fig. 2. The tight 212 

linear relationship close to the 1:1 line indicates that this ring alone (or 57.3° as its 213 

representative) is indeed a reasonable approximation for t0 of the upper hemisphere, 214 
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while simultaneously reducing the uncertainty introduced through an assumed leaf 215 

inclination angle distribution. It should be noted that previous research by Leblanc and 216 

Chen (2001) also found that the fourth ring itself provides a good approximation of 217 

LAIPCA under both direct and diffuse light conditions. 218 

Fig. 3A shows a strong linear relationship (R2=0.95; Mean Absolute Error (MAE)= 219 

0.018; intercept 0.0043) between the p-values derived from Eqs. (4) and (7) 220 

 221 

Fig. 3. Relationships between photon recollision probabilities p derived with Eqs. (4) and 222 

(7) using Plant Canopy Analyzer (PCA) data (A) and MODIS LAI C6 product (B) as LAI 223 

input into Eq. (7).   224 

 225 

using the PCA and γE data from Table 1 as the source of information about LAI, and CI 226 

values retrieved from He et al. (2012).  Fig. 3A confirms the agreement between the two 227 

approaches (Eqs. (4) and (7)) to obtain p-value. The observed variation stems mainly 228 

from the uncertainty in G-function, CI values and approximation of t0(57.3°) to t0 of the 229 

upper hemisphere (Fig. 2). The clumping may change with season (Sprintsin et al., 2011; 230 

Pisek et al., 2015; Lang et al., 2017), while He et al. (2012) provide only the seasonal 231 

trajectory median value. 232 
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The linear relationship close to the 1:1 line (slope 1.0093; intercept -0.034) 233 

between the p-values derived from PCA and MODIS-only data (Fig. 3B) suggests a 234 

general compatibility of MODIS LAI and CI maps by He et al. (2012). Our results supports 235 

that a) the MODIS algorithm indeed uses the recollision probability to account for 236 

clumping, and b) the approach integrating the empirically based CI information with 237 

MODIS LAI suggested by Ryu et al. (2011) appears to be feasible. The difference 238 

between Figs. 3A and 3B is the inclusion of the MODIS LAI product in the latter one. 239 

Since the clumping in MODIS LAI is accounted for at the plant and canopy scales only, 240 

knowledge about the shoot-scale grouping correction factor γE is needed to retrieve the 241 

non-underestimated p-values in case of needleleaf forests.  242 

 243 

 244 
Fig. 4. Relationship between Plant Canopy Analyzer (PCA)-derived leaf area index 245 

(LAIPCA) and MODIS LAI C6 product (LAIMODIS). Both PCA and MODIS LAI data are not 246 

corrected for the shoot-scale grouping correction factor γE.. 247 

 248 

 Fig. 4 shows the scatterplot between LAI estimates from PCA and MODIS LAI C6 249 

product. The increase in mean absolute error in Fig. 3B (MAE=0.049) compared to Fig. 250 

3A (MAE=0.018) is linked to the different estimates and sources of LAI information for 251 
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Eq. (4) (PCA) and Eqs. (7) and (8) (MODIS LAI) as illustrated in Fig. 4. Furthermore, Fig. 1 252 

shows that accurate LAI information for photon recollision probability estimation is 253 

particularly critical at lower LAI values. Since reflectance values are not saturated within 254 

LAI range of 0-2, LAI algorithms perform well within this domain (Yan et al., 2016b) and 255 

should be able to provide high quality input data. Importantly, it should be verified if the 256 

LAI input indeed corresponds to true LAI. 257 

Our findings illustrate that it might be possible to obtain approximate p-values 258 

for any location solely from Earth Observation data, given availability of high quality LAI 259 

retrievals. In the future, the relationship could be possibly strengthened by further 260 

improved CI retrieval algorithms from Earth Observation data (e.g. Wei and Fang, 2016), 261 

by accounting for seasonal variation of clumping (He et al., 2016) and by knowing site 262 

specific G-function values (Raabe et al., 2015). It is envisioned that our findings provide a 263 

stimulus for future applications of the photon recollision probability concept for global 264 

and local monitoring of vegetation using Earth Observation data (Stenberg et al., 2016).   265 

 266 

4. Conclusion 267 

 Our results indicate that the integration of a MODIS LAI product with empirically-268 

based CI maps is feasible. Their synergy was assessed using the p-theory along with raw 269 

LAI-2000/2200 Plant Canopy Analyzer data gathered across a wide range of plant 270 

functional types. Importantly, for the first time it is shown that it might be possible to 271 

obtain approximate p-values for any location solely from Earth Observation data. This 272 

approximation is relevant for future applications of photon recollision probability 273 
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concept for global and local monitoring of vegetation using Earth Observation data 274 

(Stenberg et al., 2016).   275 
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