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Abstract – The latent period is a crucial life history trait, particularly for polycyclic plant diseases, because it determines 
how many complete monocycles could theoretically occur during an epidemic. Many empirical studies have focused on the 
variation of the latent period with pathogen or host genotype, or changes in response to environmental factors. The focus on 
these aspects is unsurprising, as these factors classically form the three parts of the epidemiological triangle. Experiments 
in controlled conditions are generally used to assess pathogenicity and host susceptibility, and also provide the opportunity 
to measure the distribution of latent periods in epidemiological systems. Once estimated for one or several pairs of host-
pathogen genotypes, the mean value of this important trait is usually considered to be fixed and is often used “as is” in 
epidemiological models. We show here that the latent period can display non-negligible variability over the course of a 
disease epidemic, and that this variability has multiple sources, some of which have complex, antagonistic impacts. We 
develop arguments for four sources of variation that challenge the implicit assumption that the latent period remains 
constant: daily fluctuations in leaf temperature, nature of inoculum, host stage or age of host tissues, intra-population 
competition and selection for aggressiveness traits. We focus on the wheat fungal disease Septoria tritici blotch 
(Zymoseptoria tritici), making use of empirical datasets collected during the first author’s own research projects and a 
targeted literature review. Such empirical epidemiological knowledge is new and potentially important for modelers. While 
some studies have demonstrated that the distribution of latent periods around the mean value has consequences for 
epidemiological dynamics, we show that it might also be important for epidemiological modelers to account for changes in 
this mean value during an annual epidemic. These results may be of critical importance for improving outbreak forecasting. 
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INTRODUCTION 

The latent period is defined as “the length of time 
between the start of the infection process by a unit of 
inoculum and the start of production of infectious 
units” (Madden et al., 2007). It contributes to the 
generation time of the pathogen, i.e. the length of 
time in between successive infections, analogously 
to the age of reproductive maturity of nonparasitic 
organisms. The importance of the latent period for 
understanding and predicting pathogen development 
has long been recognized in plant disease 
epidemiology (Vanderplank, 1963; Zadoks, 1972). It 
is a crucial life history trait and component of 
aggressiveness (Lannou, 2012), especially for 
polycyclic diseases, because it is one of the major 
determinants of the number of complete monocycles 
that could theoretically occur during an epidemic in 
a single season, which in turn impacts on the final 
intensity of the epidemic. This view is an over-
simplification in the case of pathogens for which 
disease cycles overlap. Other monocyclic parameters 
(infection efficiency, infectious period, sporulation 
intensity) are also important in the adaptive value of  

 
a pathogen species and in the predictability of the 
disease dynamics, but our objective here is not to 
assess and discuss the relative impacts of these traits 
on epidemics. 

The predictability of disease dynamics depends not 
only on the ability to assess accurately the mean 
length of the latent period but also its variability 
(Cunniffe et al., 2012; Thompson et al., 2016). 
Ferrandino (2012) clearly showed that the simple 
use of a population average for the latent period, and 
also for the infectious period (“the length of time 
between the start of production of infectious units 
and the end of production of infectious units”; 
Madden et al., 2007) is problematic. Using a 
theoretical model, he demonstrated that the time 
course of a single annual epidemic does not depend 
on the average values of the latent and infectious 
periods alone but is also critically dependent on the 
variance of these values about their respective means 
and the covariance between them. This work was 
followed up by a more detailed analysis showing 
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how the reproduction curves characterizing the 
production of progeny impact on the speed of an 
epidemic (Ferrandino, 2013).  

Compartmental models used for simulating plant 
disease epidemics (Kermack & McKendrick, 1927; 
van der Plank, 1963; Madden et al., 2007) often 
include an exposed compartment, containing hosts 
that are in a latent stage (infected but not yet 
infectious). The length of time that infected hosts 
spends in this compartment is usually assumed to be 
exponentially distributed, although other 
distributions (e.g. gamma distributions) have also 
been considered in compartmental models (Wearing 
et al., 2005; Cunniffe et al., 2012; Thompson et al., 
2016). These distributions are usually assumed to 
account for random variation between hosts, rather 
than systematic differences in latent periods due to 
e.g. interactions between a pathogen genotype and a 
host genotype (Viljanen-Rollinson et al. 2005). The 
mean value of the latent period is also usually 
assumed to remain constant throughout an epidemic. 
One exception is the model of citrus greening 
disease by Parry et al. (2014) in which the mean 
latent period is assumed to oscillate. 

In practice, the length of the latent period changes 
based on a number of factors. From experimental 
data, we have identified three origins of variability: 
(i) experimental uncertainty in the assessment 
(measurement errors and biases), (ii) phenotypic 
heterogeneity between individuals within a 
population (interindividual variance, due for 
instance to the inherent range of virulence or 
aggressiveness within the pathogen population), and 
(iii) variation in the conditions of disease expression, 
including those due to environmentally induced 
changes (phenotypic plasticity, whose expression 
can be amplified for instance by somatic differences 
in host tissue or differences in microclimate within 
the plant canopy). Many experimental studies in 
plant pathology have investigated variations in the 
latent period with pathogen or host genotype, or its 
plasticity in response to climatic factors, such as 
temperature and humidity (Davis & Fitt, 1994; 
Shaw, 1990; Tomerlin & Jones, 1983; Webb & 
Nutter, 1997). Such approaches are relevant, because 
these factors lie at the corners of the epidemiological 
triangle (host, pathogen, environment; Zadoks, 
1972). Most of these studies focused on a mean 
latent period with statistical features such as 
standard error (related to the definition of latent 
period that is used; see below) in order to reduce the 
uncertainty of the measure, but rarely on the 
extrinsic variance (i.e. not due to measurement 

biases, but due to the interindividual variability or 
the expression of phenotypic plasticity). 

There are few empirical data about the time periods 
over which the latent period of a plant pathogen 
population changes. However, such a change was 
detected over pluriannual scales in some cases, for 
example in poplar rust (Pinon & Frey, 2005). 
Focusing on soilborne plant pathogens, Leclerc et al. 
(2014) also noticed that there is little information 
about how the incubation period (the time between 
infection and symptom expression) varies 
temporally in a pathogen population. Interestingly, 
in that study, the latent period is fixed at zero. A 
similar observation could be made for the latent 
period – very few studies consider the possibility 
that the latent period of a pathogen population may 
display variability during an annual epidemic. 

Our goal here was to highlight key sources of short-
term variability in the latent period, that cause the 
length of the latent period to vary within a single 
epidemic season. To this end, we focused on four 
sources of variability in the development of the 
wheat pathogen Septoria tritici blotch (Zymoseptoria 
tritici), making use of empirical datasets collected 
during the first author’s own research projects and a 
targeted literature review. This fungal disease is 
particularly suitable for this analysis because the 
effects of several factors are now well-documented. 
Z. tritici is a cyclic heterothallic pathogen 
reproducing both sexually and asexually, resulting in 
infections initiated by two types of spores 
(ascospores and pycnidiospores), with relative 
contributions to the epidemic that change over the 
course of the year (Suffert et al., 2011). The 
pathogen population displays a high degree of 
genetic diversity (Linde et al., 2002) and there may 
be considerable phenotypic variability in the latent 
period between strains (Morais et al., 2015; 2016). 
Wheat has a long growth cycle and infections occur 
from early fall to late spring, under the influence of 
heterogeneous environmental selective pressures 
driven by abiotic conditions such as temperature 
(Lovell et al., 2004a), but also biotic conditions such 
as the physiological stage of wheat or its fertilization 
regime (Robert et al., 2005). As Septoria tritici 
blotch epidemics are polycyclic and result from the 
integration of many overlapping infection cycles, the 
latent period is a crucial fitness trait. The latent 
period is long, facilitating the quantification of any 
differences by in planta experiments and reducing 
uncertainty in those measurements, and the latent 
period may display signs of local adaptation to 
climatic  conditions (Suffert  et al., 2015).  The four  
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Figure 1 - Illustration of four sources of variability in the latent period (expressed in days post-inoculation [dpi] or in 
degree-days post-inoculation [ddpi] with a base temperature of 0°C) of the wheat pathogen Zymoseptoria tritici over the 
course of an annual epidemic. 

The latent period was calculated in panels 1a, 1c and 1d as the time between inoculation and the appearance of 5% of the 
maximum area covered by pycnidia, calculated by fitting a Gompertz growth curve to experimental data as described by 
Suffert et al. (2013). In panel 1b the latent period was characterized as the time between inoculation and the appearance of 
5% of the maximum number of pycnidia in each individual lesion, as described by Morais et al. (2015). 

1a. Effect of the daily mean wheat leaf temperature on the latent period of two Z. tritici populations (2 × 9 isolates collected 
from cv. Apache in two French regions; black diamond = Dijon in Burgundy; white diamond = Ploudaniel in Brittany) 
assessed after pycnidiospore inoculation on wheat adult plants cv. Apache. The thermal performance curve (the quadratic y 
= ax² + bx + c, with a =0.17, b = -6.28 and r² = 0.358 for Dijon and a = 0.09, b = -4.10 and r² = 0.548 for Ploudaniel) was 
adjusted using six replicates per temperature. 

1b. Length of the latent period of 12 Z. tritici isolates assessed after ascospore and pycnidiospore inoculation on wheat 
adult plants cv. Apache (from Morais et al., 2015). Each point corresponds to the mean of several values for pycnidiospore 
inoculation (vertical bars represent the standard deviation) and a single value for ascospore inoculation. This heterogeneity 
is due to the impossibility of replicating individual inoculation with a given Z. tritici genotype using the ascosporic form, 
contrary to the conidial form (Morais et al., 2015). Inclusion of replicates for the assessment of the latent period after 
ascospore inoculation would have made the differences that are currently being displayed far less evident. 

1c. The latent periods of Z. tritici populations (2 × 9 isolates collected from cv. Apache in two French regions; colored 
diamond = Dijon in Burgundy; white diamond = Ploudaniel in Brittany) assessed after pycnidiospore inoculation on wheat 
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seedlings and wheat adult plants cv. Apache for five different wheat cultivars: Apache (green), common to both Brittany 
and Burgundy; Altamira (red) and Paledor (yellow), mostly cultivated in Brittany; Arezzo (blue) and Altigo (brown), 
mostly cultivated in Burgundy. Each point represents the mean value from six replicates. The mean latent period was 298 ± 
41 ddpi on seedlings and 535 ± 66 ddpi on adult plants. Such differences should be taken into account carefully, especially 
for multifactorial modeling purposes, as the definition was not the same because of methodological constraints: the ways to 
assess the latent period (5% of the maximum percentage of area covered by pycnidia) was obtained for adult plants by 
fitting a logistic model (Suffert et al., 2013) to 17 points but was obtained for seedlings using raw data (5 points) without 
fitting a model. This difference could explain the low variance in latent period values assessed on seedlings compared to 
the equivalent measurements on adult plants. 

1d. The mean latent period of two Z. tritici subpopulations (2 × 15 isolates collected on seedlings cv. Soissons very early 
[Pi] in the epidemic and the upper leaf layers at the end of the same epidemic [Pf]), assessed under winter (on wheat 
seedlings cv. Soissons at 8.9°C) and spring (on adult plants cv. Soissons at 18.1°C) conditions. Asterisks indicate that the 
mean differs significantly between Pi and Pf (n = 30, P = 0.087; from Suffert et al., 2015). 

 

drivers of variability in the latent period are 
described below, and we also demonstrate that 
accounting for such variability is likely to change 
pathogen dynamics predicted by mathematical 
models. 

OPERATIONAL DEFINITIONS OF LATENT PERIOD 
CAN BE DIFFERENT 

The latent period is regularly measured differently 
by different plant disease experimenters. This 
contributes to the variability in the published 
literature, and makes it impossible to directly 
compare results. Aligning experimental procedures 
to allow for direct comparison between experiments 
might be assumed to be an important first step, and 
would be advisable in experiments that are similar to 
each other. However, complete homogenization is 
neither possible nor desirable. For example, certain 
definitions are better adapted than others to 
particular experimental setups because they make it 
possible to overcome methodological constraints. 
The latent period for Septoria tritici blotch is usually 
estimated at the scale of a lesion, as the time 
between inoculation and the appearance of the first 
pycnidium (Shearer & Zadoks, 1972; Armour et al., 
2004) or, for the sake of convenience, 5% of the 
final number of pycnidia or 5% of the maximum 
percentage of area covered by pycnidia (Suffert et 
al., 2013). Nevertheless, when several lesions rather 
than a single lesion are considered, particularly if 
methodological constraints make it necessary (e.g. 
impossibility of replicating individual inoculation 
with a given Z. tritici genotype using the ascosporic 
form, contrary to the conidial form; Morais et al., 
2015), the latent period is often estimated at the 
scale of a leaf, as the time between inoculation and 
the appearance of half of the eventual sporulating 
lesions (Shaw, 1990; Lovell et al., 2004a). Studies 
are often conducted by modelers who “search the 
literature” for experimental parameters to use. We 
therefore recommend that the operational definition 

used in a particular experiment is considered by 
modelers before being used directly. 

THE LATENT PERIOD CAN VARY WITH 
FLUCTUATIONS IN LEAF TEMPERATURE DESPITE 
AN IDENTICAL DAILY MEAN AIR TEMPERATURE 

The development of plant pathogens responds 
strongly to the temperature of the surrounding 
environment. The effects of temperature are so well 
recognized in plant epidemiology that linear thermal 
time (referring to the accumulation of degrees above 
a given base temperature over a specified period of 
time; Lovell et al., 2004b) is widely preferred over 
physical time for assessing and modeling disease 
development, particularly for Septoria tritici blotch. 
Consequently, the latent period is usually expressed 
in degree days rather than as a number of physical 
days. This accounts, for example, for the decrease in 
the latent period of Z. tritici estimated as a number 
of days over the spring epidemic period: a 350 
degree-day latent period (with a base temperature of 
-2.4°C; Lovell et al., 2004a) typically corresponds in 
average to 33 days in early spring (April) but only 
22 days in late spring (June) in France (average 
monthly temperature in Poissy, Yvelines; see 
https://en.climate-data.org). Taking into account the 
impact of temperature in this way is however not 
completely adequate because relationships between 
temperature and the efficiency or duration of a given 
epidemiological process are usually nonlinear and 
often not even monotonic. Consequently, the latent 
period, while assessed using thermal time, should 
not be considered constant in time, particularly if the 
time step used for the calculation is large (e.g. 
daily), for at least two reasons. 

First, thermal time is usually calculated from air 
temperature, whereas the development of foliar 
fungal pathogens, including Z. tritici, reacts more 
directly to leaf temperature (the temperature actually 
perceived by the fungus), which can be very 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 20, 2018. ; https://doi.org/10.1101/148619doi: bioRxiv preprint 

https://doi.org/10.1101/148619
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
5 

 

different from air temperature (Bernard et al., 2013). 
Leaf temperature is harder to measure than air 
temperature, but it can be estimated indirectly from 
soil-vegetation-atmosphere transfer (SVAT) models 
including data recorded at standard weather stations 
(Xiao et al., 2006). 

Second, the latent period is usually assessed under 
fluctuating temperature regimes, with a thermal 
scale based on the accumulation of daily mean 
temperatures. The effects of diurnal fluctuations are, 
therefore, not taken into account. Bernard (2012) 
established the impact of two patterns of leaf 
temperature variation, in which the mean 
temperatures were equal (18°C) but daily 
temperature ranges differed (±2°C and ±5°C), on the 
latent period of Z. tritici: the larger temperature 
range increased the latent period by 1.3 days on 

average. Similar results have been obtained for other 
plant pathogens (Scherm et al., 1994; Xu, 1999). 
The differences in pathogen development between 
constant and fluctuating environments are partly due 
to “rate summation” or the Kaufmann effect (Ruel & 
Ayres, 1999), a mathematical consequence of the 
nonlinear shape of thermal performance curves 
(TPCs). The length of the latent period under 
fluctuating temperatures can be predicted by 
integrating constant-temperature developmental 
rates over the fluctuating temperature regime (Hau et 
al., 1985; Xu et al., 1996): 

���� � � ��	�
���



�
 

where S is the accumulated development over the 
time interval [0, y], T(t) is temperature as function of 

 
Figure 2 - Hypothetical, theoretical distributions of the number of new lesions (on wheat plants, per m2 and per week) 
induced by a pathogen population consisting of different Z. tritici strains according to their latent period, taking into 
account the nature of the spores and the epidemic stage (a = early stage of the epidemic in December; b = intermediate 
stage of the epidemic in April, c = late stage of the epidemic in June). 

Red dotted lines correspond to ascospore-initiated lesions; blue dotted lines correspond to pycnidiospore-initiated lesions; 
solid lines are the cumulative curves. Curves were built with the hypothesis that the mean latent period is 505 ddpi for 
pycnidiospore infection and 557 ddpi for ascospore infection, based on the results obtained by Morais et al. (2015) and re-
shown in Fig. 1b. Both latent periods are assumed here to have a gamma distribution, with a similar variance for ascospore 
and pycnidiospore infections (α = 23 and β = 1.3 for ascospores, α = 11 β = 1.3 for pycnidiospores). The relative heights of 
the curves are not derived from experimental values, since such experiments do not exist, and should be considered as an 
approximate order of magnitude. This order of magnitude is inspired by the relative importance of the two types of spores 
to the epidemic over the growing season found in different studies based on experimental approaches (Hunter et al., 2001; 
Suffert & Sache, 2011; Duvivier et al., 2013; Morais et al., 2015), theoretical approaches (Eriksen et al.; 2001) or combined 
approaches (Duvivier, 2015). Overall, it is clear from the literature that the relative role of ascospores vs. pycnidiospores at 
the end of the season is dependent on the climatic conditions that year. Field reports describing infection of the uppermost 
(F1) and lowermost green leaves (F3–F4), but healthy middle leaves (F2) (C. Maumené, Arvalis-Institut du Végétal, 
Boigneville, France, pers. com.), could be explained by ascospore contaminations. Such observations were consistent with 
both experimental datasets and modeling results. The numbers of ascospores trapped by Eriksen et al. (2001) and Duvivier 
et al. (2013) suggest that ascospores can play an important role in late infection from mid-April to mid-June. The results of 
simulations by Eriksen et al. (2001) showed that the proportion of ascospore infection can reach 25% under the most 
favorable parameter combination. The results of simulations performed by Duvivier (2015), based on three dispersal 
mechanisms, showed that 50-58% of infections can be explained by wind-dispersed ascospores. The effect of host stage 
(Fig. 1c), which would likely shorten latent period at the early stage of the epidemic (a), was here not taken into account 
(see explanations in Fig. 1c). 
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time t and R(T(t)) is the development rate as a 
function of temperature. S is dimensionless and 
defined as zero initially and one at the completion of 
a process (i.e. appearance of the first pycnidia). 

Finally, degree-hours should be preferred over 
degree-days (ddpi) once the TPC of the latent period 
is available. 

The mean TPC of the latent period for Z. tritici was 
established empirically, with a limited number of 
fungal isolates, in natural (Shaw, 1990) and 
controlled conditions (Bernard et al., 2012). The 
variability of the latent period among pathogen 
populations of different geographic origins has never 
before been characterized in detail. The latent period 
TPCs presented in Fig. 1a were obtained from two 
groups of nine Z. tritici samples collected from two 
regions of France with different climates (Brittany 
and Burgundy). The thermal optimum differed 
between the two populations: <20°C for the isolates 
from Brittany, >21°C for the isolates from 
Burgundy. The effect of temperature on the latent 
period can differ between pathogen populations 
expressing local patterns of climatic adaptation. 

THE LATENT PERIOD DEPENDS ON HOST STAGE 
AND HOST TISSUE AGE 

An increase in the latent period with host 
development is classically observed for several plant 
pathogens, such as Puccinia hordei (Parlevliet, 
1975) and Puccinia striiformis (Tomerlin et al., 
1983). This finding is consistent with the lack of a 
univocal relationship between wheat 
seedling and adult plant resistance. For wheat rusts, 
for example, many resistance genes are expressed in 
adult plants but not in seedlings (McIntoch et al., 
1995). We assessed the latent periods of two groups 
of Z. tritici isolates collected in two climatically 
different regions of France (Brittany and Burgundy), 
on both seedlings and adult plants. We found a large 
difference between plants of different stages, with a 
mean latent period of 301 dd for seedlings and 534 
dd for adult plants (Fig. 1c). Moreover, other 
experimental studies have suggested that the 
susceptibility of wheat tissues varies with leaf layer 
for synchronous measurements (i.e. on the same 
date) on adult plants, probably due to differences in 
leaf age (interactions between the susceptibility of 
host tissues, natural senescence and nitrogen status; 
Ben Slimane et al., 2012; Bernard et al., 2013; 
Suffert et al., 2015). The increase in the latent period 
length with developmental stage (young vs. adult 
plants), and, more generally, with leaf age (time 
between leaf emergence and leaf infection), has been 
investigated in detail for Puccinia arachidis (Savary, 

1987). These findings provide further support for 
our contention that the latent period of a plant 
pathogen can vary over the course of an epidemic. 

THE LATENT PERIOD IS STRAIN-DEPENDENT AND, 
THEREFORE, AFFECTED BY COMPETITION WITHIN 
A LOCAL PATHOGEN POPULATION 

As mentioned above, the latent period depends on 
pathogen genotype. Variability within a local 
pathogen population may be high or low, according 
to the inherent structure of the population (clonality 
vs. sexual reproduction that typically leads to high 
levels of variability). Locally, at the scale of a single 
annual epidemic, some authors consider average 
aggressiveness, and, thus, latent period, to be stable 
(for a given type of spore). Suffert et al. (2015) 
showed that the mean latent period of Z. tritici 
pycnidiospores can vary significantly during a single 
annual epidemic: isolates collected on the upper leaf 
layers of wheat at the end of an epidemic have a 
shorter latent period than those collected from 
seedlings very early in the same epidemic. This 
difference in the latent period between strains, 
expressed under spring conditions (adult plants, 
warm temperature) but not under winter conditions 
(seedlings, cold temperature), suggested that strains 
with a shorter latent period are selected during the 
second part of the epidemic (spring), when the 
disease is propagated by the upward splash dispersal 
of spores (Fig. 1d). During this period, a short latent 
period is a key fitness trait conferring a real 
competitive advantage. These conclusions were 
corroborated by the significant decrease in between-
genotype variance for the latent period. The decrease 
in the mean latent period of a pathogen population 
over the course of the epidemic is consistent with the 
increase in other aggressiveness traits recorded for 
various fungal pathogens after a few cycles of 
asexual reproduction (Newton & McGurk, 1991; 
Villaréal & Lannou, 2000; Andrivon et al., 2007; Le 
May et al., 2012). Once again, these empirical 
findings support our key conclusion that the latent 
period of a plant pathogen can vary over the course 
of an epidemic. 

TEMPORAL VARIABILITY IN THE LATENT PERIOD 
IMPACTS ON EPIDEMIC DEVELOPMENT 

We have demonstrated that the latent period is likely 
to vary over the course of a plant disease epidemic, 
even within a single season. This was the main goal 
of this article. However, a key question is then 
whether or not this variability impacts on outbreak 
dynamics, and consequently whether or not temporal 
changes  in the  latent period  ought to be including  
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Figure 3 - Impact of variability in the latent period on plant pathogen dynamics. 

We model an epidemic using the classic Susceptible-Exposed-Infected (SEI) model in a host population consisting of S + E 
+ I = 1000 sites. A site on a leaf can be susceptible (S) i.e. healthy, exposed (E) or infected (I). Between growing seasons, 
which were considered to last 0.5 years each, there were off-seasons of the same length. In each off-season, 10% of 
infectious sites from the end of the previous growing season are assumed to found the initial infections (in the E class) at 
the start of the following season. In the case of a disease with dual reproduction modes such as Z. tritici, this means that 
10% of isolates that induced lesions are then involved in sexual reproduction and generate recombinants that have the 
capability of causing infections the following season. This proportion is, however, difficult to estimate and so we gave it an 
arbitrary value, keeping in mind however the case of Z. tritici (Suffert et al., 2015; 2018). 

3a. Schematic of the model. Equations for the within-season model are given by dS/dt = - βIS, dE/dt = βIS - (1/L(t))E, dI/dt 
= (1/L(t))E, where the function L(t) represents the length of the average latent period of the active pathogen population at 
time t days since the start of the season. In our analysis, we use the infection rate parameter value β = 3 × 10-5 per day. 

3b. The latent period lengths that we consider are: i) variable latent period case, L(t) = 40 - 0.11t days (solid black). ii) 
constant latent period case, L(t) = 30 days (dotted black); in the variable latent period case, the function L(t) is chosen so 
that the mean value is identical to that in the constant latent period case. Specifically, the length of the latent period 
decreases linearly between 40 days and 20 days, which are values consistent with observed latent periods for Z. tritici. 

3c. The number of infected sites, when the latent period varies linearly over the course of the season. The model is 
simulated over 50 seasons, starting from initial conditions S = 999, E = 1, I = 0. The black dashed line represents the 
number of infected sites at the end of each season in the long-term when the model settles into regular seasonal dynamics. 

3d. The number of infected sites, when the latent period is constant. The model is simulated over 50 seasons, starting from 
initial conditions S = 999, E = 1, I = 0. The black dashed line represents the number of infected sites at the end of each 
season in the long-term when the model settles into regular seasonal dynamics. The number of infected sites at the end of 
each season is 35.2% greater using a constant latent period than when a potentially more realistic variable latent period is 
used (cf. panel c). 
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mathematical modeling studies. 

We therefore considered the development of a plant 
disease outbreak at the field scale, both within a 
season and over the course of multiple seasons (Fig. 
3). The model tracks changes in the number of 
infected sites during the outbreak, where the term 
“site” refers to a unit of plant tissue that can sustain 
an infection and further infect other plant tissue 
(Savary & Willocquet, 2014). In this analysis, we 
were not intending to replicate the dynamics of 
successive Septoria tritici blotch epidemics, but 
rather to test using as simple a model as possible 
whether or not latent period variation drives 
pathogen dynamics that are different to dynamics 
that might be expected if a constant latent period is 
assumed. Even in our extremely basic model, we 
found that the number of infected sites each season 
can be different with variable and constant latent 
periods. This remained true even when the mean 
latent period averaged over the season was identical 
in each case (cf. Figs 3c and 3d). The mean length of 
the latent period in the (more realistic) variable 
latent period case might be used in a model with a 
constant mean latent period if measurements of the 
latent period are taken at random timepoints 
throughout a season. As we have shown, however, 
this will lead to an incorrect representation of 
disease dynamics compared to using a model in 
which the length of the latent period varies 
temporally during the epidemic. 

DISCUSSION 

In this article, we have provided empirical evidence 
to demonstrate that the mean latent period of a plant 
pathogen population can vary locally, in the short-
term. We have also shown that changes in the latent 
period can impact on the development of epidemics. 
Consequently, the mean latent period of the active 
part of a local pathogen population should not 
automatically be considered constant over the course 
of annual plant disease epidemics in future studies.  

A significant part of the variability in the length of 
the latent period is due to the interaction between the 
interindividual variance within a pathogen 
population and the expression of its phenotypic 
plasticity in response to environmental changes; in 
other words, it is biologically determined. Several 
empirical arguments justify this assertion as the 
sources of variation are numerous: daily fluctuations 
in leaf temperature, nature of the inoculum, host 
stage or age of host tissues, and selection for 
aggressiveness traits within a population to name but 
a few. Some of these sources of variation may have 
complex, antagonistic impacts. For example, the 

mean latent period may decrease over the course of 
an epidemic because of selection for aggressiveness 
traits driven by biotic or abiotic factors, for instance 
host stage and temperature (Suffert et al., 2015) in 
the case of Z. tritici. The latent period may also 
increase at the end of the epidemic due to changes in 
the ratio of the two spore types resulting from an 
increase in sexual reproduction before the end of the 
growing season (Eriksen et al., 2001; Duvivier, 
2015). Shaw (1990) suggested that the increase in 
the latent period that he observed at high mean 
temperatures reflects the adaptation of Z. tritici to 
local climatic conditions, such as the cool summers 
in the UK, and a physiological trade-off between an 
ability to grow rapidly at high temperatures and an 
ability to grow rapidly at low temperatures. This 
hypothesis is consistent with the conclusions of 
Suffert et al. (2015; 2018) that seasonal changes can 
drive short-term selection for fitness traits, recently 
confirmed by Boixel et al. (unpubl. data). However, 
Shaw’s results were obtained in field conditions, and 
are therefore also impacted on by a number of 
factors including host stage (the latent period is 
shorter on seedlings than on adult plants), the use of 
air temperature rather than leaf temperature (Bernard 
et al., 2013), and a greater amplitude of daily 
fluctuations during spring than during winter 
(Bernard, 2012). 

The experimental evidence presented here that 
challenges the assumption that the mean latent 
period of a local pathogen population remains 
constant over the course of an epidemic are original 
and useful for plant disease experimenters. While 
the direction (decrease or increase) and the 
biological causes of these variations are difficult to 
determine, and accurate characterization of 
variability in the latent period may require collection 
of additional data, modelers should consider that the 
mean latent period may not necessarily take a 
constant value throughout a plant disease outbreak. 
Directional variability in the length of the latent 
period, driven by biophysical processes such as the 
four sources of variation that we have identified, 
could be built into epidemiological models. 

Sources of short-term variability in the latent period 
could be analyzed further and potentially 
incorporated in the case of Z. tritici into three types 
of epidemiological models at least: (i) forecasting 
models used to simulate the development of annual 
epidemics and improve wheat protection strategies, 
e.g. taking into account secondary inoculum 
pressure to determine the optimal timings for 
effective fungicide sprays (e.g. Audsley et al., 2005; 
El-Jarroudi et al., 2009); (ii) mechanistic models 
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used as research tools for understanding the impacts 
of different epidemiological parameters and 
processes in driving infectious disease outbreak 
dynamics, for example discerning the relative 
importance of pycnidiospore and ascospore 
infections (e.g. Eriksen et al., 2001; Duvivier, 2015) 
or the dynamic interaction between plant 
architecture impacted by cropping practices 
(nitrogen fertilization, sowing density) and spore 
dispersal (Baccar et al., 2011); (iii) eco-evolutionary 
models over several epidemic seasons (Fig. 3) in 
which the latent period might evolve in response to 
selective pressures, for example thermal variation 
(Suffert et al., 2015; Anne-Lise Boixel, pers. com.). 
There may also be an evolutionary trade-off between 
intra- and inter-annual scales (Suffert et al., 2018), 
or an evolutionary optimum driven for instance by 
the level of nitrogen fertilization (Précigout et al., 
2017). 

We demonstrated the principle that including 
directional variability in the latent period, rather than 
making the common assumption that the mean latent 
period is constant throughout an epidemic, can 
change the behavior of a mathematical model (Fig. 
3). We chose to consider the simplest possible model 
in which there is a latent period – namely the SEI 
model – however of course forecasting would 
require a more detailed model adjusted for the 
specific system under consideration. Alterations 
might include features such as the spatial 
distribution of hosts and temporal changes in disease 
management strategies (control of inoculum sources, 
varietal diversification to limit adaptation of the 
pathogen population to the host, etc.). For Z. tritici 
specifically, more detailed models exist and could be 
used (e.g. Elderfield et al., 2017). However, we have 
demonstrated unequivocally the principle that 
variability in the latent period should be considered 
in future modeling studies. 

Of course, the values of other epidemiological 
parameters are also likely to vary temporally (e.g. 
the infection rate and infectious period). In theory, it 
might be possible to include variability in those 
factors, as well as to model complex features in 
detail such as individual lesion growth dynamics and 
variability between different leaf layers. However, 
epidemiological modeling requires some 
simplifications to be made for tractability, and so 
that the model can be parameterized. Deciding 
which factors to include is therefore a challenging 
balancing act. Here we have shown not only that the 
latent period can vary, but also that this variation 
may alter disease dynamics significantly. As a result, 
considering the impacts of the underlying 

assumption that the latent period is constant in basic 
models should be considered further in future work. 

Under some circumstances, including detailed 
descriptions of the latent period may not in fact 
increase the accuracy of model predictions. Cunniffe 
et al. (2012) proposed an extension to the generic 
SEIR model, splitting the latent and infectious 
compartments and thereby allowing time-varying 
infection rates and more realistic distributions of 
latent and infectious periods to be represented. Their 
results demonstrated that extending a model that has 
such a simplistic representation of the infection 
dynamics may not always lead to more accurate 
results. However, including accurate representations 
of epidemiological periods in models can be 
extremely important. Leclerc et al. (2014) conducted 
experiments on the soilborne pathogenic 
fungus Rhizoctonia solani in sugar beet and used 
spatially-explicit models to estimate the incubation 
period distribution. They showed that accurate 
information about the incubation period distribution 
can be critical in assessing the current size of an 
outbreak and the likely efficacy of proposed control 
interventions.  

We have demonstrated that the mean length of the 
latent period varies over the course of plant disease 
epidemics, and have identified some sources of 
variation in the context of Z. tritici. Further sources 
of variability are likely to exist in addition to those 
considered here. However, we hope that this study 
will prompt more detailed quantification of the 
variability in the latent period for a wide range of 
pathogens, as well as more detailed testing of the 
circumstances in which this variability should be 
included in modeling studies. We contend that this 
will lead to more accurate characterization of 
pathogen dynamics, which in turn might lead to 
more accurate disease control. This is of clear plant 
health importance. 
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