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Abstract

A better understanding of recent crop yield trendgeisessaryor improvingthe yield

and maintaining food securit$everal possible mechanisms have been investigated
recently in_ordeto explainthesteady growth in maize yield over the US Ga&eit,

but a“substantial fraction of the increasing trend reneimsve In this studytrends

in graip filling period (GFP) wereidentified and their relations with maize yield
increase were furthemalyzedBy using satellite data from 2000 to 2015, an average
lengthening.of GFP of 0.37 days per year was found over the region, which probably
results/fromvariety renewal Satistical analysisuggestshat longer GFRiccounted

for roughly onequarter 23%) of the yield increase trend by promoting kernel dry
matter accumulation, yéiadless yield benefit in hotter counties. Both official survey
data and_crop model simulations estimated a similar contribution of GFP trend to
yield. lfsgrowing degree days that determines the GFP continues to prolong at the
current ratesfor the next 50 yeayseld reduction will be lessened wi#t5% and 18%
longer GFP under Representative Concentration Pathway 2.6 (RCP 2.6) and RCP 6.0,
respectively. Howevetthis level ofprogressis insufficient tooffset yield losses in

future climates, because drought and heat stress during the GFP will become more
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prevalentand severerhis study highlightsthe need todevise multiple effective

adaptation strategie¢s withstand the upcoming challenges in food security.

I ntroduction

Agricultural“systera in many regionsmay be negatively impacted byngreasing
temperatureespecially when accounting for the nonlinear effectlmhate extremes
such as heat waves addughts Rattalino and Otegui, 201®orterand Semenoy
2005; Sanchezet al., 2014; Schlenker and Roberta009) which are predicted to
become increasingly frequeim a warner climate Higher-thanoptimal temperature
negatively impaa maizeyield throughaffecting reproductive structurgSieberset

al., 2015; Sieberset al., 2017, decreasing the Rubisamxtivation(CraftsBrandney
2002),'and increasing water strefisobell et al., 2013). Thus,to maintain or
potentially increase productivityagricultural systems must adapt to upcoming

warmepand:more extreme climates.

As the"world's largest producer of maittieg US hasseen asteadyincrease in maize
yieldssince the 1950s throughmprovements in agronomic practicegenetic
techrology andfavorable growing conditia despite interannuafield variability
related-toshot and drgummers(USDA, 2015. Several possible mechanisms have
been investigated in order to understand this increasing trend in yields, including
expansion_ofmore heattolerart cultivars QOriedonkset al., 2016), delayed foliar
senescencer staygreentraits (Thomasand Ougham2014, newcultivarsadapted to
higher'sewing densityDuvick, 2005;Tollenaar andVu, 1999, development opest
resistantmaize cultivars through geneticallyengineering NRC, 2010), enhanced
water use efficiency under rising atmospheric,Q@bell andField, 2008; Jiret al.,
2017)mand increase in accumulated solaadiation during the postlowering
phasgTollenaaret al., 2017). Adrought sensitivityanalysisover theUS Midwest
based onfield maize yielddata showed, however,higher sowing densityorought

aboutside effectthat field maize yield sensitivity to water strebscane increased
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(Lobell et al., 2014) In this contextit is necessary to understatite response of
maize yield in farmers’ fields to climate variation over time and theedlmwing

cropsmore effectivelyto adapt to the future climatshange.

Crop phenalogical developmeid essential for agriculturananagemenpractices
(Irmaket"al’;"2000),and reflects the combined effect of climate exposure and plant
physiologicaltraits McMasteret al., 2005).Specifically,this study focused on GFP,
acriticakkernel developmerdtagewhen plant growth and grain formatiensensitive

to stresgBaduAprakuy, 1983; Gkir, 2004;Cheikh 1994. In addition, kecause there

is atight positivecorrelationbetweerthe grain filling length(GFL) andthe final crop
yield (Tollenaaret al., 2017;BaduApraku, 1983)characterizing recent trends@¥L

may alsehelp explain yield trends.

Satellite _remote sensing observations suchthas vegetation indexerived from
moderateresolution imaging spectroradiome{®8tODIS) reflectance datprovidethe
opportunity to characterize the regioisable spatiotemporal patterns fa#ld crop
growthsstatus information, in particular phenological transition d&akamotcet al.,

2010). We used this longerm satellite data to generate spatigkplicit maize
phenological date fields. Maize phenological information was then integrated with a
crop model te understand the relationship between GFP trend and yield increase in the
historic period. Finally, the implication of longer maturity variety for sustainiagen

production under future climate scenarios was investigated.

Materialsand M ethods

In this studyy &ay Wide Dynamic Range Vegetation Indé@¥DRVI) derived from
MODIS reflectancedata(MOD09Q1 and MYD09Q1jrom 2000 to 201%wasused to
map trends in maize phenology lllinois, Indiana, lowa, Nebraska across the US
Midwest, which collectively account for half of the total US maize productMaize

yield keeps growing across the four states at the rate of 1.4% per year dwging thi
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104 period (Fig. 1).To extract maize phenology, shape model fitting (SMF) has been
105 shown as @ effective approach and wasalidated at both site and state level
106  (Sakamotaet al., 2010; Sakamotet al., 2014; Zenget al., 2016) On the other hand,
107  thresheldbased methods can be used to extract the starting and ending of growing
108 seasons#'more flexipl Thus, we developed andmplemented a hybrid method
109  combining"SMF and thresholuthsed analysis to generate 8 milleamplesof maize
110  phenolegcal datefrom MODIS WDRVI dataat 250250 m spatial resolutidrom
111 2000 to2015.

112

113  Satellite data. In this study, the ®lay time series of 250 whaily surface reflectance
114 MODIS"dataon board Earth Observing System (EQ®8)jra and Aqua satellite platforms
115  MODO09Q11(20002015) and MYDO09Q1 (2062015) Collection § was used. Four
116  tilesMODIS data(h10v04, h11v04, h10v05, h11V0&overingthe study aread(states:
117  Indiana,lllineis, lowa, Nebraskavere downloaded from NASAand Rocesses
118  DistributedActive Archive Center Although the dailysatellite observationsan better
119  capturethe phenologicalphase transition during maize growthe 8day composite
120  produes”in MOD09Q1 and MYDO09Q1were selected to minimize the impact of
121 clouds and haze.Generally, the MODIS 8day composite products were
122 systematically corrected fothe effects ofaerosollight scattering(Vermote and
123 Vermeulen 1999) Meanwhile the constrained viesangle maximum value composite
124 method guaranteethe quality of surface spectral reflectance data for e&atay
125  period ‘Hueteet al., 2002).Both 250m MOD09Q1 and MYD09Q1data consists of
126 red (R)-and-neanfrared (NIR) bands withraactualspatial resolution o231.7m.
127  Here a scaledWDRVI (Wide Dynamic Range Vegetation Indexjeneratedby
128  combining Terra and Aquaobservationsjs used to monitor the growing status of
129 maize, plants(Zeng et al., 2016), becaus&/DRVI is supposed to have a better
130  performance ircharacterizing seasonalomassdynamicsthan normalized difference
131 vegetation indeXNDVI), which is often saturated for dense vegetatinod a linear
132 relationshipwasidentified between WDRVI andhe green leaf area index (LAI) of
133 both maize and soybe@aitelson 2004;Gitelsonet al., 2007).The scaledVDRVI is
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134  calculatedwith the following equation:

[(a—1)+(a+1)xNDVI|
[(a+1)+(a—1)xNDVI] (1)

136 NDVI = (pyir — Prea)/(Pnir t Prea) (2)

137 Where pygzz7and py;r are the MODIS surface reflectance in the aad NIR bands,

135 WDRVI=100 *

138  respectively.A comparison of multiple vegetation indexes indicaté®RVI with
139  o=0.1 showed astrong linear correlation with corn green L&Buindin-Garciaet al.,
140 2012).Here.we also set as 0.1for WDRVI calculation.Before WDRVIcalculation,
141  the reflectance data were quatitifered using the banduglity control flags Only the
142  data pagsgithe highest quality control teistretained.

143

144  Crop location information. A cropland dynamic layer (CDL9panningrom 2000 to
145 2015 generated by USDMNASS was used to be as maize magkhe time spanof
146 NASSCDL.for Nebraska is from 2001 2015) The spatial resolution of the original
147  products of NASSCDL variedfrom year to yeadue todifferent satellite datebeing
148 used. Thesatellite data sets used to generBt&SSCDL over 2000-2005 and
149  2010-2015were obtained from Landsat/TM with 30 m resolution. Thased to
150 generatdNASS CDL over 20062009 were obtained frofResourcesal/AWIFS with
151 56 m resolutionThe CDLdata wadirstly projected to MODIS sinusoidal projection
152  and thenaggregated 281.7 m. @ onlyextracted th@henologicainformation over
153  the MQODIS pixels withthe correspondingnaize fractiorsurpassin@0% determined
154 by CDLyaggregation, which cahus suppresghe mixing effectof other vegetation
155  typestlikergrasses and soybed@he classification errors in the CDL dataght mix
156  non-<rops signal into the WDRVI calculation. However, previous study showed that
157 the influence of classification errors on maize phenological extraction can be
158  minimizedsat regional scal&Sakamotcet al., 2014) especially when a high threshold
159  value(here.it is 80%)vas applied tdilter mixing pixels.

160

161  Maize phenology and yield statistics data. USDA/NASS surveys crop progress and

162  condition based on questionnaires and publipleesent complete (area ratio) of crop

This article is protected by copyright. All rights reserved



163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

fields that have either reachemt completed a specific phenological stage, on
Agricultural Statistics DistrictsASD) or state leveljn a weekly report called the
Crop Progress Report (CPRhe state level phenology information is availabléim
USDA/NASS; Quick Stats 2.0 database.isThveekly reportedarea ratis were
interpolatedusing sigmoid function. Thiarget phenological stag (emerged, silking,
dent, and*mature stagesgre therdetermined aghe date when the interpolatacka
ratio reached 50% on a state le\{@bllenaaret al., 2017). The phenologcal dates

from CPR weraused as a reference to evaluhie MODISbased estimations

The countyievel corn grain yield dat@overing the 4 states (IL, IN, IA, NByere
obtainedfrom the Quick Stats 2.0atabase. The selected data period was from 2000

to 2015 The unit system for corn grain yieddbushel per acre (lbac).

Climate datas Daily precipitation minimum and maximum temperaturasd relative
humidity: dataat 4km resolutiorwas obtained from University of Idah&ridded
Surface Meteorological Data (Abatzogloy 2013)

(http://metdata.northwestknowledge.pett is a gridded product covering tHgS

continentand spanning from I® to 2016.This dataset is creatday combining
attributes. of two datasets: temporally rich dfatan the North American Land Data
Assimilation SystemPhase ZMitchell, 2004) (NLDAS-2), and spatiallyrich data

from theParameteelevation Regressions éndependent Slopes Mod@&aly et al.,

2008) (PRISM). After validated using extensiveetwork of weather stations across
the UnitedStates this dataset is proved to kaitable for landscapscale ecological
model. To be consistent with the climate data resolution, MODIS derived maize
phenology information is aggregated to 4 km by averaging all available maize
phenelogicaldate. Therthe climate variables like meaemperaturemean VPD and
mean precipitation during the vegetative period, grain filling period and total growth
period are estimated by integrating daily climate data over the correspondiodg) pe
according to MODIS deriveghase starting and ending date. VPD is estimated from
relative humidity and temperature data.
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Here GDD,a commonly usethetricasthe cumulativeahermal requiremerfor a crop
having experienced over the growing seadon maize, iscalculated fromdaily
temperature value#t is defined as the sum of all daily average temperatures over the
growing season in excess BfC. A base temperature @&°C and a maximum
temperature,of 3°C for maize were usgiiniry and Bonhomme, 1991%pecifically,
GDDcrnit"was~used to refer to the GDD requiremém@m start grain filling to

maturity.

Maize 'growing phase extraction. A shape modefitting (SMF) (Fig. 2), which
representghe generapattern ofcorn growthcharacterized byime-series WDRV|
was createdising asimilar procedure aprevious studySakamotcet al., 2010). The
shape model was defined by averagifigyears (2001 to 2010) & daysWDRVI
observations' from the irrigatembntinuous corrield at Mead, Nebrask operated by
the University of Nebraska Agultural Research and Development Cenfteen, he
shape '/madel was geometrically scaled &tidd to 8-day time series WDRVtata
using.the-fellowing equation:

h(x)=yscalex{g(xscaleX (x+tshift))}, 3)

where the functiomg(x) refers to thereliminarily defined shape modeinction and x

refers to WDRVI acquiring datélhe functionh(x) is transformed from the shape
model g(x)in'time- and VIaxis directions with the scaling parametessale,yscale,

and tshift. The scaling parameters weoptimaly estimatedby using ‘fminsearch’
function In Matlab R2015b to minimize thdiscrepancybetween the scaleshape

model h(x)and the WDRVI dataHere theroot mean square error (RMSE) between

the scaledshape modeh(x) and the WDRVI dat# used tayuantify thediscrepancy

The _dates of these key phenological stages, including emerged, silking, dent, and
mature datepwere determined from satellite data by optimizing the dates of emerged,
silking, dent, and mature stages, given thedafned datesDent stage is about 35 to

42 days after silking when 'milk line' gets close to the dent end of the kernel. Maturity

date is about 55 to 65 days after silking and kernel dry weight reaches its maximum
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(Abendroth et al. 2011). In the original study (Sakamoto et al., 2010), titefmed
dates were empirically determined based on the grbasdd phenology observations
and were set as 150, 200, 240 and 265 day of year of the reference growing season,

respectively. ;These parameters are also used in this stud

Althoughrtheprevious study showed SMF had a good estimation ophenologyat

site and state levelith RMSE of maizephenologicaktage estimatioat ASD-level
rangingdrom,1.6 (silking datejo 5.6 dayqdent datejZenget al., 2016), there is an
inevitablesproblem in this method that the linear scaling strategy with onty
parametersxgcaleandtshift) is too stiff and leads tmlenticaltrends in the £ritical
phenologicaldates. However, the US maize plants seems to have different or even
oppositetemporal shifts in differenphenologicaldates as reported b$acksand
Kucharik (2011) like an advance in planting and emergence date while delay in
maturity..date duringl981-2005. Thusa more flexible way to characterize the

differentsitrends in the foyghenologicatatess needed

Amongsthe numerous methods for deriving seasonal parameters from theetiese
vegetation indexthe threshold method, which assumes that a specific phenology will
startwhenthe vegetation indexalue exceeds a threshold, is widekedbecause it
generally keeps dates within a certain reasonable range and can achieve relatively
high accuracies. In general, threshold is ususglgctedbased orcrop types. In this

study the WDRVI of 18 is set as threshold basedtiwals when comparing the
estimation=with NASS reported emergence date and maturity date for 4 states. We
used a hybrid method by merging the advantage of SMF in extracting the sitkdng

dent dates and the threshold method in extracting the growing start (emergence) and
ending, (maturity) dateFig. 2). Furthermore, SMF was restricted to only fit WDRVI
curve for a specific range, where WDRVI is above its 40% peak value, so the
estimated parameters are maimglevantto the silking and dentingghenological
information. Before applying thé¢hreshold mdtod, the WDRVI curve is firstly
smoothed using a robust smoothsmgline approachto reduce the signal
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noise(Keenanet al., 2014). To minimize the impact of maize pixels contaminated by
clouds,cloud shadow and aerosol loading, a 3*3 windows is usett@otfie data. In

each 3*3 windows, only those with more than 4 maize pixels were selected for
phenolegyextraction, so there were multiple observational vegetation index data to
constrain the optimization model, which can timgrove the stability of pameters
estimationIn"addition, the searching boundary for the scaling parameter yscale and
xscalegywas empirically set as [0.4, 1.8] to ensure the extrattedologicaldate

within as reasonable range. Finally, approximate 8 million grids containing the 4
critical phenologicaldate over 16 years were retrieved. When the MODIS extracted
emergence date was aggregated to the state level and compared with the NASS CPR,
we found=arsystematic bias in emergence dates that MODIS estimated emergence
dates were7.6 days later than the NASS report date. This systematic bias might result
from the selection of WDRVI threshold. Then this systematic bias was deducted from
the MQODIS.derived emergence date before comparisemefthelessthe bias will

not influencethe esimation of grain filling starting and ending date. The state level
comparisons show a goafyreemenfor the four key phenological stagesth the

RMSErangingfrom 16 (silking date)to 4.4 daygdent date) (Table 1).

Finally,.the GFP and grain filling GDDcrit trend was analyzed in 4km gridtoell
keep consistent with the spatial resolution of climate data. This largesigeidhan
the orignalresolution of MODIS dat§250m)brings morephenologicakample for

trendanalysis, thus stronger statistical inferencanbemade.

Yield stability and GFP. Generalized additive regression model (GABN effective

and flexible method tocharacterizenonlineareffects of explanatory variablesas
used here to explore the relationship between yield stability and@Hicient of
variationand standard deviatioof county yield ovetime were alternativelyused to
represent the temporal stability of maize yidide model was constructed bdson R
package'mgcV’ (Wood 2006). The spline method was used as the smooth term. In
addition to GFP, climatic variables including muylgar mean precipitation, mean
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daily temperature and vapor pressure deficit (VPD) during GFP overZIX®were
also selected as theovariates Both county level GFP and the trends in GFP were
alternatéy used as thexplanatoryvariables, so the influence of the longer GFP in

space and GFP extension over time on yield stability explored

Crop model simulations. An agricultural system modelinglatform APSIM version

7.7 is used here to simulate the benefit of GFP extension under future climaligl. APS
can simulate a number of crops und#ferent climatic andmanagement conditions,
and henee”is used worldwide tddaess a range of researghestions related to
cropping systemgHolzworth et al., 2014) In particular, maize is simulated by the
APSIM=Maize module. The APSINVaize module is inherited from the
CERESMaize, with  some modifications on the stress repres#n, biomass
accumulation anghenological developmeiHammeret al., 2010). This flexible
processbased model allows us separatly estimatethe yield benefitof agronomic
practiceslike/the cultivar shift indicated by higheindrmaltime requiremen during

grainfillling.

The MODIS data showed both the grain fillil@DD¢i and GFP increased,
suggesting.the GFP extension is likely to be associated with variety change, such as
the adoption of longer maturity variety. We designed three simulations to explore the
contribution of GFP extensidio recent decades yield increadé.of the simulations

were forced withUniversity of IdahoGridded Surface Meteorological Dateom
2000+t0-2015The parameter in APSIM, phasdstart to_end_grain), defining the
GDD requirement from start grain filling to maturity was increased to drive a
prolonged GFP to emulate the adoption of longer maturity variety over this period.
Simulation siml is the control with no increase in var@Dc;; simulation sim2

sets an increase in varietgDD; by 0.65% per year which charasterized the
observed increasing rate in all counties; simulatiom3ssets an increase DD,

by 0.82% per year which represented the observed increasing rate in GFP prolonged
counties. The @l parameterslike soil hydraulic properties and soil organic matter
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fractions were extracted from ti&tate Soil Geographic (STATSGO) data base, as
colleced by the National Cooperative Soil Survey over the course of a ceRtury.
each simulation grid, the soil information was queried through R pac¢kageDB’

(http://acssteeh.github.io/AQB/ Management infonationlike planting densityand

fertilizerapplication amountvas taken from the USDA NASS survey report at state
level. Crop"sowing date was derived from the Crop Calendar Ddtaekset al.,
2010) We used generic maize hybridB_110’) provided byAPSIM version 7.7 to

run thesimulation

To investigate the yield benefit of longer GFP until 2@800, we constructed two
simulationsfor climate forcing data from historic (208D15) period and twéuture
climate'seenarios (RCP2.6 and RCP6.0), resipely: one isthe control simulation,
where the maize GDD;; was set asa constant using generic cultivaarameters
(‘B_110Q),;.the other one ighe GFP prolongedsimulation where GDDgi was
increased by0.826 per year tobe consistent withthe currentadvance in maize
cultivar.based on historical MODIS image analysis.thRehistoric period simulation,
the climate forcing data during 20@015 wasrecycleduntil 2070. For the future
climate scenarios, three climate forcing datas used to account fahe climate
model uncertaintyn global temperaturdnstitute Pierre Simon Lapla€&5A Earth
system’ model(IPSL-CM5A-LR), Geophysical Fluid Dynamics Laboratory Earth
System Model with Generalized Ocean Layer Dynamics component (&SH2G)
and the Hadley Centre Global Environment Model, versicRah System
(HadGEMZ2ES). As a G plant, maize plants loss less water in response to future
enriched atmospheric GOwhich is modeled by enhanced transpiration efficiency in
APSIM. The CQ concentration is set as 380 ppm ftbe historic simulation while
increased to follow the concentratidrajectory defined in RCP2.6 and RCP6.0
(Meinshauseret al., 2011).The soil parameters and management information here
followed the previous simulate siml (sim2, sim3)Thenyield increasing rate in
20602070 is calculated by (yield with prolonged GFPyield in control
simulatior)/(yield in control simulatior) with three climate forcing data: historic
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period, RCP2.6 and RCP6.0.

Conceptual model of GFP trend analysis. GDD during GFP can be generally

written;as:
maturity 0,whenTmean < 8

GDD;®=,..[¢.DD,, DD, = { Tmean—8,when 8< Tmean < 35 (4)
= 27,whenTmean > 35

8, 35 means the lower and updsyundsof daily mean temperature (Tmean) to
calculate GDD. As most of Tmean is within this range, it carafygroximately

written/@as;

GDD_® ~ GFP- (Tmean—8) 5)

Then the"GFP trend can bearrangd as:
dGFP_ dGDD  d(Tmean-8)
GFP-dt GDD-dt (Tmean-8)-dt

So GFP trend -((%) can be approximately estimated by GDD trend minus

(6)

Tmean trend. As Tmean trend is vempall (Fig. S4, GFP trend is mostly driven by
GDD trend:

Yield benefit analysis using statistical method. We conducted a panel analysis
guantify the statistical contribution ofincreasing GFRo the observedncrease of
maize yieldA linear model considering the fixed effects in each yearcanttywas

used
log(Yield;.) = B, * GFP,; + Year, + County; + &;; (7)

where Yeargand County; specifyindependent intercepf each yeaand county.

Results and Discussion

The \erification at state level shasd a good agreemeriietweenMODIS derived

maize phenologyandthe National Agricultural Statistics Servid®ASS) reported
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state meaiphenological dates fahefour keymaize growtrstagesf emergencélate
May), silking (Middle July), den{late Augustland maturity(late Septembei(Fig. 3).

The root mean square errRMSE) of the 4 phenological dates estimated over the
four states rangkfrom 1.6 days (silking date in Nebraska) to 4.4 days (dent date in
Nebraska)(Table 1) The duration betweeremergenceand maturity is used to
represent'maize totgrowth period,and the duration betweesilking andmaturity
datesis: used todefine theGFPR Across thefour states,GFP generdly startsfrom
around. @y of year (DOY)200 andends byDOY 260 but variedinterannually(Fig.

3).

GFPtrendwas analyzedon a4km gridto keepconsistent withthe spatial resolution
of climatedata Abatzogloy 2013. We foundthere weresignificant trends ofmaize
phenologywith silking dats becomingearlierin 61% of the pixelsandmore pixels
(84%) exhibiting a later maturity date (Fig. S2). This resultedin a significant
extensionefthe GFP over 826 of the pixelsduring the 16yearanalysis(Fig. S2).

This trend of GFP obtained from satellite dais similar to NASSreportswhen
aggregatedo state leve(Fig. 4). Thisis alsoin line with the study ovetheU.S. Corn
Belt from Sacks and KucharitSacksand Kucharik 2011 that wasconducted fothe

earlier period 0fl981-2005 based dWASS statereports.

Thespatial variation othe GFPtrends showsncreasing trends imost Midwest areas
and decreasing trendsdnier areas likevestern Nebraskérig. 58. The spatiamean
of theGEPRtrendsacross the four statés 037 days per yeawith interquartilevalues
rangingfrom0.09 to 0.68Kig. 5b). When aggregated to the county lev&% of the
counties exhibit a significamcrease irGFP(Fig. 5a).As the longer GFP might tze
result.ofincreasedvariety thermal time accumulatiorwe also looked intorgwing
degree daygGDD). GDD is a commonly used metrito measurethermal time
accumulationof cropsandthe criticalthreshold GDRy; at which GFP is fulfilleds
an importantphysiological trait ofmaize cultivars. The GDD;; calculated from
satellite and climate dathowstrends that have a similar spatsfucture tharthe
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397 GFPtrendswith a mean rate ahcreaseof 0.63% per yeal(Fig. 5¢ and d). Themall
398  warming trend observed in the stuayea Fig. S4 would have shorteneGFP(Egli,
399  2004), if GDDi; keeps constantThus the observed longer GFP likely to be
400 associated with variety shsft markedby the concurrently increasinGDDcit. As
401  GDDyreflectsthe thermaltime requirement of apecific cultivar to achieve grain
402 filling, thevinereasingsDD; over time(Fig. 5¢) and thehigher GDDrequirement
403 from emergence to maturiiyj southcounties with warmer temperatug€ig. 6 and
404  Fig. SHssuggestthat farmess have switched to use longer maturity cultives to
405 compensatéor the negative impact aflarmer temperaturesvhich otherwise shorten
406 the overallgrowing season length and tB8&P(Cakiret al., 2004;Dwyer et al., 1994;
407  Egli, 2004;Sacksand Kucharik, 2011).

408

409 Evidence from agronomical research shows éxtnded GFRontribues a higher
410 yield by providing more time tdranslocag photosynthateso kernels(Crosbieand
411 Mock., 1981, Wanget al., 1999).With equation (7),he estimatedield benefit 8; (%
412  per day)defining the sensitivity of yield to GFRB 0.86+-0.03% (standard error
413  SE) indicatingthat one additional day of GFidcreasedmaize yieldon averagey
414  0.86%. According to thisempirical relationshipand theestimatedtotal yield trend
415  (1.4% peryear) the lengthening of GFBbservedn the MODIS datas inferred to
416  have contributed t@3%0.7% (+SE) of the maize yieldrendfor all of the studied
417  counties Fig. 7a). This contribution was computed as:

418  Contribution=f; x GFPincreasingrend/ Yield increasingrend (8)
419

420 Equation 8) wasalsoapplied to the NASS reported maigkenologicaldata at state
421 level Inthis applicationthe fixed effecterm County; for each county was replaced
422  with'the statefixed effect State;, and the estimated value @f was slightly higher
423  (1.08 + 0.18% per days) compared to theabove estimaion (Fig. 7a) Given the
424 mean GFP trend (0.430.12 days per yegrwhich is also based on NASS report, this

425 empirical estimation solely based on NASS report suggests GFP prolongation
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426  contributed 31-4.8% of the maize yieldtrend, which is slightly higher than the
427  above estimation based satellitedata analysis.

428

429 A previous study suggested the solar brightening during GFP is responsible for about
430 27% of ghe"abserved increase in Wiizeyield from 1984 to 2013Tollenaaret al.,
431  2017) However, we did not find a significant increase in solar radia@ossthe
432  four cern states considereduring the study periodwhen using the same solar
433  radiatiom dataset integrated over the grain filling pe(iad. S6).

434

435  When [counties were grouped based on whetheir GFP has increasedr not,
436  counties'wheré&FPincreasedshowedon averagénigherincreasng rates of GDDyit

437  (0.82%"per-year)and grain yield (1.5% per yegrcomparedto the mean ofll the
438  counties Fig. 7b). According to the estimatefl;, the mean increase in GFP for those
439  countiesis.estimated tdhave contributedo 27+-0.8% (= SE) of the yield trend
440  Alternatively countieswith decreasingsFPtrend perhapgesuling from the effects
441  of climatic warmingoverwhelming those dfultivars showed asmalleryield trend of
442  1.0%_per year(Fig. 7b). Alternatively, when equation (8was applied to counties
443  grouped bywarmer and cooler growing season mean temperature sépaeate
444  significant(p<0.0) loweryield benefit ;) wasfound inwarmercounties Fig. 7b).
445  This resultimplies that theyield benefit of GFP extension might be weakened in
446  future warmer climate. This analysidso explaied why the yield benefit in GFP
447  prolonged countiegashigher than the one estimated in GFP shortened coyRtees
448  7b),sincestheecounties generally havenaarmerbackgrounctlimate (Fig. S8).

449

450 To account for possible omitted variables in the above analysis, for instaace
451  unobserved factor such pest resistance affects both GFP and yield on atgearar
452  basis, we also conducted a regression comparing linear yield wethdGFP trend
453  over the study period as follows:

454  Yield trend; = B, * GFP trend ; + ¢; (9)
455  wherei is the county indicedn this model,the effect of yeato-year variation in each
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485

countyis minimized thusthe significant slope (82% per day)primarily quantifies
the contribution of GFP trend to yield trefféig. 7¢), which wasclose tothe one of
the panel analysig0.868% per day) The intercept term in this regression (1.1% per
years) jindicateshe yield trendwith no GFP extensioandis 27% lower than the
trends of GEP extended counties $&.peryear) which is also consistent with the

above estimatian

To further guard againsthe impact ofpotential confoundindactors whichmight be
not fully ‘separatedin the statical modes$, theprocesshasedcrop modelAPSIM was
then appliedio simulate the contribution of GFP extensiorto yield trend In this
analysis‘thevarietyGDD parameter of the modelas increasedo simulatethe
observedrariety shiftcausedsFP extensionThreesimulatiors were conductedsiml
has nancreasan GDDg;; sim2 assumes aimcreaseGDDi; of 0.6%% peryearfrom
the observedneanGDD.; trend in all countiessim3setsa larger increase @DDy
of 0.824 per yearconsistentwith observedmeanGDD; trend over a subset of
counties,_showing significant GFP increa@ompared to thaesults of simlthe
modelledincreasingrends ofGFPin sim2 and sim3vere close tdhe observed GFP
trend (Fig. 8). The yield increase isim2 andsim3 attributable toGDD; presentsa
positiveytrendof 0.24% and 0.34% per yearespectively(Fig. 9), which thus
produces &loseestimation of theontribution of GFP extension to yield tre€ihble
2). Theresults fromsim1 alsoconfirm that theGFP extensionvascaused byshift in
varietiesbecausehe GFPis shortened bglimatic warmingwhere there isno increase

in varietyGPD (Fig. 8).

Climate change ialsoexpected to exacerbattee variability of crop yieldgRayet al.,
2015;WheelerandBraun 2013. Therefore we analyzed thafluenceof a prolonged
GFP onyield stability anotheimportant dimension of food securifCampbellet al.,
2016) We usedthe coefficient of variation (CV) of yield in eachcounty during
2000-2015as an index of stability. Aeneralized additive regression model (GAM)
suitable toaccount fornonlineareffects of explanatory variablegias employedto
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relateyield CV with GFP.We foundthat alonger GFP(Fig. 109 andan increase of
GFPover time Fig. 10b) correspondb lower CV of yieldwhen accounting for the
climatic covariatessuggestinghatlonger GFP in botlspace and time associated
with more stableyields The reason might b&at the selection of longer GFP
cultivars”is“associated withincreasng stress tolerancend therebyreducesthe

negative'impact of warming on yiedtlability (TollenaarandLee, 2002).

Finally,sthes APSIM model was used to investigahe future benefitof maize
productionsacross the US Midwaesith threeensemblesf future climate forcing data

to account forthe climate model uncertainty in global temperatditee simulatios

for themmext'50 yearsuggestthat if farmers are able tewitch tolonger maturity
variety(at'theGDD,;; current rateof 0.826 per year)the maizeGFPin 20632070

will be lengthened b5% and18% under the RCP 2.6 and RCP Fg. 113,
respectivelyThis means an approximate 15 days extension of GFP under the RCP 2.6
so thefuture'maturity date still falls in a reasonalperiod for harvesting in these
simulations Simulations indicate that a continuation of the GFP prolongattm
wouldscontinue to benefit yieldsig. 11b), albeit by a smaller amount in future
climate conditions compared to the historic periddg( 11c). Specifically, the
predicted. 0.8% and13.6% yield loss under RCP 2.6 and RCP 6.0 could be partially
offsethy longer GFP, with a benefit of 7.2% an&%. under RCP 2.6 and RCP 6.0,
respectively. The reduced benefit of GFP results in part from the increasing water and
heat stress under a future warmer clim@te. S9) which could decrease yield

significantlyduringmaizegrain formation(Sieberset al., 2017).

Overall, we_bundthere wasa significant GFRextensionand concurrent increasing
GDDgig. during thelast16 yearsacrosshe U.S. MidwestCorn Belt which is likelyto
reflect changes in the traits of maize cultivaffie GFPprolongationshows the
potential to increase the maize yield and atsastabilize theyield variability but its
yield benefit might diminish undefuture warmer climate Although the GFP
information extracted here is mainly based on satellite observed cahlmpgphyll
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516  content but nobn ground identified kernel color development, this method estimated
517 a similar GFP trend and contribution of GFP prolongation to yiele&tasa acrosthe

518  US Midwest when compared with the state level statisticalatedanore importantly

519 it provided more detailed spatialfformation Our study suggests that the historic
520 satellitedataycan be utilized to map field crop phenological traits at large seittes

521 fine spatial‘resolutiono understand how farmanagemennfluence yield trend and

522 the climatic response of crop growtt specific stageWhen theobservedGFP

523  prolongationrateis applied up to 2070, the negative impactlatic warmingis

524  partially“effsetby lengthening the GFP, but the grain yistdl decrease@ven inthe

525 mild emission climate scenarig highlighting multiple adaptationstrategiesare

526  necessaryorfutureagriculturalmanagement in the region.
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668 Tables
669 Tablel. RMSE (days) of 4 phenological stages estimation over four states
State Emergence Silking Dent Maturity
lllinois 4.0 1.9 2.8 3.4
Indiana 4.2 2.2 4.0 3.2
lowa 2.9 4.3 3.3 3.6
Nebraska 3.1 1.6 4.4 3.0
670
671
672
673 Table2. Contribution of grain filling length extension to the maize yield iscrga
674 trendestimate using APSIM (& indicates the SE)
GFP
All counties
prolonged countie:
GDDcrit increasing rate% per year 0.82 0.65
Simulated yield increase rat@o(peryea 0.34 0.24
Observed yield trend (% per year) 1.5+0.07 1.4+0.08
Contribution 23+1.6% 17+1.1%

675  Figurecaptions

676  Figure 1. (a) Trends imaize yield for each county, where the empty counties mean
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that county has less than 12 yeawvailabledata. (b) Mean maize yield increasing rate
for all counties. The error bars indicate the spatial variation of maize yield for all

counties.

Figure 2°The procedure ohybrid maizephenologicalextraction by merging shape
model Hfitting=and threshold basedethod. The blue line is the spline approach
smoothed WDRVI timeseriesdata and the red line is the scaled shape model fitting
and thesdashed blue line indicates the threshold, which is set as 18 bé&sats on
when compared with the NASS reported emergence and maturity date for 4 states.
The circle on red curve indicates theenologicaldate determinetby shape model
fitting. Heretthe silking and dent dates were determined by shape model fitting and

the emergence and maturity date were determinedeatbashold.

Figure 3.Comparison omaizephenological dates betweBIASS statistical datand
MODIS=derived estimatiomggregated over state lev&he two dashed lines in each
figurexdefine the region where the errors betwb#DDIS-derived estimatiorand

NASS statistical data are less than 5 days.

Figure 4. Time serienf MODIS derived (blue) and NASS reported (redking and
maturity date\for 4 states during 20@015 The lines show the GFL trend estimated

by the nonparametricTheil-Sen fitting

Figure S===Trends in countyievel grain filling length and grain filing GDD
(GDDygrit), (@) and €), where the empty counties mean that county has less than 12
yearsavailabledata. For a specific year, a county with a number of maize grid cells
less/thanl00 isregardedas uravailable When estimating the trend, all of the grid
cellsin a county were pooled. And all of the trends shown are significant. The inset in
(a) indicates GFRrendfor the 4 states derived from NASS report and satellite data.
The error bars indicate standard deviation of spatially estimated GFP Triead.
distribution ofgrain filling lengthand GDDc;; trendin each 4km grid,lf) and (d).
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The greyhorizontalline illustrates the mean trend GDD.; or grain filling length
for all counties and the bldeorizontalline illustrates the mean trend GDDc: or
grain filling length for thecounties wher&sFP has extendedGFPis defined as the
period sfrom ssilking tomaturity The grain filling length andGDDc; trend was

estimateyithe nonparametricTheil-Sen fitting

Figure. Scatteringof county level (332 counties) multiple year mean GDD from
emergencesto maturity in temperature and precipitation space gpaitit black

circles indicate the counties with irrigated area > 50%).

Figure®7=GFP trend, yield benefit of GFP prolongation and contribution of GFP
prolongation to yield increase. (a) GFP trend, yield bengf)jtdnd GFP contribution

to vyield increase estimated from NASS report and MODIS derived maize
phenologicalprogress data. GFP contribution was compute, as: GFP increasing

trend /“Yield increasing trend.he scales for GFP contribution to yield increase
shownwin right yaxis. |(b) GDDgi; trend, yield trend and vyield benefit of GFP
extension §,) based on counties grouped by whether their GFP have prolonged or not.
Yield benefit was also separately estimated by grouping growing season mean
temperatue. \WWarmer and cooler counties were divided according to the median value
of growing season mean temperature. The yield benefit is then estimated by applying
equation (8) to each group. The scales for yield benefit are shown in +agig. yThe

error barsin (a) and (b) indicate the SD of each estimation. (c) The effect of GFP
trend-en-maize yield trend. Each point corresponds to one ¢surgpd in GFP and

yield dliring 200e2015.

Figure 8. Simulated grain filling length to explore the contribution of grain filling
lengthto the growing maize yield using APSIM 7.7. sim1hs control without grain
filling prolongation; sim2 is to increaseDD; by 0.65% per year toharacterizéhe
observedGDDy; trend in all counties; sim3 is to incredS®D.i; by 0.82% per year
to characterizebservation of GFP prolonged counties. Thepaftelshows the mean
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737  timeseriesof GFL insimulation1 and the right panel shows the GFL difference.

738

739  Figure 9. APSIM 7.7 simulated maize grain yield with different rate of GFP
740  prolongation;to explore the contribution of grain fillilegngthto growing maize yield.
741

742  FigurerlO=The effect of grain filling length on maize yield stabilityoedficient of

743  variatian (CV) of the yield in each county over 2885 as a function of (a) the
744  multi-year mean grain filling lengttand(b) thetrend ofthe grain filling period Both

745  longer GEPacrossdifferent counties irspace(a) and time(b) are asociated with a
746 smaller CV of yield, that is, more stable yield$he shaded areas indicate the 95%
747  confidencetintervalEach small bar next to the horizontal line is a value observed for
748  a county.

749

750  Figure 11..The benefit of prolonged grain filling period for maize yield in future
751  climatesBoxplot of grain filling length (a) and maize yieldb) simulated with the
752 APSIM.model running up to 20662070 assumingconstant(yellow) or linearly

753 increasingGDDg; at the same rate than during the past 16 years (ipleemparison
754  with the historic period 2000-2015 (c) Comparison of maize yield benefit with
755  GDDgriclncrease at the rate of 0%2eryearin historicand future climate conditions.
756  Here yield increasing rate up to 268070 is calculated by (yield with prolonged
757  GDDgit—YVyield with constantGDDcq)/(yield with constantGDDc) using three
758  climate.forcing data: 2002015, RCP2.6, RCP6.(see Method. The lines in the
759  middle ef-bexrepresent median projection, boxes show the interquartile range, and
760  whiskers indicate the 5#95th percentile of projections.

761
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