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VARIABLE SELECTION IN MULTIVARIATE LINEAR MODELS WITH

HIGH-DIMENSIONAL COVARIANCE MATRIX ESTIMATION

M. PERROT-DOCKÈS, C. LÉVY-LEDUC, L. SANSONNET, AND J. CHIQUET

Abstract. In this paper, we propose a novel variable selection approach in the framework
of multivariate linear models taking into account the dependence that may exist between
the responses. It consists in estimating beforehand the covariance matrix Σ of the responses
and to plug this estimator in a Lasso criterion, in order to obtain a sparse estimator of the
coefficient matrix. The properties of our approach are investigated both from a theoretical
and a numerical point of view. More precisely, we give general conditions that the estimators
of the covariance matrix and its inverse have to satisfy in order to recover the positions of
the null and non null entries of the coefficient matrix when the size of Σ is not fixed and
can tend to infinity. We prove that these conditions are satisfied in the particular case of
some Toeplitz matrices. Our approach is implemented in the R package MultiVarSel available
from the Comprehensive R Archive Network (CRAN) and is very attractive since it benefits
from a low computational load. We also assess the performance of our methodology using
synthetic data and compare it with alternative approaches. Our numerical experiments show
that including the estimation of the covariance matrix in the Lasso criterion dramatically
improves the variable selection performance in many cases.

1. Introduction

The multivariate linear model consists in generalizing the classical linear model, in which
a single response is explained by p variables, to the case where the number q of responses
is larger than 1. Such a general modeling can be used in a wide variety of applications
ranging from econometrics (Lütkepohl (2005)) to bioinformatics (Meng et al. (2014)). In the
latter field, for instance, multivariate models have been used to gain insight into complex
biological mechanisms like metabolism or gene regulation. This has been made possible
thanks to recently developed sequencing technologies. For further details, we refer the reader
to Mehmood et al. (2012). However, the downside of such a technological expansion is to
include irrelevant variables in the statistical models. To circumvent this, devising efficient
variable selection approaches in the multivariate setting has become a growing concern.

A first naive approach to deal with the variable selection issue in the multivariate setting
consists in applying classical univariate variable selection strategies to each response sepa-
rately. Some well-known variable selection methods include the least absolute shrinkage and
selection operator (LASSO) proposed by Tibshirani (1996) and the smoothly clipped absolute
deviation (SCAD) approach devised by Fan and Li (2001). However, such a strategy does
not take into account the dependence that may exist between the different responses.

In this paper, we shall consider the following multivariate linear model:

(1) Y = XB + E,
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where Y = (Yi,j)1≤i≤n,1≤j≤q denotes the n× q random response matrix, X denotes the n× p
design matrix, B denotes a p×q coefficient matrix and E = (Ei,j)1≤i≤n,1≤j≤q denotes the n×q
random error matrix, where n is the sample size. In order to model the potential dependence
that may exist between the columns of E, we shall assume that for each i in {1, . . . , n},

(2) (Ei,1, . . . , Ei,q) ∼ N (0,Σ),

where Σ denotes the covariance matrix of the ith row of the error matrix E. We shall moreover
assume that the different rows of E are independent. With such assumptions, there is some
dependence between the columns of E but not between the rows. Our goal is here to design
a variable selection approach which is able to identify the positions of the null and non null
entries in the sparse matrix B by taking into account the dependence between the columns
of E.

This issue has recently been considered by Lee and Liu (2012) who extended the approach
of Rothman et al. (2010). More precisely, Lee and Liu (2012) proposed three approaches for
dealing with this issue based on penalized maximum likelihood with a weighted `1 regulariza-
tion. In their first approach B is estimated by using a plug-in estimator of Σ−1, in the second
one, Σ−1 is estimated by using a plug-in estimator of B and in the third one, Σ−1 and B are
estimated simultaneously. Lee and Liu (2012) also investigate the asymptotic properties of
their methods when the sample size n tends to infinity and the number of rows and columns
q of Σ is fixed.

In this paper, we propose to estimate Σ beforehand and to plug this estimator in a Lasso
criterion, in order to obtain a sparse estimator of B. Hence, our methodology is close to
the first approach of Lee and Liu (2012). However, there are two main differences: The
first one is the asymptotic framework in which our theoretical results are established and the
second one is the strategy that we use for estimating Σ. More precisely, in our asymptotic
framework, q is allowed to depend on n and thus to tend to infinity as n tends to infinity at a
polynomial rate. Moreover, in Lee and Liu (2012), Σ−1 is estimated by using an adaptation of
the Graphical Lasso (GLASSO) proposed by Friedman et al. (2008). This technique has also
been considered by Yuan and Lin (2007), Banerjee et al. (2008) and Rothman et al. (2008).
In this paper, we give general conditions that the estimators of Σ and Σ−1 have to satisfy in
order to be able to recover the support of B that is to find the positions of the null and non
null entries of the matrix B. We prove that when Σ is a particular Toeplitz matrix, namely
the covariance matrix of an AR(1) process, the assumptions of the theorem are satisfied.

Let us now describe more precisely our methodology. We start by “whitening” the obser-
vations Y by applying the following transformation to Model (1):

(3) Y Σ−1/2 = XB Σ−1/2 + E Σ−1/2.

The goal of such a transformation is to remove the dependence between the columns of Y .
Then, for estimating B, we proceed as follows. Let us observe that (3) can be rewritten as:

(4) Y = XB + E ,

with

(5) Y = vec(Y Σ−1/2), X = (Σ−1/2)′ ⊗X, B = vec(B) and E = vec(E Σ−1/2),

where vec denotes the vectorization operator and ⊗ the Kronecker product.



VARIABLE SELECTION IN MULTIVARIATE LINEAR MODELS 3

With Model (4), estimating B is equivalent to estimate B since B = vec(B). Then, for
estimating B, we use the classical LASSO criterion defined as follows for a nonnegative λ:

(6) B̂(λ) = ArgminB
{
‖Y − XB‖22 + λ‖B‖1

}
,

where ‖.‖1 and ‖.‖2 denote the classical `1-norm and `2-norm, respectively. Inspired by Zhao
and Yu (2006), Theorem 1 established some conditions under which the positions of the null

and non null entries of B can be recovered by using B̂.
In practical situations, the covariance matrix Σ is generally unknown and has thus to be

estimated. Let Σ̂ denote an estimator of Σ. Then, the estimator Σ̂−1/2 of Σ−1/2 is such that

Σ̂−1 = Σ̂−1/2(Σ̂−1/2)′.

When Σ−1/2 is replaced by Σ̂−1/2, (3) becomes

(7) Y Σ̂−1/2 = XB Σ̂−1/2 + E Σ̂−1/2,

which can be rewritten as follows:

(8) Ỹ = X̃B + Ẽ ,

where

(9) Ỹ = vec(Y Σ̂−1/2), X̃ = (Σ̂−1/2)′ ⊗X, B = vec(B) and Ẽ = vec(E Σ̂−1/2).

In Model (8), B is estimated by

(10) B̃(λ) = ArgminB

{
‖Ỹ − X̃B‖22 + λ‖B‖1

}
.

By extending Theorem 1, Theorem 5 gives some conditions on the eigenvalues of Σ−1 and

on the convergence rate of Σ̂ and its inverse to Σ and Σ−1, respectively, under which the

positions of the null and non null entries of B can be recovered by using B̃.
We prove in Section 2.3 that when Σ is a particular Toeplitz matrix, namely the covariance

matrix of an AR(1) process, the assumptions of Theorem 5 are satisfied. This strategy has
been implemented in the R package MultiVarSel, which is available on the Comprehensive
R Archive Network (CRAN), for more general Toeplitz matrices Σ such as the covariance
matrix of ARMA processes or general stationary processes. For a successful application of
this methodology to particular “-omic” data, namely metabolomic data, we refer the reader
to Perrot-Dockès et al. (2017). For a review of the most recent methods for estimating high-
dimensional covariance matrices, we refer the reader to Pourahmadi (2013).

The paper is organized as follows. Section 2 is devoted to the theoretical results of the
paper. The assumptions under which the positions of the non null and null entries of B can
be recovered are established in Theorem 1 when Σ is known and in Theorem 5 when Σ is
unknown. Section 2.3 studies the specific case of the AR(1) model. We present in Section
3 some numerical experiments in order to support our theoretical results. The proofs of our
main theoretical results are given in Section 4.

2. Theoretical results

2.1. Case where Σ is known. Let us first introduce some notations. Let

(11) C =
1

nq
X ′X and J = {1 ≤ j ≤ pq,Bj 6= 0},
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where X is defined in (5) and where Bj denotes the jth component of the vector B defined in
(5).

Let also define

(12) CJ,J =
1

nq
(X•,J)′X•,J and CJc,J =

1

nq
(X•,Jc)′X•,J ,

where X•,J and X•,Jc denote the columns of X belonging to the set J defined in (11) and to
its complement Jc, respectively.

More generally, for any matrix A, AI,J denotes the partitioned matrix extracted from A
by considering the rows of A belonging to the set I and the columns of A belonging to the
set J , with • indicating all the rows or all the columns.

The following theorem gives some conditions under which the estimator B̂ defined in (6) is
sign-consistent as defined by Zhao and Yu (2006), namely,

P
(

sign(B̂) = sign(B)
)
→ 1, as n→∞,

where the sign function maps positive entries to 1, negative entries to -1 and zero to 0.

Theorem 1. Assume that Y = (Y1,Y2, . . . ,Ynq)′ satisfies Model (4). Assume also that there
exist some positive constants M1, M2, M3 and positive numbers c1, c2 such that 0 < c1 +c2 <
1/2 satisfying:

(A1) for all n ≥ 1, for all j ∈ {1, . . . , pq}, 1
n(X•,j)′X•,j ≤M1, where X•,j is the jth column

of X defined in (5),
(A2) for all n ≥ 1, 1

nλmin ((X ′X )J,J) ≥M2, where λmin(A) denotes the smallest eigenvalue
of A,

(A3) |J | = O(qc1), where J is defined in (11) and |J | is the cardinality of the set J ,
(A4) qc2 minj∈J |Bj | ≥M3.

Assume also that the following strong Irrepresentable Condition holds:

(IC) There exists a positive constant vector η such that∣∣(X ′X )Jc,J((X ′X )J,J)−1 sign(BJ)
∣∣ ≤ 1− η,

where 1 is a (pq − |J |) vector of 1 and the inequality holds element-wise.

Then, for all λ that satisfies

(L) q = qn = o
(
n

1
2(c1+c2)

)
,

λ√
n
→∞ and

λ

n
= o

(
q−(c1+c2)

)
, as n→∞,

we have

P
(

sign(B̂(λ)) = sign(B)
)
→ 1, as n→∞,

where B̂(λ) is defined by (6).

Remark 1. Observe that if c1 + c2 < (2k)−1, for some positive k, then the first condition of
(L) becomes q = o(nk). Hence for large values of k, the size q of Σ is much larger than n.

The proof of Theorem 1 is given in Section 4. It is based on Proposition 2 which is an
adaptation to the multivariate case of Proposition 1 in Zhao and Yu (2006).

Proposition 2. Let B̂(λ) be defined by (6). Then

P
(

sign(B̂(λ)) = sign(B)
)
≥ P(An ∩Bn),
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where

(13) An =

{∣∣(CJ,J)−1WJ

∣∣ < √nq(|BJ | − λ

2nq
|(CJ,J)−1sign(BJ)|

)}
and

(14) Bn =

{∣∣CJc,J(CJ,J)−1WJ −WJc

∣∣ ≤ λ

2
√
nq

(
1−

∣∣CJc,J(CJ,J)−1sign(BJ)
∣∣)} ,

with W = X ′E/√nq. In (13) and (14), CJ,J and CJc,J are defined in (12) and WJ and
WJc denote the components of W being in J and Jc, respectively. Note that the previous
inequalities hold element-wise.

The proof of Proposition 2 is given in Section 4.
We give in the following proposition which is proved in Section 4 some conditions on X

and Σ under which Assumptions (A1) and (A2) of Theorem 1 hold.

Proposition 3. If there exist some positive constants M ′1, M ′2, m1, m2 such that, for all
n ≥ 1,

(C1) for all j ∈ {1, . . . , p}, 1
n(X•,j)

′X•,j ≤M ′1,

(C2) 1
nλmin(X ′X) ≥M ′2,

(C3) λmax(Σ−1) ≤ m1,
(C4) λmin(Σ−1) ≥ m2,

then Assumptions (A1) and (A2) of Theorem 1 are satisfied.

Remark 2. Observe that (C1) and (C2) hold in the case where the columns of the matrix X
are orthogonal.

We give in Proposition 6 in Section 2.3 some conditions under which Condition (IC) holds
in the specific case where Σ is the covariance matrix of an AR(1) process.

2.2. Case where Σ is unknown. Similarly as in (11) and (12), we introduce the following
notations:

(15) C̃ =
1

nq
X̃ ′X̃

and

(16) C̃J,J =
1

nq
(X̃•,J)′X̃•,J and C̃Jc,J =

1

nq
(X̃•,Jc)′X̃•,J ,

where X̃•,J and X̃•,Jc denote the columns of X̃ belonging to the set J defined in (11) and to
its complement Jc, respectively.

A straightforward extension of Proposition 2 leads to the following proposition for Model (8).

Proposition 4. Let B̃(λ) be defined by (10). Then

P
(

sign(B̃(λ)) = sign(B)
)
≥ P(Ãn ∩ B̃n),

where

(17) Ãn =

{∣∣∣(C̃J,J)−1W̃J

∣∣∣ < √nq(|BJ | − λ

2nq
|(C̃J,J)−1sign(BJ)|

)}
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and

(18) B̃n =

{∣∣∣C̃Jc,J(C̃J,J)−1W̃J − W̃Jc

∣∣∣ ≤ λ

2
√
nq

(
1−

∣∣∣C̃Jc,J(C̃J,J)−1sign(BJ)
∣∣∣)} ,

with W = X̃ ′Ẽ/√nq. In (17) and (18), C̃J,J and C̃Jc,J are defined in (16) and W̃J and

W̃Jc denote the components of W̃ being in J and Jc, respectively. Note that the previous
inequalities hold element-wise.

The following theorem extends Theorem 1 to the case where Σ is unknown and gives

some conditions under which the estimator B̃ defined in (10) is sign-consistent. The proof of
Theorem 5 is given in Section 4 and is based on Proposition 4.

Theorem 5. Assume that Assumptions (A1), (A2), (A3), (A4), (IC) and (L) of Theorem 1
hold. Assume also that, there exist some positive constants M4, M5, M6 and M7, such that
for all n ≥ 1,

(A5) ‖(X ′X)/n‖∞ ≤M4,
(A6) λmin((X ′X)/n) ≥M5,
(A7) λmax(Σ−1) ≤M6,
(A8) λmin(Σ−1) ≥M7.

Suppose also that

(A9) ‖Σ−1 − Σ̂−1‖∞ = OP ((nq)−1/2), as n tends to infinity,

(A10) ρ(Σ− Σ̂) = OP ((nq)−1/2), as n tends to infinity.

Let B̃(λ) be defined by (10), then

P
(

sign(B̃(λ)) = sign(B)
)
→ 1, as n→∞.

In the previous assumptions, λmax(A), λmin(A), ρ(A) and ‖A‖∞ denote the largest eigenvalue,
the smallest eigenvalue, the spectral radius and the infinite norm (induced by the associated
vector norm) of the matrix A.

Remark 3. Observe that Assumptions (A5) and (A6) hold in the case where the columns of
the matrix X are orthogonal. Note also that (A7) and (A8) are the same as (C3) and (C4)
in Proposition 3.

In order to estimate Σ, we propose the following strategy:

• Fitting a classical linear model to each column of the matrix Y in order to have access

to an estimation Ê of the random error matrix E. It is possible since p is assumed to
be fixed and smaller than n.
• Estimating Σ from Ê by assuming that Σ has a particular structure, Toeplitz for

instance.

More precisely, Ê defined in the first step is such that:

(19) Ê =
(
IdRn −X(X ′X)−1X ′

)
E =: ΠE,

which implies that

(20) Ê = vec(Ê) = [IdRq ⊗Π] E ,

where E is defined in (5).
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We prove in Proposition 7 below that our strategy for estimating Σ provides an estimator
satisfying the assumptions of Theorem 5 in the case where (E1,t)t, (E2,t)t, ..., (En,t)t are
assumed to be independent AR(1) processes.

2.3. The AR(1) case.

2.3.1. Sufficient conditions for Assumption (IC) of Theorem 1. The following proposition
gives some conditions under which the strong Irrepresentable Condition (IC) of Theorem 1
holds.

Proposition 6. Assume that (E1,t)t, (E2,t)t, ..., (En,t)t in Model (1) are independent AR(1)
processes satisfying:

Ei,t − φ1Ei,t−1 = Zi,t, ∀i ∈ {1, . . . , n},
where the Zi,t’s are zero-mean i.i.d. Gaussian random variables with variance σ2 and |φ1| < 1.
Assume also that X defined in (1) is such that X ′X = νIdRp, where ν is a positive constant.
Moreover, suppose that if j ∈ J , then j > p and j < pq− p. Suppose also that for all j, j − p
or j + p is not in J . Then, the strong Irrepresentable Condition (IC) of Theorem 1 holds.

The proof of Proposition 6 is given in Section 4.

2.3.2. Sufficient conditions for Assumptions (A7), (A8), (A9) and (A10) of Theorem 5. The
following proposition establishes that in the particular case where the (E1,t)t, (E2,t)t, ...,
(En,t)t are independent AR(1) processes, our strategy for estimating Σ provides an estimator
satisfying the assumptions of Theorem 5.

Proposition 7. Assume that (E1,t)t, (E2,t)t, ..., (En,t)t in Model (1) are independent AR(1)
processes satisfying:

Ei,t − φ1Ei,t−1 = Zi,t, ∀i ∈ {1, . . . , n},
where the Zi,t’s are zero-mean i.i.d. Gaussian random variables with variance σ2 and |φ1| < 1.
Let

Σ̂ =
1

1− φ̂2
1


1 φ̂1 φ̂2

1 . . . φ̂q−1
1

φ̂1 1 φ̂1 . . . φ̂q−2
1

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

φ̂q−1
1 . . . . . . . . . 1

 ,

where

(21) φ̂1 =

∑n
i=1

∑q
`=2 Êi,`Êi,`−1∑n

i=1

∑q−1
`=1 Ê

2
i,`

,

where Ê = (Êi,`)1≤i≤n,1≤`≤q is defined in (19). Then, Assumptions (A7), (A8), (A9) and
(A10) of Theorem 5 are valid.

The proof of Proposition 7 is given in Section 4. It is based on the following lemma.

Lemma 8. Assume that (E1,t)t, (E2,t)t, ..., (En,t)t in Model (1) are independent AR(1)
processes satisfying:

Ei,t − φ1Ei,t−1 = Zi,t, ∀i ∈ {1, . . . , n},
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where the Zi,t’s are zero-mean i.i.d. Gaussian random variables with variance σ2 and |φ1| < 1.
Let

φ̂1 =

∑n
i=1

∑q
`=2 Êi,`Êi,`−1∑n

i=1

∑q−1
`=1 Ê

2
i,`

,

where Ê = (Êi,`)1≤i≤n,1≤`≤q is defined in (19). Then,
√
nqn(φ̂1 − φ1) = Op(1), as n→∞.

Lemma 8 is proved in Section 4. Its proof is based on Lemma 10 in Section 5.

3. Numerical experiments

The goal of this section is twofold: i) to provide sanity checks for our theoretical results in
a well-controlled framework; and ii) to investigate the robustness of our estimator to some
violations of the assumptions of our theoretical results. The latter may reveal a broader scope
of applicability for our method than the one guaranteed by the theoretical results.

We investigate i) in the AR(1) framework presented in Section 2.3. Indeed, all assumptions
made in Theorems 1 and 5 can be specified with well-controllable simulation parameters in
the AR(1) case with balanced design matrix X.

Point ii) aims to explore the limitations of our theoretical framework and assess its robust-
ness. To this end, we propose two numerical studies relaxing some of the assumptions of our
theorems: first, we study the effect of an unbalanced design – which violates the sufficient con-
dition of the irrepresentability condition (IC) given in Proposition 6 – on the sign-consistency;
and second, we study the effect of other types of dependence than an AR(1).

In all experiments, the performance are assessed in terms of sign-consistency. In other
words, we evaluate the probability for the sign of various estimators to be equal to sign(B).
We compare the performance of three different estimators:

• B̂ defined in (6), which corresponds to the LASSO criterion applied to the data
whitened with the true covariance matrix Σ; we call this estimator oracle. Its theo-
retical properties are established in Theorem 1.

• B̃ defined in (10), which corresponds to the LASSO criterion applied to the data

whitened with an estimator of the covariance matrix Σ̂; we refer to this estimator as
whitened-lasso. Its theoretical properties are established in Theorem 5.
• the LASSO criterion applied to the raw data, which we call raw-lasso hereafter.

Its theoretical properties are established only in the univariate case in Alquier and
Doukhan (2011).

3.1. AR(1) dependence structure with balanced one-way ANOVA. In this section,
we consider Model (1) where X is the design matrix of a one-way ANOVA with two balanced
groups. Each row of the random error matrix E is distributed as a centered Gaussian random
vector as in Equation (2) where the matrix Σ is the covariance matrix of an AR(1) process
defined in Section 2.3.

In this setting, Assumptions (A1), (A2) and Condition (IC) of Theorem 1 are satisfied, see
Propositions 3 and 6. The three remaining assumptions (A3), (A4) and (L) are related to
more practical quantities: (A3) controls the sparsity level of the problem, involving c1; (A4)
basically controls the signal-to-noise ratio, involving c2 and (L) links the sample size n, q and
the two constants c1, c2, so that an appropriate range of penalty λ exists for having a large
probability of support recovery. This latter assumption is used in our experiments to tune
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the difficulty of the support recovery as follows: we consider different values of n, q, c1, c2

and we choose a sparsity level |J | and a minimal magnitude in B such that Assumptions (A3)
and (A4) are fulfilled. Hence, the problem difficulty is essentially driven by the validity of
Assumption (L) where q = o(nk) with c1 + c2 = 1/2k, and so by the relationship between n,
q and k.

We consider a large range of sample sizes n varying from 10 to 1000 and three different
values for q in {10, 50, 1000}. The constants c1, c2 are chosen such that c1 + c2 = 1/2k with
c1 = c2 and k in {1, 2, 4}. Additional values of c1 and c2 have also been considered and
the corresponding results are available upon request. Finally, we consider two values for the
parameter φ1 appearing in the definition of the AR(1) process: φ1 ∈ {0.5, 0.95}.

Note that in this AR(1) setting with the estimator φ̂1 of φ1 defined in (21) , all the
assumptions of Theorem 5 are fulfilled, see Proposition 7.

The frequencies of support recovery for the three estimators averaged over 1000 replications
is displayed in Figure 1.
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Figure 1. Frequencies of support recovery in a multivariate one-way ANOVA
model with two balanced groups and an AR(1) dependence.
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We observe from Figure 1 that whitened-lasso and oracle have similar performance
since φ1 is well estimated. These two approaches always exhibit better performance than
raw-lasso, especially when φ1 = 0.95. In this case, the sample size n required to reach the
same performance is indeed ten time larger for raw-lasso than for oracle and whitened-lasso.

Finally, the performance of all estimators are altered when n is too small, especially in
situations where the signal to noise ratio (SNR) is small and the signal is not sparse enough,
these two characteristics corresponding to small values of k.

3.2. Robustness to unbalanced designs and correlated features. The goal of this
section is to study some particular design matrices X in Model (1) that may lead to violation
of the Irrepresentability Condition (IC).

To this end, we consider the multivariate linear model (1) with the same AR(1) dependence
as the one considered in Section 3.1. Then, two different matrices X are considered: First, an
one-way ANOVA model with two unbalanced groups with respective sizes n1 and n2 such that
n1 + n2 = n; and second, a multiple regression model with p correlated Gaussian predictors
such that the rows of X are i.i.d. N (0,ΣX).

For the one-way ANOVA, violation of (IC) may occur when r = n1/n is too different from
1/2, as stated in Proposition 6. For the regression model, we choose for ΣX a 9 × 9 matrix
(p = 9) such that ΣX

i,i = 1, ΣX
i,j = ρ, when i 6= j. The other simulation parameters are fixed

as in Section 3.1.
We report in Figure 2 the results for the case where q = 1000 and k = 2 both for unbalanced

one-way ANOVA (top panels) and regression with correlated predictors (bottom panels).
For the one-way ANOVA, r varies in {0.4, 0.2, 0.1}. For the regression case, ρ varies in
{0.2, 0.6, 0.9}. In both cases, the gray lines correspond to the ideal situation (that is, either
unbalanced or uncorrelated) denoted Ideal in the legend of Figure 2. The probability of
support recovery is estimated over 1000 runs.

From this figure, we note that correlated features or unbalanced designs deteriorate the
support recovery of all estimators. This was expected for these LASSO-based methods which
all suffer from the violation of the irrepresentability condition (IC). However, we also note
that whitened-lasso and oracle have similar performance, which means that the estimation
of Σ is not altered, and that whitening always improves the support recovery.

3.3. Robustness to more general autoregressive processes. In this section, we consider
the case where X is the design matrix of a one-way ANOVA with two balanced groups
and where Σ is the covariance matrix of an AR(m) process with m in {5, 10}. Figure 3
displays the performance of the different estimators when q = 500. Here, for computing

Σ̂ in whitened-lasso, the parameters φ1, . . . , φm of the AR(m) process are estimated as

follows. They are obtained by averaging over the n rows of Ê defined in (19) the estimations

φ̂
(i)
1 , . . . , φ̂

(i)
m obtained for the ith row of Ê by using standard estimation approaches for AR

processes described in Brockwell and Davis (1990). As previously, we observe from this figure
that whitened-lasso and oracle have better performance than raw-lasso.

4. Proofs

Proof of Proposition 2. For a fixed nonnegative λ, by (6),

B̂ = B̂(λ) = ArgminB
{
‖Y − XB‖22 + λ‖B‖1

}
.
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Figure 2. Frequencies of support recovery in general linear models with un-
balanced designs: one-way ANOVA and regression.
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Figure 3. Frequencies of support recovery in one-way ANOVA with AR(m)
covariance matrix.

Denoting û = B̂ − B, we get

‖Y − XB̂‖22 + λ‖B̂‖1 = ‖XB + E − XB̂‖22 + λ‖û+ B‖1 = ‖E − X û‖22 + λ‖û+ B‖1
= ‖E‖22 − 2û′X ′E + û′X ′X û+ λ‖û+ B‖1.
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Thus,

û = Argminu V (u),

where

V (u) = −2(
√
nqu)′W + (

√
nqu)′C(

√
nqu) + λ‖u+ B‖1.

Since the first derivative of V with respect to u is equal to

2
√
nq
(
C(
√
nqu)−W

)
+ λ sign(u + B),

û satisfies

CJ,J(
√
nqûJ)−WJ = − λ

2
√
nq

sign(ûJ + BJ) = − λ

2
√

nq
sign(B̂J), if ûJ + BJ = B̂J 6= 0

and ∣∣CJc,J(
√
nqûJ)−WJc

∣∣ ≤ λ

2
√
nq
.

Note that, if |ûJ | < |BJ |, then B̂J 6= 0 and sign(B̂J) = sign(BJ).
Let us now prove that when An and Bn, defined in (13) and (14), are satisfied then there

exists û satisfying:

CJ,J(
√
nqûJ)−WJ = − λ

2
√
nq

sign(BJ),(22)

|ûJ | < |BJ |,(23) ∣∣CJc,J(
√
nqûJ)−WJc

∣∣ ≤ λ

2
√
nq
.(24)

Note that An implies:
(25)
√
nq

(
−|BJ |+

λ

2nq
(CJ,J)−1sign(BJ)

)
< (CJ,J)−1WJ <

√
nq

(
|BJ |+

λ

2nq
(CJ,J)−1sign(BJ)

)
.

By denoting

(26) ûJ =
1
√
nq

(CJ,J)−1WJ −
λ

2nq
(CJ,J)−1sign(BJ),

we obtain from (25) that (22) and (23) hold. Note that Bn implies:

− λ

2
√
nq

(
1− CJc,J(CJ,J)−1sign(BJ)

)
≤ CJc,J(CJ,J)−1WJ −WJc ≤ λ

2
√
nq

(
1 + CJc,J(CJ,J)−1sign(BJ)

)
.

Hence, ∣∣∣∣CJc,J

(
(CJ,J)−1WJ −

λ

2
√
nq

(CJ,J)−1sign(BJ)

)
−WJc

∣∣∣∣ ≤ λ

2
√
nq
,

which is (24) by (26). This concludes the proof. �

Proof of Theorem 1. By Proposition 2,

P
(

sign(B̂(λ)) = sign(B)
)
≥ P(An ∩Bn) = 1− P(Acn ∪Bc

n) ≥ 1− P(Acn)− P(Bc
n),
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where An and Bn are defined in (13) and (14). It is thus enough to prove that P(Acn) and
P(Bc

n) tend to zero as n tends to infinity.
By definition of An,

P(Acn) = P
(∣∣(CJ,J)−1WJ

∣∣ ≥ √nq(|BJ | − λ

2nq
|(CJ,J)−1sign(BJ)|

))
≤ sup

j∈J
P
(
|ξj | ≥

√
nq

(
|Bj | −

λ

2nq
|bj |
))

,(27)

where

ξ = (ξj)j∈J = (CJ,J)−1WJ =
1
√
nq

(CJ,J)−1(X•,J)′E =: HA E ,

and

b = (bj)j∈J = (CJ,J)−1sign(BJ).

By definition of Bn and (IC),

P(Bc
n) = P

(∣∣CJc,J(CJ,J)−1WJ −WJc

∣∣ > λ

2
√
nq

(
1−

∣∣CJc,J(CJ,J)−1sign(BJ)
∣∣))

≤ P
(∣∣CJc,J(CJ,J)−1WJ −WJc

∣∣ > λ

2
√
nq
η

)
≤ sup

j∈Jc
P
(
|ζj | >

λ

2
√
nq
η

)
,(28)

where

ζ = (ζj)j∈Jc = CJc,J(CJ,J)−1WJ −WJc =
1
√
nq

(
CJc,J(CJ,J)−1(X•,J)′ − (X•,Jc)′

)
E =: HB E .

Note that, for all j in J ,

|bj | ≤
∑
j∈J
|bj | ≤

√
|J |

∑
j∈J

b2j

1/2

=
√
|J |‖b‖2.

Moreover,

‖b‖2 = ‖(CJ,J)−1sign(BJ)‖2 ≤ ‖(CJ,J)−1‖2
√
|J | := λmax((CJ,J)−1)

√
|J |,

where λmax(A) denotes the largest eigenvalue of the matrix A. Observe that

(29) λmax((CJ,J)−1) =
1

λmin(CJ,J)
=

q

λmin((X ′X )J,J)/n
≤ q

M2
,

by Assumption (A2) of Theorem 1. Thus, for all j in J ,

(30) |bj | ≤
q|J |
M2

.

By Assumption (A4) of Theorem 1, we get thus that for all j in J ,
(31)
√
nq

(
|Bj | −

λ

2nq

∣∣∣((CJ,J)−1sign(BJ)
)
j

∣∣∣) =
√
nq

(
|Bj | −

λ

2nq
|bj |
)
≥ √nq

(
M3q

−c2 − λq|J |
2nqM2

)
.
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Thus,

(32) P(Acn) ≤ sup
j∈J

P
(
|ξj | ≥

√
nq

(
M3q

−c2 − λq|J |
2nqM2

))
.

Since E is a centered Gaussian random vector having a covariance matrix equal to identity,
ξ = HA E is a centered Gaussian random vector with a covariance matrix equal to:

HAH
′
A =

1

nq
(CJ,J)−1(X•,J)′X•,J(CJ,J)−1 = (CJ,J)−1.

Hence, by (29), we get that for all j in J ,

Var(ξj) =
(
(CJ,J)−1

)
jj
≤ λmax(C−1

J,J) ≤ q

M2
.

Thus,

P
(
|ξj | ≥

√
nq

(
M3q

−c2 − λq|J |
2nqM2

))
≤ P

(
|Z| ≥

√
M2√
q

(
M3q

−c2√nq − λq|J |
2
√
nqM2

))
,

where Z is a standard Gaussian random variable. By Chernoff inequality, we thus obtain that
for all j in J ,

P
(
|ξj | ≥

√
nq

(
M3q

−c2 − λq|J |
2nqM2

))
≤ 2 exp

(
−M2

2q

{
M3q

−c2√nq − λq|J |
2
√
nqM2

}2
)
.

By Assumption (A3) of Theorem 1, we get that under the last condition of (L),

(33)
λq|J |
√
nq

= o
(
q−c2
√
nq
)
, as n→∞.

Thus,

(34) P(Acn)→ 0, as n→∞.

Let us now bound P(Bc
n). Observe that ζ = HB E is a centered Gaussian random vector

with a covariance matrix equal to:

HBH
′
B =

1

nq
(CJc,J(CJ,J)−1(X•,J)′ −X ′•,Jc)(X•,J(CJ,J)−1CJ,Jc −X•,Jc)

= CJc,Jc − CJc,J(CJ,J)−1CJ,Jc =
1

nq
(X•,Jc)′

(
IdRnq −X•,J((X•,J)′X•,J)−1(X•,J)′

)
X•,Jc

=
1

nq
(X•,Jc)′

(
IdRnq −ΠIm(X•,J )

)
X•,Jc ,

where ΠIm(X•,J ) denotes the orthogonal projection onto the column space of X•,J . Note that,
for all j in Jc,

Var(ζj) =
1

nq

(
(X•,Jc)′

(
IdRnq −ΠIm(X•,J )

)
X•,Jc

)
jj

=
1

nq

(
(X•,Jc)′X•,Jc

)
jj
− 1

nq

(
(X•,Jc)′ ΠIm(X•,J )X•,Jc

)
jj

≤ 1

nq

(
(X•,Jc)′X•,Jc

)
jj
≤ M1

q
,
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where the inequalities come from Lemma 9 and Assumption (A1) of Theorem 1. Thus, for
all j in Jc,

P
(
|ζj | >

λ

2
√
nq
η

)
≤ P

(
|Z| >

λ
√
q

2
√
M1
√
nq
η

)
,

where Z is a standard Gaussian random variable. By Chernoff inequality, for all j in Jc,

P
(
|ζj | >

λ

2
√
nq
η

)
≤ 2 exp

{
−1

2

(
λ

2
√
M1
√
n
η

)2
}
.

Hence, under the following assumption

λ√
n
→∞,

which is the second condition of (L),

(35) P(Bc
n)→ 0, as n→∞.

�

Proof of Proposition 3. Let us first prove that (C1) and (C3) imply (A1). For j ∈ {1, . . . , pq},
by considering the Euclidian division of j − 1 by p given by (j − 1) = pkj + rj , we observe
that

(X•,j)′X•,j = (((Σ−1/2)′ ⊗X)•,j)
′((Σ−1/2)′ ⊗X)•,j

= ((Σ−1/2)⊗X ′)j,•)((Σ−1/2)′ ⊗X)•,j

= ((Σ−1/2)kj+1,• ⊗ (X•,rj+1)′)(((Σ−1/2)•,kj+1)′ ⊗X•,rj+1)

= (Σ−1/2)kj+1,•((Σ
−1/2)•,kj+1)′ ⊗ (X•,rj+1)′X•,rj+1

= (Σ−1)kj+1,kj+1 ⊗ (X•,rj+1)′X•,rj+1

= (Σ−1)kj+1,kj+1(X•,rj+1)′X•,rj+1.

Hence, using (C1), we get that for all j in {1, . . . , pq},
1

n
(X•,j)′X•,j ≤M ′1(Σ−1)kj+1,kj+1 ≤M ′1 sup

k∈{0,...,q−1}
((Σ−1)k+1,k+1)

≤M ′1λmax(Σ−1) ≤M ′1m1,

where the last inequality comes from (C3), which gives (A1).
Let us now prove that (C2) and (C4) imply (A2). Note that

(X ′X )J,J = (((Σ−1/2)′ ⊗X)′((Σ−1/2)′ ⊗X))J,J

= (Σ−1/2(Σ−1/2)′ ⊗X ′X)J,J

= (Σ−1 ⊗X ′X)J,J .

Then, by Theorem 4.3.15 of Horn and Johnson (1986),

λmin((X ′X )J,J) = λmin((Σ−1 ⊗X ′X)J,J)

≥ λmin(Σ−1 ⊗X ′X)

= λmin(X ′X)λmin(Σ−1).(36)
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Finally, by using Conditions (C2) and (C4), we obtain

1

n
λmin(X ′X )J,J ≥

1

n
λmin(X ′X)λmin(Σ−1) ≥M ′2m2,

which gives (A2). �

Proof of Theorem 5. By Proposition 4,

P
(

sign(B̃(λ)) = sign(B)
)
≥ P(Ãn ∩ B̃n) = 1− P(Ãcn ∪ B̃c

n) ≥ 1− P(Ãcn)− P(B̃c
n),

where Ãn and B̃n are defined in (17) and (18). By definition of Ãn, we get

P(Ãcn) = P
({∣∣∣(C̃J,J)−1W̃J

∣∣∣ ≥ √nq(|BJ | − λ

2nq
|(C̃J,J)−1sign(BJ)|

)})
.

Observing that

(C̃J,J)−1W̃J = (CJ,J)−1WJ + (CJ,J)−1
(
W̃J −WJ

)
+
(

(C̃J,J)−1 − (CJ,J)−1
)
WJ

+
(

(C̃J,J)−1 − (CJ,J)−1
)(

W̃J −WJ

)
,

(C̃J,J)−1sign(BJ) = (CJ,J)−1sign(BJ) +
(

(C̃J,J)−1 − (CJ,J)−1
)

sign(BJ),

and using the triangle inequality, we obtain that

P(Ãcn) ≤ P
({∣∣(CJ,J)−1WJ

∣∣ ≥ √nq
5

(
|BJ | −

λ

2nq

∣∣(CJ,J)−1sign(BJ)
∣∣)})

+ P
({∣∣∣(CJ,J)−1

(
W̃J −WJ

)∣∣∣ ≥ √nq
5

(
|BJ | −

λ

2nq

∣∣(CJ,J)−1sign(BJ)
∣∣)})

+ P
({∣∣∣((C̃J,J)−1 − (CJ,J)−1

)
WJ

∣∣∣ ≥ √nq
5

(
|BJ | −

λ

2nq

∣∣(CJ,J)−1sign(BJ)
∣∣)})

+ P
({∣∣∣((C̃J,J)−1 − (CJ,J)−1

)(
W̃J −WJ

)∣∣∣ ≥ √nq
5

(
|BJ | −

λ

2nq

∣∣(CJ,J)−1sign(BJ)
∣∣)})

+ P
({

λ

2
√
nq

∣∣∣((C̃J,J)−1 − (CJ,J)−1
)

sign(BJ)
∣∣∣ ≥ √nq

5

(
|BJ | −

λ

2nq

∣∣(CJ,J)−1sign(BJ)
∣∣)}) .

(37)

The first term in the r.h.s of (37) tends to 0 by the definition of Acn and (34). By (31), the
last term of (37) satisfies, for all j ∈ J :

P
(∣∣∣((C̃J,J)−1 − (CJ,J)−1

)
sign(BJ)

∣∣∣ ≥ 2nq

5λ

(
|BJ | −

λ

2nq

∣∣(CJ,J)−1sign(BJ)
∣∣))

≤ P
(∣∣∣∣(((C̃J,J)−1 − (CJ,J)−1

)
sign(BJ)

)
j

∣∣∣∣ ≥ 2nq

5λ

(
M3q

−c2 − λq|J |
2nqM2

))
.
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Let U = (C̃J,J)−1 − (CJ,J)−1 and s = sign(BJ) then for all j in J :

(38) |(Us)j | =

∣∣∣∣∣∑
k∈J

Ujksk

∣∣∣∣∣ ≤√|J |‖U‖2.
We focus on

‖(C̃J,J)−1 − (CJ,J)−1‖2 = ‖(C̃J,J)−1(CJ,J − C̃J,J)(CJ,J)−1‖2 ≤ ‖(C̃J,J)−1‖2 ‖CJ,J − C̃J,J‖2 ‖(CJ,J)−1‖2

≤
ρ(CJ,J − C̃J,J)

λmin(C̃J,J)λmin(CJJ)
≤

ρ(CJ,J − C̃J,J)

λmin(C̃J,J)(M2/q)
,

where the last inequality comes from Assumption (A2) of Theorem 1, which gives that

(39) ‖(CJ,J)−1‖2 ≤
q

M2
.

Using Theorem 4.3.15 of Horn and Johnson (1986), we get

‖(C̃J,J)−1 − (CJ,J)−1‖2 ≤
qρ(C − C̃)

λmin(C̃)M2

.

By definition of C and C̃ given in (11) and (15), respectively, we get

(40) C =
Σ−1 ⊗ (X ′X)

nq
and C̃ =

Σ̂−1 ⊗ (X ′X)

nq
.

By using that the eigenvalues of the Kronecker product of two matrices is equal to the product
of the eigenvalues of the two matrices, we obtain

‖(C̃J,J)−1 − (CJ,J)−1‖2 ≤
ρ(Σ−1 − Σ̂−1)λmax((X ′X)/n)q

λmin(Σ̂−1)λmin((X ′X)/n)M2

≤ ρ(Σ−1 − Σ̂−1)λmax(Σ̂)λmax((X ′X)/n)q

λmin((X ′X)/n)M2

≤
ρ(Σ−1 − Σ̂−1)

(
ρ(Σ̂− Σ) + λmax(Σ)

)
λmax((X ′X)/n)q

λmin((X ′X)/n)M2
,(41)

where the last inequality follows from Theorem 4.3.1 of Horn and Johnson (1986). Thus, by
Assumptions (A5), (A6), (A8), (A9) and (A10), we get that

(42) ‖(C̃J,J)−1 − (CJ,J)−1‖2 = OP (q(nq)−1/2), as n→∞.

Hence, by (38), we get for all j in J that

P
(∣∣∣∣(((C̃J,J)−1 − (CJ,J)−1

)
sign(BJ)

)
j

∣∣∣∣ ≥ 2nq

5λ

(
M3q

−c2 − λq|J |
2nqM2

))
≤ P

(√
|J | ‖(C̃J,J)−1 − (CJ,J)−1‖2 ≥

2
√
nq

5λ

(
M3q

−c2√nq − λq|J |
2
√
nqM2

))
.

By (33), (42) and (A3), it is enough to prove that

P
(
qc1/2q(nq)−1/2 ≥ nq

λ
q−c2

)
→ 0, as n→∞.

By the last condition of (L),
nq
λ q
−c2

q1+c1
→∞, as n→∞,
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and the result follows since n tends to infinity. Hence, the last term of (37) tends to zero as
n tends to infinity.

Let us now study the second term in the r.h.s of (37).

W̃J −WJ =
1
√
nq

((
X̃ ′Ẽ

)
J
−
(
X ′E

)
J

)
=

1
√
nq

(
X̃ ′Ẽ − X ′E

)
J

=
1
√
nq

[(
Σ̂−1/2 ⊗X ′

)(
(Σ̂−1/2)′ ⊗ IdRn

)
Vec(E)−

(
Σ−1/2 ⊗X ′

)(
(Σ−1/2)′ ⊗ IdRn

)
Vec(E)

]
J

=
1
√
nq

[{(
Σ̂−1 − Σ−1

)
⊗X ′

}
Vec(E)

]
J

d
= AZ,

(43)

where Z is a centered Gaussian random vector having a covariance matrix equal to identity
and

(44) A =
1
√
nq

[{(
Σ̂−1 − Σ−1

)
⊗X ′

}{
(Σ1/2)′ ⊗ IdRn

}]
J,•
.

By Cauchy-Schwarz inequality, we get for all K × nq matrix B, and all nq × 1 vector U that
for all k in {1, . . . ,K},

(45) |(BU)k| =

∣∣∣∣∣
nq∑
`=1

Bk,`U`

∣∣∣∣∣ ≤ ‖B‖2 ‖U‖2.
Thus, for all j in J , for all γ in R and all |J | × |J | matrix D,

(46) P
(∣∣∣∣(D (W̃J −WJ

))
j

∣∣∣∣ ≥ γ) = P
(∣∣∣(DAZ)j

∣∣∣ ≥ γ) ≤ P (‖D‖2 ‖A‖2‖Z‖2 ≥ γ) ,

where A is defined in (44) and Z is a centered Gaussian random vector having a covariance
matrix equal to identity. Hence, for all j in J ,

P
(∣∣∣∣((CJ,J)−1

(
W̃J −WJ

))
j

∣∣∣∣ ≥ √nq5

(
|Bj | −

λ

2nq

∣∣∣((CJ,J)−1sign(BJ)
)
j

∣∣∣))
≤ P

(
‖(CJ,J)−1‖2‖A‖2‖Z‖2 ≥

√
nq

5

(
M3q

−c2 − λq|J |
2nqM2

))
.

Let us bound ‖A‖2. Observe that∥∥∥∥[{(Σ̂−1 − Σ−1
)
⊗X ′

}{
(Σ1/2)′ ⊗ Id

}]
J,•

∥∥∥∥
2

= ρ

([(
Σ̂−1 − Σ−1

)
Σ
(

Σ̂−1 − Σ−1
)
⊗ (X ′X)

]
J,J

)1/2

≤ ρ
((

Σ̂−1 − Σ−1
)

Σ
(

Σ̂−1 − Σ−1
))1/2

λmax

(
X ′X

)1/2
≤ ρ

(
Σ̂−1 − Σ−1

)
λmax(Σ)1/2λmax

(
X ′X

)1/2
,

(47)
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where the first inequality comes from Theorem 4.3.15 of Horn and Johnson (1986). Hence,
by (A5), (A8) and (A9)

(48) ‖A‖2 =
1
√
nq

∥∥∥∥[{(Σ̂−1 − Σ−1
)
⊗X ′

}{
(Σ1/2)′ ⊗ Id

}]
J,•

∥∥∥∥
2

= OP (q−1/2(nq)−1/2).

By (33), (39) and (48), it is enough to prove that

P

(
nq∑
k=1

Z2
k ≥ nq n q−2c2

)
→ 0, as n→∞.

The result follows from the Markov inequality and the first condition of (L).
Let us now study the third term in the r.h.s of (37). Observe that

WJ =
1
√
nq

[(
Σ−1/2 ⊗X ′

)(
(Σ−1/2)′ ⊗ IdRn

)
Vec(E)

]
J

d
=

1
√
nq

[(
Σ−1 ⊗X ′

) (
(Σ1/2)′ ⊗ IdRn

)]
J,•
Z =: A1Z,(49)

where Z is a centered Gaussian random vector having a covariance matrix equal to identity
and

(50) A1 =
1
√
nq

[(
Σ−1 ⊗X ′

) (
(Σ1/2)′ ⊗ IdRn

)]
J,•
.

Using (45), we get for all j in J , for all γ in R and all |J | × |J | matrix D,

(51) P
(∣∣∣(D WJ)j

∣∣∣ ≥ γ) = P
(∣∣∣(DA1Z)j

∣∣∣ ≥ γ) ≤ P (‖D‖2 ‖A1‖2 ‖Z‖2 ≥ γ) ,

where A1 is defined in (50) and Z is a centered Gaussian random vector having a covariance
matrix equal to identity. Hence, for all j in J ,

P
(∣∣∣∣(((C̃J,J)−1 − (CJ,J)−1

)
WJ

)
j

∣∣∣∣ ≥ √nq5

(
|Bj | −

λ

2nq

∣∣∣((CJ,J)−1sign(BJ)
)
j

∣∣∣))
≤ P

(∥∥∥(C̃J,J)−1 − (CJ,J)−1
∥∥∥

2
‖A1‖2 ‖Z‖2 ≥

√
nq

5

(
M3q

−c2 − λq|J |
2nqM2

))
.

Let us now bound ‖A1‖2. Note that∥∥∥∥[(Σ−1 ⊗X ′
) (

(Σ1/2)′ ⊗ IdRn

)]
J,•

∥∥∥∥
2

=

∥∥∥∥[(Σ−1/2 ⊗X ′
)]

J,•

∥∥∥∥
2

= ρ
([

Σ−1 ⊗ (X ′X)
]
J,J

)1/2
≤ ρ

([
Σ−1 ⊗ (X ′X)

])1/2 ≤ λmax(Σ−1)1/2λmax(X ′X)1/2,

where the first inequality comes from Theorem 4.3.15 of Horn and Johnson (1986). Hence,
by (A5) and (A7),

(52) ‖A1‖2 ≤
1

nq
λmax(Σ−1)1/2λmax(X ′X)1/2 = OP (q−1/2).

By (33), (42) and (52) it is thus enough to prove that

P

(
nq∑
k=1

Z2
k ≥ nq n q−2c2

)
→ 0, as n→∞.

The result follows from the Markov inequality and the first condition of (L).
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Let us now study the fourth term in the r.h.s of (37). By (46), for all j in J ,

P
(∣∣∣∣(((C̃J,J)−1 − CJ,J)−1

)(
W̃J −WJ

))
j

∣∣∣∣ ≥ √nq5

(
|Bj | −

λ

2nq

∣∣∣((CJ,J)−1sign(BJ)
)
j

∣∣∣))
≤ P

(∥∥∥(C̃J,J)−1 − CJ,J)−1
∥∥∥

2
‖A‖2 ‖Z‖2 ≥

√
nq

5

(
M3q

−c2 − λq|J |
2nqM2

))
,

where A is defined in (44).
By (33), (42) and (48), it is thus enough to prove that

P

(
nq∑
k=1

Z2
k ≥ (nq) n2 q1−2c2

)
→ 0, as n→∞.

The result follows from the Markov inequality and the fact that c2 < 1/2.

Let us now study P(B̃n). By definition of B̃n, we get that

P(B̃c
n) = P

({∣∣∣C̃Jc,J(C̃J,J)−1W̃J − W̃Jc

∣∣∣ ≥ λ

2
√
nq

(
1− |C̃Jc,J(C̃J,J)−1sign(BJ)|

)})
.

Observe that

C̃Jc,J(C̃J,J)−1W̃J − W̃Jc = CJc,J(CJ,J)−1WJ −WJc

+ CJc,J(CJ,J)−1
(
W̃J −WJ

)
+ CJc,J

(
(C̃J,J)−1 − (CJ,J)−1

)
WJ

+ CJc,J

(
(C̃J,J)−1 − (CJ,J)−1

)(
W̃J −WJ

)
+
(
C̃Jc,J − CJc,J

)
(CJ,J)−1WJ

+
(
C̃Jc,J − CJc,J

)
(CJ,J)−1

(
W̃J −WJ

)
+
(
C̃Jc,J − CJc,J

)(
(C̃J,J)−1 − (CJ,J)−1

)
WJ

+
(
C̃Jc,J − CJc,J

)(
(C̃J,J)−1 − (CJ,J)−1

)(
W̃J −WJ

)
+WJc − W̃Jc .

Moreover,

C̃Jc,J(C̃J,J)−1sign(BJ) = CJc,J(CJ,J)−1sign(BJ)

+ CJc,J

(
(C̃J,J)−1 − (CJ,J)−1

)
sign(BJ)

+
(
C̃Jc,J − CJc,J

)
(CJ,J)−1sign(BJ)

+
(
C̃Jc,J − CJc,J

)(
(C̃J,J)−1 − (CJ,J)−1

)
sign(BJ).
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By (IC) and the triangle inequality, we obtain that

P(B̃c
n) ≤ P

(∣∣CJc,J(CJ,J)−1WJ −WJc

∣∣ ≥ λ

24
√
nq
η

)
+ P

(∣∣∣CJc,J(CJ,J)−1
(
W̃J −WJ

)∣∣∣ ≥ λ

24
√
nq
η

)
+ P

({∣∣∣CJc,J

(
(C̃J,J)−1 − (CJ,J)−1

)
WJ

∣∣∣ ≥ λ

24
√
nq
η

})
+ P

({∣∣∣CJc,J

(
(C̃J,J)−1 − (CJ,J)−1

)(
W̃J −WJ

)∣∣∣ ≥ λ

24
√
nq
η

})
+ P

({∣∣∣(C̃Jc,J − CJc,J

)
(CJ,J)−1WJ

∣∣∣ ≥ λ

24
√
nq
η

})
+ P

({∣∣∣(C̃Jc,J − CJc,J

)
(CJ,J)−1

(
W̃J −WJ

)∣∣∣ ≥ λ

24
√
nq
η

})
+ P

({∣∣∣(C̃Jc,J − CJc,J

)(
(C̃J,J)−1 − (CJ,J)−1

)
WJ

∣∣∣ ≥ λ

24
√
nq
η

})
+ P

({∣∣∣(C̃Jc,J − CJc,J

)(
(C̃J,J)−1 − (CJ,J)−1

)(
W̃J −WJ

)∣∣∣ ≥ λ

24
√
nq
η

})
+ P

({∣∣∣WJc − W̃Jc

∣∣∣ ≥ λ

24
√
nq
η

})
+ P

({∣∣∣CJc,J

(
(C̃J,J)−1 − (CJ,J)−1

)
sign(BJ)

∣∣∣ ≥ η

12

})
+ P

({∣∣∣(C̃Jc,J − CJc,J

)
(CJ,J)−1sign(BJ)

∣∣∣ ≥ η

12

})
+ P

({∣∣∣(C̃Jc,J − CJc,J

)(
(C̃J,J)−1 − (CJ,J)−1

)
sign(BJ)

∣∣∣ ≥ η

12

})
.

(53)

The first term in the r.h.s of (53) tends to 0 by (35).
Let us now study the second term of (53). By (46), we get that for all j in Jc,

P
(∣∣∣∣(CJc,J(CJ,J)−1

(
W̃J −WJ

))
j

∣∣∣∣ ≥ λ

24
√
nq
η

)
≤ P

(
‖CJc,J‖2 ‖(CJ,J)−1‖2‖A‖2‖Z‖2 ≥

λ

24
√
nq
η

)
.

Observe that

‖CJc,J‖2 = ρ

(
(X•,Jc)′X•,J

nq

(X•,J)′X•,Jc

nq

)1/2

=
1

nq

∥∥(X•,Jc)′X•,J
∥∥

2
≤
‖(X•,Jc)′‖2√

nq

‖X•,J‖2√
nq

≤ ρ
(

(X•,Jc)′X•,Jc

nq

)1/2

ρ

(
(X•,J)′X•,J

nq

)1/2

= ρ(CJcJc)1/2ρ(CJ,J)1/2 ≤ ρ(C) =
λmax(Σ−1)

q
λmax(X ′X/n) = OP (q−1).(54)
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In (54) the last inequality and the fourth equality come from Theorem 4.3.15 of Horn and
Johnson (1986) and (40), respectively. The last equality comes from (A5) and (A7).

By (39), (48) and (54), it is thus enough to prove that

P

(
nq∑
k=1

Z2
k ≥

(
(nq)1/2√q λ

√
nq

)2
)

= P

(
nq∑
k=1

Z2
k ≥ (nq)

(
λ√
n

)2
)
→ 0, as n→∞,

which holds true by the second condition of (L) and Markov inequality. Hence, the second
term of (53) tends to zero as n tends to infinity.

Let us now study the third term of (53). By (51), we get that for all j in Jc,

P
(∣∣∣∣(CJc,J

(
(C̃J,J)−1 − (CJ,J)−1

)
WJ

)
j

∣∣∣∣ ≥ λ

24
√
nq
η

)
≤ P

(
‖CJc,J‖2 ‖(C̃J,J)−1 − (CJ,J)−1‖2‖A1‖2‖Z‖2 ≥

λ

24
√
nq
η

)
.

By (42), (52) and (54), it is thus enough to prove that

P

(
nq∑
k=1

Z2
k ≥

(
(nq)1/2√q λ

√
nq

)2
)

= P

(
nq∑
k=1

Z2
k ≥ (nq)

(
λ√
n

)2
)
→ 0, as n→∞,

which holds true by the second condition of (L) and Markov inequality. Hence, the third term
of (53) tends to zero as n tends to infinity.

Let us now study the fourth term of (53). By (46), it amounts to prove that

P
(
‖CJc,J‖2 ‖(C̃J,J)−1 − (CJ,J)−1‖2‖A‖2‖Z‖2 ≥

λ

24
√
nq
η

)
→ 0, as n→∞.

By (54), (42) and (48) it is enough tho prove that

P

(
nq∑
k=1

Z2
k ≥ (nq) (nq)

(
λ√
n

)2
)
→ 0, as n→∞,

which holds true by the second condition of (L). Hence, the fourth term of (53) tends to zero
as n tends to infinity.

Let us now study the fifth term of (53). By (51), proving that the fifth term of (53) tends
to 0 amounts to proving that

P
(∥∥∥CJc,J − C̃Jc,J

∥∥∥
2
‖(CJ,J)−1‖2‖A1‖2‖Z‖2 ≥

λ

24
√
nq
η

)
→ 0, as n→∞.

Let us now bound ‖CJc,J − C̃Jc,J‖2.∥∥∥CJc,J − C̃Jc,J

∥∥∥
2

=

∥∥∥∥(C − C̃)Jc,J

∥∥∥∥
2

= ρ

((
C − C̃

)
Jc,J

(
C − C̃

)
Jc,J

)1/2

≤
∥∥∥∥(C − C̃)Jc,J

(
C − C̃

)
Jc,J

∥∥∥∥1/2

∞
≤
∥∥∥(C − C̃)(C − C̃)∥∥∥1/2

∞
≤
∥∥∥C − C̃∥∥∥

∞

=
1

q

∥∥∥Σ−1 − Σ̂−1
∥∥∥
∞

∥∥∥∥X ′Xn
∥∥∥∥
∞

= OP (q−1(nq)−1/2),(55)

as n tends to infinity, where the last equality comes from (A5) and (A9).
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By (39), (52) and (55), to prove that the fifth term of (53) tends to zero as n tends to
infinity, it is enough to prove that

P

(
nq∑
k=1

Z2
k ≥ nq

(
λ√
n

)2
)
→ 0, as n→∞,

which holds using Markov’s inequality and the second condition of (L).
Using similar arguments as those used for proving that the second, third and fourth terms

of (53) tend to zero, we get that the sixth, seventh and eighth terms of (53) tend to zero, as
n tends to infinity, by replacing (54) by (55).

Let us now study the ninth term of (53). Replacing J by Jc in (43), (44), (46, (47) and
(48) in order to prove that the ninth term of (53) tends to 0 it is enough to prove that

P

(
nq∑
k=1

Z2
k ≥ nq

(
λ√
n

)2
)
→ 0, as n→∞,

which holds using Markov’s inequality and the second condition of (L).
Let us now study the tenth term of (53). Using the same idea as the one used for proving

(38), we get that

P
({∣∣∣CJc,J

(
(C̃J,J)−1 − (CJ,J)−1

)
sign(BJ)

∣∣∣ ≥ η

12

})
≤ P

(√
|J | ‖CJc,J‖2

∥∥∥(C̃J,J)−1 − (CJ,J)−1
∥∥∥

2
≥ η

12

)
,

which tends to zero as n tends to infinity by (A3), (42), (54) and the fact that c1 < 1/2.
Let us now study the eleventh term of (53). Using the same idea as the one used for proving

(38), we get that

P
({∣∣∣(C̃Jc,J − CJc,J

)
(CJ,J)−1sign(BJ)

∣∣∣ ≥ η

12

})
≤ P

(√
|J |
∥∥∥C̃Jc,J − CJc,J

∥∥∥
2
‖(CJ,J)−1‖2 ≥

η

12

)
,

which tends to zero as n tends to infinity by (A3), (39) and (55) and the fact that c1 < 1/2.
Finally, the twelfth term of (53) can be bounded as follows:

P
({∣∣∣(C̃Jc,J − CJc,J

)(
(C̃J,J)−1 − (CJ,J)−1

)
sign(BJ)

∣∣∣ ≥ η

12

})
≤ P

(√
|J |
∥∥∥C̃Jc,J − CJc,J

∥∥∥
2

∥∥∥(C̃J,J)−1 − (CJ,J)−1
∥∥∥

2
≥ η

12

)
,

which tends to zero as n tends to infinity by (A3), (42) and (55) and the fact that c1 < 1/2. �

Proof of Proposition 6. Observe that

(56) Σ−1 =


1 −φ1 0 · · · 0
−φ1 1 + φ2

1 −φ1 · · · 0

0 −φ1
. . .

. . .
...

...
...

. . . 1 + φ2
1 −φ1

0 0 · · · −φ1 1

 .
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Let S = X ′X = Σ−1 ⊗X ′X. Then,

Si,j =


nri+1 if j = i and ki ∈ {0, q − 1}

(1 + φ2
1)nri+1 if j = i and ki /∈ {0, q − 1}

−φ1nri+1 if j = i+ p or if j = i− p
0 otherwise

,

where i− 1 = (p− 1)ki + ri corresponds to the Euclidean division of (i− 1) by (p− 1).
In order to prove (IC), it is enough to prove that

‖SJc,J(SJ,J)−1‖∞ ≤ 1− η,
where η ∈ (0, 1).

Since for all j, (j − p) ∈ Jc or (j + p) ∈ Jc,
‖SJc,J‖∞ = ν|φ1|.

Let A = SJ,J . Since A = (ai,j) is a diagonally dominant matrix, then, by Theorem 1 of Varah
(1975),

‖A−1‖∞ ≤
1

mink(ak,k −
∑

1≤j≤|J|
j 6=k

ak,j)
.

Using that for all j, (j − p) ∈ Jc or (j + p) ∈ Jc,∑
1≤j≤|J|
j 6=k

ak,j ≤ ν|φ1|.

If k ∈ J then k > p and k < pq − p. Thus,

ak,k ≥ ν(1 + φ2
1).

Hence,

‖A−1‖∞ ≤
1

ν(1 + φ2
1 − |φ1|)

and

‖SJc,J(SJ,J)−1‖∞ ≤ ‖SJc,J‖∞‖(SJ,J)−1‖∞ ≤
|φ1|

1 + φ2
1 − |φ1|

.

Since |φ1| < 1, the strong Irrepresentability Condition holds when

|φ1| ≤ (1− η)(1 + |φ1|2 − |φ1|),
which is true for a small enough η. �

Proof of Proposition 7. Since |φ1| < 1,

‖Σ−1‖∞ ≤ |φ1|+ |1 + φ2
1| ≤ 3,

which gives (A7) by Theorem 5.6.9 of Horn and Johnson (1986).
Observe that

‖Σ‖∞ ≤
1

1− φ2
1

(
1 + 2

q−1∑
h=1

|φ1|h
)
≤ 1

1− φ2
1

(
1 +

2

1− |φ1|

)
=

3− |φ1|
1− φ2

1

≤ 3

1− φ2
1

,

which gives (A8) by Theorem 5.6.9 of Horn and Johnson (1986).



VARIABLE SELECTION IN MULTIVARIATE LINEAR MODELS 25

Since Σ̂−1 has the same expression as Σ−1 defined in (56) except that φ1 is replaced by φ̂1

defined in (21), we get that∥∥∥Σ−1 − Σ̂−1
∥∥∥
∞
≤ 2

∣∣∣φ1 − φ̂1

∣∣∣+
(
φ1 − φ̂1

)2
,

which implies Assumption (A9) of Theorem 5 by Lemma 8.
Let us now check Assumption (A10) of Theorem 5. Since, by Theorem 5.6.9 of Horn and

Johnson (1986), ρ(Σ− Σ̂) ≤ ‖Σ− Σ̂‖∞, it is enough to prove that∥∥∥Σ− Σ̂
∥∥∥
∞

= OP ((nq)−1/2), as n→∞.

Observe that∥∥∥Σ− Σ̂
∥∥∥
∞
≤

∣∣∣∣∣ 1

1− φ2
1

− 1

1− φ̂2
1

∣∣∣∣∣+ 2

q−1∑
h=1

∣∣∣∣∣ φh1
1− φ2

1

− φ̂h1

1− φ̂2
1

∣∣∣∣∣
≤

∣∣∣∣∣ φ2
1 − φ̂2

1

(1− φ2
1)(1− φ̂2

1)

∣∣∣∣∣+ 2

q−1∑
h=1

∣∣∣∣∣φh1 − φ̂h11− φ2
1

∣∣∣∣∣+ 2

q−1∑
h=1

∣∣∣∣∣φ̂h1
(

1

1− φ2
1

− 1

1− φ̂2
1

)∣∣∣∣∣
≤

∣∣∣∣∣(φ1 − φ̂1)(φ1 + φ̂1)

(1− φ2
1)(1− φ̂2

1)

∣∣∣∣∣+ 2

q−1∑
h=1

∣∣∣∣∣φh1 − φ̂h11− φ2
1

∣∣∣∣∣+ 2

q−1∑
h=1

∣∣∣∣∣(φ̂h1 − φh1)
(

1

1− φ2
1

− 1

1− φ̂2
1

)∣∣∣∣∣
+ 2

q−1∑
h=1

∣∣∣∣∣φh1
(

1

1− φ2
1

− 1

1− φ̂2
1

)∣∣∣∣∣
≤

∣∣∣∣∣(φ1 − φ̂1)(φ1 + φ̂1)

(1− φ2
1)(1− φ̂2

1)

∣∣∣∣∣
(

1 +
2

1− |φ1|

)
+ 2

(
1

|1− φ2
1|

+

∣∣∣∣∣(φ1 − φ̂1)(φ1 + φ̂1)

(1− φ2
1)(1− φ̂2

1)

∣∣∣∣∣
)
q−1∑
h=1

∣∣∣φ̂h1 − φh1 ∣∣∣ .
Moreover,

q−1∑
h=1

∣∣∣φ̂h1 − φh1 ∣∣∣ ≤ ∣∣∣φ̂1 − φ1

∣∣∣ q−1∑
h=1

h−1∑
k=0

|φ1|k|φ̂1|h−k−1 ≤
∣∣∣φ̂1 − φ1

∣∣∣(1− |φ̂1|q−1

1− |φ̂1|

)(
1− |φ1|q−1

1− |φ1|

)

≤
∣∣∣φ̂1 − φ1

∣∣∣( 1

1− |φ̂1|

)(
1

1− |φ1|

)
.

Thus, by Lemma 8, ∥∥∥Σ− Σ̂
∥∥∥
∞

= OP ((nq)−1/2),

which implies Assumption (A10) of Theorem 5. �

Proof of Lemma 8. In the following, for notational simplicity, q = qn. Observe that

√
nqφ̂1 =

1√
nq

∑n
i=1

∑q
`=2 Êi,`Êi,`−1

1
nq

∑n
i=1

∑q−1
`=1 Ê

2
i,`

.
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By (19),

n∑
i=1

q∑
`=2

Êi,`Êi,`−1 =

q∑
`=2

(Ê•,`)
′Ê•,`−1 =

q∑
`=2

(ΠE•,`)
′(ΠE•,`−1)

=

q∑
`=2

(φ1ΠE•,`−1 + ΠZ•,`)
′(ΠE•,`−1)(57)

= φ1

q−1∑
`=1

(ΠE•,`)
′(ΠE•,`) +

q∑
`=2

(ΠZ•,`)
′(ΠE•,`−1),

where (57) comes from the definition of (Ei,t).
Hence,

√
nq(φ̂1 − φ1) =

1√
nq

∑q
`=2(ΠZ•,`)

′(ΠE•,`−1)

1
nq

∑n
i=1

∑q−1
`=1 Ê

2
i,`

.

In order to prove that
√
nq(φ̂1 − φ1) = OP (1), it is enough to prove that

(58)
1

nq

n∑
i=1

q−1∑
`=1

E2
i,` −

1

nq

n∑
i=1

q−1∑
`=1

Ê2
i,` = oP (1), as n→∞,

by Lemma 10 and

(59)
1
√
nq

q∑
`=2

(ΠZ•,`)
′(ΠE•,`−1) = OP (1), as n→∞.

Let us first prove (58). By (20),

Ê = [IdRq ⊗Π] E := AE .
Note that

Cov(Ê) = A(Σ⊗ IdRn)A′ = Σ⊗Π.

Hence, for all i

Var(Êi) ≤ λmax(Σ).

Since the covariance matrix of E is equal to Σ⊗ IdRn , for all i

Var(Ei) ≤ λmax(Σ).

By Markov inequality,

1

nq

n∑
i=1

q−1∑
`=1

E2
i,` −

1

nq

n∑
i=1

q−1∑
`=1

Ê2
i,` =

1

nq

n∑
i=1

q∑
`=1

E2
i,` −

1

nq

n∑
i=1

q∑
`=1

Ê2
i,` + oP (1)

=
1

nq

(
‖E‖22 − ‖Ê‖22

)
+ oP (1).

Observe that

‖E‖22 − ‖Ê‖22 = ‖E‖22 − ‖AE‖22 = E ′E − E ′A′AE = E ′ (IdRnq − IdRq ⊗Π) E

= E ′ (IdRq ⊗ (IdRn −Π)) E =

pq∑
i=1

Ẽ2
i ,
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where Ẽ = OE , where O is an orthogonal matrix. Using that

E(Ẽ2
i ) = Cov(Ẽ)i,i ≤ λmax(Σ),

and Markov inequality, we get (58).
Let us now prove (59). By definition of (Ei,t) and since |φ1| < 1, E[(ΠZ•,`)

′(ΠE•,`−1)] = 0.
Moreover,

E

( q∑
`=2

(ΠZ•,`)
′(ΠE•,`−1)

)2
 = E

 q∑
`=2

n∑
i=1

(
n∑
k=1

Πi,kZk,`

) n∑
j=1

Πi,jEj,`−1

2
=

∑
2≤`,`′≤q

∑
1≤i,j,k,i′,j′,k′≤n

Πi,kΠi′,k′Πi,jΠi′,j′E
(
Zk,`Zk′,`′Ej,`−1Ej′,`′−1

)
=

∑
2≤`,`′≤q

∑
1≤i,j,k,i′,j′,k′≤n

Πi,kΠi′,k′Πi,jΠi′,j′
∑
r,s≥0

φr1φ
s
1E
(
Zk,`Zk′,`′Zj,`−1−rZj′,`′−1−s

)
,

since the (Ei,t) are AR(1) processes with |φ1| < 1. Note that E(Zk,`Zk′,`′Zj,`−1−rZj′,`′−1−s) =
0 except when ` = `′, k = k′, j = j′ and r = s.

Thus,

E

( q∑
`=2

(ΠZ•,`)
′(ΠE•,`−1)

)2
 = σ4

∑
r≥0

φ2r
1

 q∑
`=2

∑
1≤i,j,k,i′≤n

Πi,kΠi′,kΠi,jΠi′,j

=
qσ4

1− φ2
1

Tr(Π) ≤ nqσ4

1− φ2
1

,

where Tr(Π) denotes the trace of Π, which concludes the proof of (59) by Markov inequality.
�

5. Technical lemmas

Lemma 9. Let A ∈Mn(R) and Π an orthogonal projection matrix. For any j in {1, . . . , n}
(A′ΠA)jj ≥ 0.

Proof of Lemma 9. Observe that

(A′ΠA) = A′Π′ΠA = (ΠA)′(ΠA),

since Π is an orthogonal projection matrix. Moreover,

(A′ΠA)jj = e′j(ΠA)′(ΠA)ej ≥ 0,

since (ΠA)′(ΠA) is a positive semidefinite symmetric matrix, where ej is a vector containing
null entries except the jth entry which is equal to 1. �

Lemma 10. Assume that (E1,t)t, (E2,t)t, ..., (En,t)t are independent AR(1) processes satis-
fying:

Ei,t − φ1Ei,t−1 = Zi,t, ∀i ∈ {1, . . . , n},
where the Zi,t’s are zero-mean i.i.d. Gaussian random variables with variance σ2 and |φ1| < 1.
Then,

1

nqn

n∑
i=1

qn−1∑
`=1

E2
i,`

P−→ σ2

1− φ2
1

, as n→∞.
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Proof of Lemma 10. In the following, for notational simplicity, q = qn. Since E(E2
i,`) =

σ2/(1− φ2
1), it is enough to prove that

1

nq

n∑
i=1

q−1∑
`=1

(
E2
i,` − E(E2

i,`)
) P−→ 0, as n→∞.

Since

E2
i,` =

∑
j≥0

φj1Zi,`−j

2

=
∑
j,j′≥0

φj1φ
j′

1 Zi,`−jZi,`−j′ ,

Var

(
1

nq

n∑
i=1

q−1∑
`=1

(
E2
i,` − E(E2

i,`)
))

=
1

(nq)2

n∑
i=1

∑
1≤`,`′≤q−1

Cov(E2
i,`;E

2
i,`′)

=
1

(nq)2

n∑
i=1

∑
1≤`,`′≤q−1

∑
j,j′≥0

∑
k,k′≥0

φj1φ
j′

1 φ
k
1φ

k′
1 Cov(Zi,`−jZi,`−j′ ;Zi,`′−kZi,`′−k′).(60)

By Cauchy-Schwarz inequality |Cov(Zi,`−jZi,`−j′ ;Zi,`′−kZi,`′−k′)| is bounded by a positive
constant. Moreover

∑
j≥0 |φ1|j < ∞, hence (60) tends to zero as n tend to infinity, which

concludes the proof of the lemma. �
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Perrot-Dockès, M., C. Lévy-Leduc, J. Chiquet, L. Sansonnet, M. Brégère, M. P. Étienne,
S. Robin, and G. Genta-Jouve (2017). A multivariate variable selection approach for ana-
lyzing LC-MS metabolomics data. arXiv:1704.00076.



VARIABLE SELECTION IN MULTIVARIATE LINEAR MODELS 29

Pourahmadi, M. (2013). High-Dimensional Covariance Estimation. Wiley Series in Proba-
bility and Statistics.

Rothman, A. J., P. J. Bickel, E. Levina, and J. Zhu (2008). Sparse permutation invariant
covariance estimation. Electron. J. Statist. 2, 494–515.

Rothman, A. J., E. Levina, and J. Zhu (2010). Sparse multivariate regression with covariance
estimation. Journal of Computational and Graphical Statistics 19 (4), 947–962.

Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. J. Royal. Statist. Soc
B. 58 (1), 267–288.

Varah, J. (1975). A lower bound for the smallest singular value of a matrix. Linear Algebra
and its Applications 11 (1), 3 – 5.

Yuan, M. and Y. Lin (2007). Model selection and estimation in the gaussian graphical model.
Biometrika 94 (1), 19–35.

Zhao, P. and B. Yu (2006). On model selection consistency of lasso. Journal of Machine
Learning Research 7, 2541–2563.

UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, 75005, Paris, France
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