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Abstract

Many studies have reported that hydraulic properties vary considerably between tree spe-

cies, but little is known about their intraspecific variation and, therefore, their capacity to

adapt to a warmer and drier climate. Here, we quantify phenotypic divergence and clinal var-

iation for embolism resistance, hydraulic conductivity and branch growth, in four tree spe-

cies, two angiosperms (Betula pendula, Populus tremula) and two conifers (Picea abies,

Pinus sylvestris), across their latitudinal distribution in Europe. Growth and hydraulic effi-

ciency varied widely within species and between populations. The variability of embolism

resistance was in general weaker than that of growth and hydraulic efficiency, and very low

for all species but Populus tremula. In addition, no and weak support for a safety vs. effi-

ciency trade-off was observed for the angiosperm and conifer species, respectively. The lim-

ited variability of embolism resistance observed here for all species except Populus tremula,

suggests that forest populations will unlikely be able to adapt hydraulically to drier conditions

through the evolution of embolism resistance.

Introduction

Massive forest mortality events due to drought stress and rising temperatures have been

observed at the global and regional scales [1–5]. Considering that climate change models pre-

dict further increases in mean temperature and in the frequency and severity of extreme

drought events [6], more negative impacts on tree survival are expected [7]. In this context,
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assessments of the properties associated with drought resistance in trees, and of the capacity of

species to deal with environmental changes, may help us to anticipate the impact of climate

change on forest tree species.

Hydraulic failure due to xylem embolism is now considered one of the main causes of

drought-induced tree mortality [8–10]. When soil water potential drops due to water shortage,

the tension of the xylem water column increases, promoting the formation of embolisms that

reduce the hydraulic functioning of the plant [11,12]. In cases of prolonged drought, soil water

potential continues to fall, triggering the spread of embolisms throughout the xylem conduit

network, leading to the hydraulic dysfunction of the plant vascular system and, finally, to lethal

damage to the plant [13,14,15]. Therefore, determining the resistance to embolism of the spe-

cies is crucial for evaluating the consequences that the expected increase in drought event fre-

quency can have on a given population, forest or biome. P50 is the xylem pressure at which

50% of conductivity is lost due to embolism formation, and it is widely used to assess plant

hydraulic safety to embolism. Xylem-specific hydraulic conductivity (KS), i.e. the rate of water

transport through a given area of sapwood per unit pressure difference and per unit length, is

commonly used to assess hydraulic efficiency [12]. Across species, literature shows a weak cor-

relation between hydraulic safety and hydraulic efficiency, but the absence of species display-

ing both high hydraulic efficiency and safety suggests a possible safety-efficiency trade-off [16].

In conifers, P50 and Ks are only weakly correlated, as embolism resistance is driven mostly by

the torus-aperture overlap in pit pairs [17–19], whereas xylem hydraulic efficiency is not influ-

enced by this pit trait. By contrast, in angiosperms, both P50 and Ks are associated with pit

membrane structure [20–22] and thickness [23], as well as with the perforation structure

[24,25].

Differences in resistance to embolism, i.e. in P50, across species have been widely reported

[17,19,26,27,28]. However, less attention has been paid to within-species phenotypic variation

in this hydraulic property. Phenotypic variability results from a combination of genetic varia-

tion (differences in genotype among different individuals within the population and between

populations) and phenotypic plasticity (genotype property to render different phenotypes in

different environments [29]), and defines the capacity of populations to succeed under chang-

ing environmental conditions [30,31]. Low levels of phenotypic variability across large spatial

scales may indicate a low potential of species to adapt to ongoing climate change. Contrary to

other plant functional properties (see for instance [32] for leaf phenology, [33] for leaf func-

tional traits), previous works on hydraulic properties show that phenotypic differences within

species are by far lower than those found across species [34–38], and these differences are even

smaller in gymnosperms than in angiosperms [39]. For instance, Lamy et al. 2011, 2014 found

neither phenotypic variability in situ and nor genetic differentiation between maritime pine

populations and suggested uniform selection rather than genetic drift, for P50. However,

whether the phenotypic variation of hydraulic properties varies across species distribution

ranges remains largely unexplored. Furthermore, studies assessing the extent to which pheno-

typic variability in hydraulic properties is lower than that of other key species traits over large

scales are also lacking.

The main aim of this study was to evaluate phenotypic variability in the functional hydrau-

lic safety and efficiency (P50 and KS) of four European tree species (two conifers and two angio-

sperms) along a latitudinal gradient covering most of their distribution range. We assessed the

capacity of the species to adapt to changing environmental conditions by exploring the links

between hydraulic properties and latitude and climate. We also evaluated the phenotypic vari-

ability of branch growth in trees from the same populations to assess the extent to which

hydraulic properties were conserved relative to other key traits. Finally, we assessed the safety-

efficiency trade-off at intraspecific level. We hypothesized 1) a weaker phenotypic variation for

Phenotypic variability in hydraulic traits
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hydraulic safety than for hydraulic efficiency and branch growth, given the highly conserved

evolutionary nature of P50 [37,38]; 2) a phenotypic cline -a gradual change of a phenotypic

character in a species over a geographical area- in both hydraulic safety and efficiency and 3) a

weak safety-efficiency trade-off within species. This study provides for the first time a multi-

species assessment of inter and intra-specific phenotypic variability in functional hydraulic

properties along a large latitudinal gradient. Our results will help to characterize the adaptive

capacities of European forests, which will have to face drier and warmer climatic conditions in

the future.

Materials and methods

Study species and populations

We focused on four widely distributed European species, with different water-transport struc-

tures, from diffuse porous with scalariform perforation plates (Betula pendula Roth) or with

simple perforation plates (Populus tremula L.) to softwood (two tracheid-bearing species, Picea
abies (L.) Karst and Pinus sylvestris L.). For each species, four to six populations were selected

across their distribution range (see the distribution range of the species and the location of the

populations in S1 Fig). The mean annual temperature and total annual rainfall across selected

populations ranged from -1.8 to 9.5˚C and 538 to 1739 mm, respectively (S1 Table). We also

selected two different sites a few kilometres apart, for each population.

Climatic data

Data for mean annual temperature (MAT) and total annual precipitation (MAP) were

obtained from WorldClim original 30-s data (http://www.worldclim.org/bioclim) [40] down-

scaled to 100-m resolution based on a high-resolution digital elevation model (DEM) and

moving window regression technique [41] for all but the Italian (IT) and Swiss populations

(SW-LOE and SW-PFY). The MAP data for the IT (Italy), SW-LOE (Switzerland-Loetschen-

tal) and SW-PFY (Switzerland- Pfynwald) populations were obtained from nearby weather sta-

tions at San Vito di Cadore (Centre for Alpine Environment Studies) and Sierre (www.

meteoswiss.ch), respectively, due to considerable variations in topography. The aridity index

(AI) was calculated as MAP/PET (total annual precipitation/annual potential evapotranspira-

tion). PET was extracted from the Global Aridity and PET Database (http://www.cgiar-csi.

org). We averaged the mean temperatures (T_Sum) or aridity indices (AI_Sum) of June, July

and August to obtain mean values for the summer (see S1 Table for the climatic conditions of

the populations studied).

Xylem vulnerability to embolism

We collected branches from five to 11 healthy mature trees per population in the early morn-

ing during the wet season (spring 2015). One or two branches with three to five functional

rings were sampled at mid-crown and south oriented. Samples had a standard length of 45 cm.

Transpiration losses were prevented by removing the leaves or needles immediately after sam-

pling and wrapping the branches in moist paper to keep them humid and cool (3˚C) until the

measurement of embolism resistance (within three weeks of sampling). The bark was removed

from conifer branches to prevent resin to fill the cavitron reservoirs (see below, [17]), and all

branches were recut with a razor blade, under water, to a standard length of 0.27 m. For each

angiosperm species, 10 samples per species were used to test the open vessel artefact [42] by

injecting air at 2 bars at one end and no open vessels were detected for any of them.

Phenotypic variability in hydraulic traits
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Vulnerability to drought-induced embolism was determined at the Caviplace (University of

Bordeaux, Talence, France; http://sylvain-delzon.com/caviplace) and INRA-Clermont-Fer-

rand facilities, with the Cavitron technique [43,44]. Samples were infiltrated with a reference

ionic solution of 10 mm 25 KCl and 1 mm CaCl2 in deionized ultrapure water. Centrifugal

force was used to generate negative pressure into the xylem and induce cavitation. This

method allows to measure xylem conductance under negative pressure using the custom soft-

ware Cavisoft 4.0 (Univ. Bordeaux, Pessac, France). Initially, the maximum conductance of

stem (Kmax, in m2MPa-1s-1) was calculated under low xylem pressures. The percentage loss of

conductance (PLC) of the stems was calculated at different xylem pressures (Pi) from -0.8 to -5

MPa with the following equation:

PLC ¼ 100 1 �
K

Kmax

� �

We obtained one vulnerability curve per tree by measuring one or two of the collected

branches. These vulnerability curves show the percentage loss of xylem conductance as a func-

tion of xylem pressure [17]. For each branch, the relationship between PLC and xylem water

pressure was fitted with the following sigmoidal equation [45]:

PLC ¼
100

1þ exp S
25
� ðPi � P50Þ

� �� �

where P50 (MPa) is the xylem pressure inducing a 50% loss of conductivity and S (% MPa-1) is

the slope of the vulnerability curve at the inflection point. All sigmoidal functions were signifi-

cant and fitted with the NLIN procedure in SAS (version 9.4 SAS Institute, Cary, NC, USA).

The xylem-specific hydraulic conductivity (Ks, kg m1MPa-1 s-1) was calculated by dividing the

hydraulic conductivity measured at low speed by the sapwood area of the sample.

Branch growth measurements

We also collected one branch per tree from three to five trees per population and site. We

selected straight branches and did not keep any sample with reaction wood for our measure-

ments. The allometric relationship between branch radius (mm) and xylem age (number of

years) was used as a surrogate for tree growth, as radial branch growth and tree growth pat-

terns are highly correlated [46]. The branch surface area and the number of tree rings were sys-

tematically measured at 70 cm from the branch apex.

Statistical analyses

We assessed the phenotypic variability of functional hydraulic properties (P50 and Ks) and

branch growth (branch radius/xylem age) in each species, by testing the effect of population

and site with nested ANOVAs, in which the population and the site nested in population were

considered factors. If statistically significant differences were observed, post-hoc Tukey tests

were conducted for multiple comparisons between populations. Before running the ANOVAs,

we checked that the data satisfied the assumptions of normality and homoscedasticity. As ves-

sel size can rapidly increase with branch size during early years of tree growth, and then may

have a potential effect on hydraulic conductivity, we tested any potential correlation between

Ks and branch diameter. We also calculated the inter-population and intraspecific coefficients

of variation (% CVinter and CVsp, respectively). For each species, Spearman´s or Pearson´s cor-

relation coefficients (depending on the linearity condition) were calculated between the aver-

aged by site P50, Ks and branch growth and the latitude and the five climatic variables

Phenotypic variability in hydraulic traits
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mentioned above. Finally, we also checked for intraspecific safety-efficiency trade-offs, with

Spearman´s or Pearson´s correlation tests.

Statistical analyses were performed with the R project for statistical computing (R Develop-

ment Core Team, 2016) [47].

Results

Phenotypic variability across species distribution ranges

Xylem vulnerability curves followed a sigmoid function in all species (Fig 1, S2 Fig), showing

the lack of an open vessel artefact and the accuracy of the results obtained here. Betula pendula
and Picea abies showed, respectively, the lowest and highest resistance to embolism of the four

species evaluated. The mean P50 ± SE (MPa) was -1.78 ± 0.02 for Betula pendula, -2.45 ± 0.08

for Populus tremula, -3.16 ± 0.03 for Pinus sylvestris, and -3.58 ± 0.02 for Picea abies (Fig 1).

Differences in P50 between populations were observed for all species, whereas the site

(nested in population) had an effect on P50 in all species but Picea abies (Table 1, Fig 2). The

CV in P50 was low for all species other than Populus tremula. The variability in P50 of Betula
pendula, Picea abies and Pinus sylvestris ranged from 4.15 (CVinter of Picea abies) to 10.23%

(CVsp of Pinus sylvestris), whereas that of Populus tremula ranged from 24.82 (CVinter) to

25.07% (CVsp) (Table 2). The high variability observed for Populus tremula was mostly due to

the population of Finland-Värriö (FI-VA), which had the least negative P50 values of any of the

populations studied (Fig 2).

Fig 1. Xylem vulnerability curves for each population of the four species studied (Betula pendula, Populus tremula, Picea abies and Pinus
sylvestris). The shaded band represents the standard deviation. CR: Czech Republic; Fi-RU: Finland-Ruotsinkylä; NE: The Netherlands; PO:

Portugal; Fi-HYY: Finland-Hyytiälä; Fi-VA: Finland-Värriö; IT: Italy; SW-LOE: Switzerland-Loetschental; SW-PFY: Switzerland- Pfynwald.

https://doi.org/10.1371/journal.pone.0196075.g001
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Variability levels were much higher for Ks than for P50 (Table 2, Fig 2). Ks differed signifi-

cantly between populations, for all species other than Populus tremula (Table 2, Fig 2). For this

Table 1. Effects of population and site on P50 (MPa), xylem-specific hydraulic conductivity (Ks, kg m-1 MPa-1 s-1) and branch growth (BG, estimated as branch

radius/xylem age (mm/year)) of study species, according to nested ANOVAs. The F, p-values and degrees of freedom are shown. Pop: population.

Angiosperms Conifers

Betula pendula Populus tremula Picea abies Pinus syvestris

df F p df F p df F p df F p

Population 3 9.978 <0.001 3 124.885 <0.001 5 7.971 <0.001 5 15.284 <0.001

P50 Site (Pop) 4 7.894 <0.001 4 9.905 <0.001 6 1.042 0.405 6 6.505 <0.001

Population 3 34.949 <0.001 2 0.249 0.781 5 31.381 <0.001 5 4.810 <0.001

Ks Site (Pop) 4 1.022 0.405 3 2.809 0.051 6 1.743 0.123 6 2.019 0.070

Population 3 10.957 <0.001 3 12.999 <0.001 5 37.755 <0.001 5 50.702 <0.001

BG Site (Pop) 4 2.140 0.107 4 1.021 0.416 6 5.539 <0.001 6 14.674 <0.001

https://doi.org/10.1371/journal.pone.0196075.t001

Fig 2. Mean P50 (MPa), xylem-specific hydraulic conductivity (Ks, kg m-1 MPa-1 s-1) and branch growth (mm/year) per species, population and site. The two sites

are represented in different colours (white and grey). The bars represent the nominal range of data variation, with the upper and lower ends showing the upper quartile

plus 1.5 times the interquartile range and the lower quartile minus 1.5 times the interquartile range, respectively. Values beyond these limits are plotted as circles. CR:

Czech Republic; PO: Portugal; NE: The Netherlands; Fi-RU: Finland-Ruotsinkylä; Fi-VA: Finland-Värriö; Fi-HYY: Finland-Hyytiälä; IT: Italy; SW-LOW: Switzerland-

Loetschental; SW-PFY: Switzerland- Pfywald. Different letters indicate statistically significant differences between populations.

https://doi.org/10.1371/journal.pone.0196075.g002
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species, we could not obtain absolute values of Ks for the FI-HYY population, due to software

recording issues. No differences between sites were observed for Ks (Table 1). Populus tremula
had the smallest CVinter of the four species studied (14.16%), but the largest CVsp (80.04%,

Table 2). Betula pendula had the largest CVinter, with a mean difference of up to 2.8 kg m-1

MPa-1 s-1 between the populations located at the extreme ends of its latitudinal distribution

range (Table 2, Fig 2). When significant, the correlations between Ks and branch diameter

were weak (Betula pendula rho = -0.348, p = 0.008; Pinus sylvestris rho = 0.267, p = 0.005;

Populus tremula rho = 0.090, p = 0.542; Picea abies rho = -0.210, p = 0.055).

Finally, branch growth differed between populations for all species, whereas site (nested in

population) had a significant effect on branch growth only for conifers (Table 1, Fig 2). The

phenotypic variability of branch growth was greater than that of P50 (Table 2, Fig 2). Further-

more, the phenotypic variability of branch growth was greater than that of Ks in most cases

(Table 2, Fig 2). Pinus sylvestris had the largest CVsp and CVinter in branch growth (85.81 and

76.67%, respectively), whereas these two coefficients were the lowest in Populus tremula (43.29

and 37.66%, respectively) (Table 2).

Phenotypic clines with climate and latitudinal gradients

Populus tremula presented strong significant clines in P50, as five out of the six climatic vari-

ables studied here showed significant correlations with P50 (Table 3, Fig 3). P50 values for this

species were positively correlated with latitude and aridity index (AI and AI_Sum), but nega-

tively correlated with MAT and T_sum (Table 3, Fig 3). There was also a statistically significant

negative correlation between P50 and T_Sum in Betula pendula (Table 3). By contrast, no sig-

nificant clines in P50 were observed for conifers (Table 3, Fig 3).

Ks was less strongly related to climate than P50. The Ks/climate correlation was statistically

significant only for Betula pendula, with lower Ks values at sites with higher MAT values

(Table 3, Fig 4).

We found steeper clines for branch growth than for hydraulic properties, with all species

showing at least one statistically significant correlation between branch growth and latitude/

climate variables (Table 3, Fig 5). Latitude was correlated with branch growth only in Populus
tremula, for which the lowest branch growth values were obtained for the northernmost popu-

lation (Table 3, Fig 5). In general, when statistically significant, branch growth was positively

correlated with MAT and T_sum, and negatively correlated with AI, AI_sum and MAP

(Table 3, Fig 5).

Safety-efficiency trade-off

At the intraspecific level, we found statistically significant but weak positive correlations

between P50 and Ks for the conifers studied, with the most vulnerable individuals having the

Table 2. Intraspecific (CVsp) and inter-population (CVinter) coefficient of variability (%) for the xylem pressure inducing a 50% loss of conductance (P50, MPa),

xylem-specific hydraulic conductivity (Ks, kg m-1 MPa-1 s-1) and branch growth (BG, estimated as branch radius/xylem age (mm/year)) for each study species.

CVsp CVinter

Species P50 Ks BG P50 Ks BG

Betula pendula 9.67 53.47 58.94 5.56 50.28 47.05

Populus tremula 25.07 80.04 43.29 24.82 14.16 37.66

Picea abies 6.57 49.07 57.49 4.15 42.68 53.48

Pinus sylvestris 10.23 48.41 85.81 6.45 23.80 76.67

https://doi.org/10.1371/journal.pone.0196075.t002
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largest hydraulic conductivities (Table 4, S3 Fig). No significant correlation was found between

P50 and Ks for either of the angiosperms studied (Table 4).

Discussion

We assessed the phenotypic variability of hydraulic safety and efficiency traits (P50 and Ks,

respectively) and branch growth in four tree species across a long latitudinal gradient covering

most of their distribution range in Europe. P50 displayed lower phenotypic variability than Ks

and branch growth, consistent with our initial hypothesis. The low variability of P50 across

populations has been related to uniform evolutionary selection or canalization [37,38]. Indeed,

these studies provided evidence of natural selection acting on this trait. This uniform selection

reproduces trait conservatism and eventually leads to stasis [37]. In contrast, it has been sug-

gested that Ks variability is related to the interaction between genotype and environment [35].

Ks may also vary significantly with sampling position along the branch axis [48,49], although

we tried to overcome this limitation through the use of systematic sample preparation proce-

dures. We also expected branch growth to be more variable than P50, because branch growth is

strongly influenced by multiple interacting factors, such as the availability of nutrients, light,

water and temperature [46,50,51,52,53] and biotic interactions [54]. The limited embolism

resistance variability observed here, in all species other than Populus tremula, suggests that for-

est populations of the studied species will potentially find difficulties to cope with a warmer

and drier conditions by increasing their embolism resistance. However, considering the differ-

ences in climatic ranges between the studied species, we have to be cautious when interpreting

these patterns. Further studies investigating larger precipitation gradients and/or marginal

Table 3. Correlation coefficients (Pearson or Spearman) and p-values for the relationships between the mean xylem pressure inducing a 50% loss of conductance

(P50, MPa), xylem-specific hydraulic conductivity (Ks, kg m-1 MPa-1 s-1) and branch growth (BG, estimated as branch radius/xylem age (mm/year)) and the climatic

variables for each sampling site.

Betula pendula Populus tremula Picea abies Pinus sylvestris
Cor. p Cor. p Cor. p Cor. p

P50 Latitude 0.167 0.692 0.750 0.032 -0.568 0.054 0.193 0.547

MAT -0.547 0.161 -0.770 0.025 0.420 0.174 0.056 0.862

MAP 0.539 0.168 -0.214 0.610 0.288 0.364 -0.466 0.127

AI 0.460 0.251 0.886 0.003 -0.112 0.728 -0.462 0.130

T_Sum -0.793 0.019 -0.909 0.002 0.341 0.278 -0.120 0.711

AI_Sum -0.289 0.487 0.934 0.001 0.098 0.761 -0.578 0.049

Ks Latitude 0.228 0.586 -0.166 0.753 0.001 1.000 -0.122 0.704

MAT -0.886 0.003 0.308 0.553 -0.147 0.649 0.408 0.187

MAP -0.119 0.779 0.086 0.872 -0.414 0.181 0.276 0.384

AI 0.231 0.582 -0.206 0.695 -0.239 0.455 -0.279 0.379

T_Sum -0.428 0.290 0.292 0.575 0.082 0.799 0.225 0.481

AI_Sum -0.180 0.670 -0.439 0.383 -0.028 0.931 0.019 0.952

BG Latitude 0.497 0.210 -0.894 0.003 -0.386 0.215 -0.224 0.484

MAT -0.423 0.296 0.876 0.004 0.755 0.004 0.627 0.029

MAP -0.786 0.021 0.452 0.260 0.133 0.679 0.027 0.934

AI -0.669 0.069 -0.904 0.002 -0.779 0.003 -0.593 0.042

T_Sum 0.364 0.375 0.909 0.002 0.870 0.002 0.394 0.205

AI_Sum 0.527 0.179 -0.848 0.008 -0.394 0.205 -0.387 0.214

Statistically significant correlations are highlighted in bold. MAT: mean annual temperature (˚C); MAP: total annual precipitation (mm); AI: aridity index (MAP/PET

or potential evapotranspiration). T_Sum (˚C) and AI_Sum: averaged mean temperature and aridity indices, respectively, for June, July and August.

https://doi.org/10.1371/journal.pone.0196075.t003
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populations are needed. Indeed, a recent study showed that marginal populations of beech sig-

nificantly differed in embolism resistance [55] while core populations exhibited similar P50 val-

ues [36]. Our results also show that within species phenotypic variability in Ks and growth are

large, and in general larger than that of P50, suggesting that intra-population variability should

not be neglected in further studies at local scales.

Fig 3. Mean P50 (MPa) per population plotted against latitude (3.a, decimal degrees) and the climatic variables for each sampled population and site: 3.b. mean annual

temperature (MAT, ˚C); 3.c. total annual precipitation; (MAP, mm); 3.d. AI: aridity index (MAP/PET or potential evapotranspiration).

https://doi.org/10.1371/journal.pone.0196075.g003
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Across species, higher resistance to embolism (i.e. more negative P50 values) have been

related to drier environments [26,27]. However, at the intraspecific level, no statistically signif-

icant correlations between P50 and climate have been observed for herbaceous plants [56],

angiosperm trees [57, 58] and conifers [34,38,59,60]. Our results are consistent with these find-

ings, as only one species, Populus tremula, presented a significant cline in P50. However, the

potential effect of collinearity between climate variables could not be investigated here.

Fig 4. Average xylem-specific hydraulic conductivity (Ks, kg m-1 MPa-1 s-1) per population plotted against latitude (3.a, decimal degrees) and the climatic variables of

each sampled population and site: 3.b. mean annual temperature (MAT, ˚C); 3.c. total annual precipitation; (MAP, mm); 3.d. AI: aridity index (MAP/PET or potential

evapotranspiration).

https://doi.org/10.1371/journal.pone.0196075.g004
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Previous studies have reported higher [59,61], similar [34,60] or lower Ks values [35,57] at dry

sites than at mesic sites. However, we found no support for a Ks/climate cline. In contrast to

P50 and Ks, all species showed significant correlations between climate and growth. Popula-

tions growing at high latitudes and in cold temperatures had the lowest levels of branch

growth, probably due to the shorter growing season.

Fig 5. Mean branch growth (estimated as branch radius/xylem age (mm/year)) per population plotted against latitude (5.a, decimal degrees) and the climatic variables

of each sampled population and site: 5.b. mean annual temperature (MAT, ˚C); 5.c. total annual precipitation; (MAP, mm); 5.d. AI: aridity index (MAP/PET or

potential evapotranspiration).

https://doi.org/10.1371/journal.pone.0196075.g005
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Ideally, plants should be able to maintain both efficient conductivity and the safety of the

hydraulic system. However, this is not always the case in natural conditions, and little or no

support for a safety-efficiency trade-off has been obtained across species [16]. A few studies

have evaluated this trade-off at intraspecific level, and found either no support for the existence

of a trade-off [34, 62] or an association of greater conductivities with lower embolism resis-

tance [63]. The lack of correlation between P50 and Ks in angiosperms, and the weak correla-

tion found here for conifers provide insufficient support to conclude that there is a safety-

efficiency trade-off. Current knowledge of the anatomical basis of P50 and Ks in conifers is also

consistent with the absence of support of such a trade-off, as P50 is determined principally by

the torus-aperture overlap in this clade, whereas Ks is not related to this anatomical trait [17–

19] but rather to the vessel lumen area.

Researchers have recently developed an interest in the phenotypic variability of hydraulic

properties [34,35,37,39], due to its possible contribution to community assemblages. How-

ever, studies of phenotypic variability can also reveal the potential of the species to adapt to

the new environmental conditions imposed by ongoing climate change. We found statisti-

cally significant differences in hydraulic safety traits between populations in all the species

studied here, and a lack of climate cline in all species other than Populus tremula. Overall,

this species displayed the greatest variability of P50 within species and between populations,

suggesting a potentially greater ability to adapt to environmental changes. This higher vari-

ability in safety traits might be due to the fact that Populus tremula frequently hybridizes

with Populus alba in Europe [64]. Yet, the two species significantly differ in numerous phe-

notypic and ecological properties [65]. In contrast, the low intraspecific variability and lack

of climate clines for hydraulic properties in conifers suggest strong genetic constraints, with

a much smaller potential to evolve greater embolism resistance in the xylem to cope with

the predicted drier conditions. However, hydraulic adjustments can also occur through

changes in leaf area: sapwood area ratio [34,66], and a decrease in transpiring leaf area rela-

tive to xylem conductive area could hence maintain plant water balance under drought

conditions.

Conclusions

Quantification of the adaptive capacity of populations and species is important for the predic-

tion of natural adaptation to climate change, especially in the long term. Adaptation requires

the presence of genetic variation among the individuals of populations upon which natural

selection can act. The phenotypic variability in embolism resistance found here was weak and

much smaller than that for xylem conductivity and branch growth. In addition, no relationship

was found between embolism resistance and climatic variables, except for Populus tremula.

The species studied (except Populus tremula) would therefore be unlikely to be able to adapt

hydraulically to drier climatic conditions through the evolution of embolism resistance. Our

results provide little support to the existence of a hydraulic safety-efficiency trade-off at the

species level.

Table 4. Correlation coefficients (Pearson or Spearman) for the relationship between P50 (MPa) and xylem-specific hydraulic conductivity (Ks, kg m-1 MPa-1 s-1) for

each tree. Statistical significances are shown.

Betula pendula Populus tremula Picea abies Pinus sylvestris
Cor. p Cor. p Cor. p Cor. p

P50 vs Ks 0.150 0.274 -0.001 0.995 0.332 0.002 0.340 0.001

Statistically significant correlations are shown in bold characters.

https://doi.org/10.1371/journal.pone.0196075.t004
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