J. Monaghan and C. Zipfel, Plant pattern recognition receptor complexes at the plasma membrane, Curr. Opin. Plant Biol, vol.15, pp.349-57, 2012.

H. T. Cui, K. Tsuda, and J. E. Parker, Effector-Triggered Immunity: From pathogen perception to robust defense, Annu. Rev. Plant Biol, vol.66, pp.487-511, 2015.

B. C. Meyers, A. W. Dickerman, R. W. Michelmore, S. Sivaramakrishnan, B. W. Sobral et al., Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily, Plant J, vol.20, pp.317-349, 1999.

J. L. Dangl and J. D. Jones, Plant pathogens and integrated defence responses to infection, Nature, vol.411, pp.826-859, 2001.

L. Mchale, X. P. Tan, P. Koehl, and R. W. Michelmore, Plant NBS-LRR proteins: adaptable guards, vol.7, p.212, 2006.

F. L. Takken and A. Goverse, How to build a pathogen detector: structural basis of NB-LRR function, Curr. Opin. Plant Biol, vol.15, pp.375-84, 2012.

G. J. Rairdan, S. M. Collier, M. A. Sacco, T. T. Baldwin, T. Boettrich et al., The coiled-coil and nucleotide binding domains of the potato Rx disease resistance protein function in pathogen recognition and signaling, Plant Cell, vol.20, pp.739-51, 2008.

S. M. Collier and P. Moffett, NB-LRRs work a "bait and switch" on pathogens, Trends Plant Sci, vol.14, pp.521-530, 2009.

S. M. Collier, L. P. Hamel, and P. Moffett, Cell death mediated by the N-terminal domains of a unique and highly conserved class of NB-LRR protein, Mol. Plant-Microbe Interact, vol.24, pp.918-949, 2011.

S. Xiao, S. Ellwood, and O. Calis, Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8, Science, vol.291, pp.118-138, 2001.

B. W. Porter, M. Paidi, R. Ming, M. Alam, W. T. Nishijima et al., Genome-wide analysis of Carica papaya reveals a small NBS resistance gene family, Mol. Genet. Genomics, vol.281, pp.609-635, 2009.

X. Lin, Y. Zhang, H. H. Kuang, and J. J. Chen, Frequent loss of lineages and deficient duplications accounted for low copy number of disease resistance genes in Cucurbitaceae, BMC Genomics, vol.14, p.335, 2013.

P. Arya, G. Kumar, V. Acharya, A. K. Singh, and C. A. Ouzounis, Genome-wide identification and expression analysis of NBS-encoding genes in Malus x domestica and expansion of NBS genes family in Rosaceae, PLos One, vol.9, p.107987, 2014.

R. W. Michelmore, M. Christopoulou, and K. S. Caldwell, Impacts of resistance gene genetics, function, and evolution on a durable future, Annual Review of Phytopathology, pp.291-319, 2013.

D. Tian, M. B. Traw, J. Q. Chen, M. Kreitman, and J. Bergelson, Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana, Nature, vol.423, pp.74-81, 2003.

C. B. Purrington, Costs of resistance, Curr. Opin. Plant Biol, vol.3, pp.305-313, 2000.

S. Luo, Y. Zhang, and Q. Hu, Dynamic Nucleotide-Binding site and Leucine-Rich Repeat-encoding genes in the grass family, Plant Physiol, vol.159, pp.197-210, 2012.

B. C. Meyers, A. Kozik, A. Griego, H. H. Kuang, and R. W. Michelmore, Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis, Plant Cell, vol.15, pp.809-843, 2003.

F. Jupe, L. Pritchard, and G. J. Etherington, Identification and localisation of the NB-LRR gene family within the potato genome, BMC Genomics, vol.13, p.75, 2012.

R. Lozano, M. T. Hamblin, S. Prochnik, J. L. Jannink, A. Deleris et al., Identification and distribution of the NBS-LRR gene family in the Cassava genome, Annu. Rev. Phytopathol, vol.16, pp.579-603, 2015.

J. A. Law and S. E. Jacobsen, Establishing, maintaining and modifying DNA methylation patterns in plants and animals, Nat. Rev. Genet, vol.11, pp.204-224, 2010.

X. J. He, T. Chen, and J. K. Zhu, Regulation and function of DNA methylation in plants and animals, Cell Res, vol.21, pp.442-65, 2011.

M. A. Matzke and R. A. Mosher, RNA-directed DNA methylation: an epigenetic pathway of increasing complexity, Nat. Rev. Genet, vol.15, pp.394-408, 2014.

H. Stroud, T. Do, and J. Du, Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis, Nat. Struct. Mol. Biol, vol.21, pp.64-72, 2014.

H. Stroud, M. V. Greenberg, S. Feng, Y. V. Bernatavichute, and S. E. Jacobsen, Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome, Cell, vol.152, pp.352-64, 2013.

A. Agorio and P. Vera, ARGONAUTE4 is required for resistance to Pseudomonas syringae in Arabidopsis, Plant Cell, vol.19, pp.3778-90, 2007.

R. H. Dowen, M. Pelizzola, and R. J. Schmitz, Widespread dynamic DNA methylation in response to biotic stress, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.2183-91, 2012.

A. Lopez, V. Ramirez, J. Garcia-andrade, V. Flors, and P. Vera, The RNA silencing enzyme RNA polymerase V is required for plant immunity, PLoS Genet, vol.7, p.1002434, 2011.

D. Fultz, S. G. Choudury, and R. K. Slotkin, Silencing of active transposable elements in plants, Curr. Opin. Plant Biol, vol.27, pp.67-76, 2015.

D. Lisch, Epigenetic regulation of transposable elements in plants, Annu. Rev. Plant Biol, vol.60, pp.43-66, 2009.

D. Coleman-derr and D. Zilberman, DNA methylation, H2A.Z, and the regulation of constitutive expression, Cold Spring Harbor Symposia Quant Biol, vol.77, pp.147-54, 2012.

T. K. To, H. Saze, and T. Kakutani, DNA methylation within transcribed regions, Plant Physiol, vol.168, pp.1219-1244, 2015.

X. Zhang, J. Yazaki, and A. Sundaresan, Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis, Cell, vol.126, pp.1189-201, 2006.

D. Zilberman, M. Gehring, R. K. Tran, T. Ballinger, and S. Henikoff, Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription, Nat. Genet, vol.39, pp.61-70, 2007.

C. H. Foyer, H. M. Lam, and H. T. Nguyen, Neglecting legumes has compromised human health and sustainable food production, Nat. Plants, vol.2, p.10, 2016.

W. J. Broughton, G. Hernandez, M. Blair, S. Beebe, P. Gepts et al., Beans (Phaseolus spp.)-model food legumes, Plant Soil, vol.252, pp.55-128, 2003.

P. N. Miklas, J. D. Kelly, S. E. Beebe, and M. W. Blair, Common bean breeding for resistance against biotic and abiotic stresses: from classical to MAS breeding, Euphytica, vol.147, pp.105-136, 2006.

C. Meziadi, M. M. Richard, and A. Derquennes, Development of molecular markers linked to disease resistance genes in common bean based on whole genome sequence, Plant Sci, vol.242, pp.351-358, 2016.

D. Bourguet and T. Guillemaud, The Hidden and External Costs of Pesticide Use, Sustainable Agriculture Reviews, pp.35-120, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01303109

P. David, N. W. Chen, and A. Pedrosa-harand, A nomadic subtelomeric disease resistance gene cluster in common bean, Plant Physiol, vol.151, pp.1048-65, 2009.

R. W. Innes, C. Ameline-torregrosa, and T. Ashfield, Differential accumulation of retroelements and diversification of NB-LRR disease resistance genes in duplicated regions following polyploidy in the ancestor of soybean, Plant Physiol, vol.148, pp.1740-59, 2008.

M. M. Richard, N. W. Chen, and V. Thareau, The subtelomeric khipu satellite repeat from Phaseolus vulgaris: lessons learned from the genome analysis of the Andean genotype G19833, Front. Plant Sci, vol.4, p.14, 2013.

J. Schmutz, P. E. Mcclean, and S. Mamidi, A reference genome for common bean and genome-wide analysis of dual domestications, Nat. Genet, vol.46, pp.707-720, 2014.

K. D. Kim, M. Baidouri, and B. Abernathy, A comparative epigenomic analysis of polyploidy-derived genes in soybean and common Bean, Plant Physiol, vol.168, pp.1433-1480, 2015.

M. A. Larkin, G. Blackshields, and N. P. Brown, Clustal W and clustal X version 2.0, Bioinformatics, vol.23, pp.2947-2955, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00206210

M. Gouy, S. Guindon, and O. Gascuel, SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building, Mol. Biol. Evol, vol.27, pp.221-225, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00511794

D. P. Martin, P. Lemey, M. Lott, V. Moulton, D. Posada et al., RDP3: a flexible and fast computer program for analyzing recombination, Bioinformatics, vol.26, pp.2462-2465, 2010.

T. Ashfield, A. N. Egan, and B. E. Pfeil, Evolution of a complex disease resistance gene cluster in diploid Phaseolus and Tetraploid Glycine, Plant Physiol, vol.159, pp.336-54, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00921326

T. M. Keane, C. J. Creevey, M. M. Pentony, T. J. Naughton, and J. O. Mcinerney, Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified, BMC Evol. Biol, vol.6, p.29, 2006.

S. Guindon, J. F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk et al., New algorithms and methods to estimate Maximum-Likelihood phylogenies: assessing the performance of PhyML 3.0, Syst. Biol, vol.59, pp.307-328, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00511784

J. Felsenstein, PHYLIP -Phylogeny Inference Package (Version 3.2), Cladistics, vol.5, pp.164-170, 1989.

K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei et al., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol, vol.28, pp.2731-2740, 2011.

M. D. Schultz, R. J. Schmitz, and J. R. Ecker, Leveling 0 the playing field for analyses of single-base resolution DNA methylomes, Trends Genet, vol.28, pp.583-588, 2012.

S. Takuno and B. S. Gaut, Body-methylated genes in Arabidopsis thaliana are functionally important and evolve slowly, Mol. Biol. Evol, vol.29, pp.219-246, 2012.

H. Thorvaldsdottir, J. T. Robinson, and J. P. Mesirov, Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration, Brief. Bioinf, vol.14, pp.178-92, 2013.

M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads, Embnet. J, vol.17, p.10, 2011.

E. Kopylova, L. Noe, and H. Touzet, SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data, Bioinformatics, vol.28, pp.3211-3218, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00748990

R. Schmieder and R. Edwards, Quality control and preprocessing of metagenomic datasets, Bioinformatics, vol.27, pp.863-867, 2011.

B. Langmead, C. Trapnell, M. Pop, and S. Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biol, vol.10, p.25, 2009.

C. N. Hansey, B. Vaillancourt, and R. S. Sekhon, Maize (Zea mays L.) genome diversity as revealed by RNA-sequencing, Plos One, vol.7, p.33071, 2012.

V. Geffroy, D. Sicard, and J. C. De-oliveira, Identification of an ancestral resistance gene cluster involved in the coevolution process between Phaseolus vulgaris and its fungal pathogen Colletotrichum lindemuthianum, Mol. Plant-Microbe Interact, vol.12, pp.774-84, 1999.

V. Geffroy, C. Macadre, and P. David, Molecular analysis of a large subtelomeric Nucleotide-Binding-Site-Leucine-Rich-Repeat family in two representative genotypes of the major gene pools of Phaseolus vulgaris, Genetics, vol.181, pp.405-424, 2009.

F. Creusot, C. Macadre, and E. F. Cana, Cloning and molecular characterization of three members of the NBS-LRR subfamily located in the vicinity of the Co-2 locus for anthracnose resistance in Phaseolus vulgaris, Genome, vol.42, pp.254-64, 1999.

A. Martin, C. Troadec, and A. Boualem, A transposon-induced epigenetic change leads to sex determination in melon, Nature, vol.461, pp.1135-1237, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01203855

P. B. Talbert and S. Henikoff, Spreading of silent chromatin: inaction at a distance, Nat. Rev. Genet, vol.7, pp.793-803, 2006.

C. Vitte, M. A. Fustier, K. Alix, and M. I. Tenaillon, The bright side of transposons in crop evolution, Brief. Funct. Genomics, vol.13, pp.276-95, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01568885

R. K. Varshney, J. M. Ribaut, E. S. Buckler, R. Tuberosa, J. A. Rafalski et al., Can genomics boost productivity of orphan crops?, Nat. Biotechnol, vol.30, pp.1172-1178, 2012.

G. Andolfo, F. Jupe, K. Witek, G. J. Etherington, M. R. Ercolano et al., Defining the full tomato NB-LRR resistance gene repertoire using genomic and cDNA RenSeq, BMC Plant Biol, vol.14, p.120, 2014.

H. Wei, W. Li, X. Sun, S. Zhu, J. Zhu et al., Systematic analysis and comparison of nucleotide-binding site disease resistance genes in a diploid cotton Gossypium raimondii, PLos One, vol.8, p.68435, 2013.

N. D. Young, F. Debellé, and G. E. Oldroyd, The Medicago genome provides insight into the evolution of rhizobial symbioses, Nature, vol.480, pp.520-524, 2011.

M. A. Gore, J. M. Chia, and R. J. Elshire, A first-generation haplotype map of Maize, Science, vol.326, pp.1115-1122, 2009.

J. Schmutz, S. B. Cannon, and J. Schlueter, Genome sequence of the palaeopolyploid soybean, Nature, vol.463, pp.178-83, 2010.

E. Seo, S. Kim, S. I. Yeom, and D. Choi, Genome-wide comparative analyses reveal the dynamic evolution of nucleotide-binding Leucine-Rich Repeat Gene Family among Solanaceae Plants, Front. Plant Sci, vol.7, 2016.

C. Wei, J. Chen, H. Kuang, and K. Wu, Dramatic number variation of R genes in Solanaceae species accounted for by a few R Gene Subfamilies, PLos One, vol.11, p.148708, 2016.

E. V. Linardopoulou, E. M. Williams, Y. X. Fan, C. Friedman, J. M. Young et al., Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication, Nature, vol.437, pp.94-100, 2005.

H. Saze and T. Kakutani, Differentiation of epigenetic modifications between transposons and genes, Curr. Opin. Plant Biol, vol.14, pp.81-88, 2011.

S. J. Cokus, S. Feng, and X. Zhang, Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning, Nature, vol.452, pp.215-224, 2008.

S. Feng, S. J. Cokus, and X. Zhang, Conservation and divergence of methylation patterning in plants and animals, Proc. Natl. Acad. Sci. U.S.A, vol.107, pp.8689-94, 2010.

R. Lister, R. C. O'malley, and J. Tonti-filippini, Highly integrated single-base resolution maps of the epigenome in Arabidopsis, Cell, vol.133, pp.523-559, 2008.

A. Zemach, I. E. Mcdaniel, P. Silva, and D. Zilberman, Genome-wide evolutionary analysis of eukaryotic DNA methylation, Science, vol.328, pp.916-925, 2010.

R. M. Gonzalez, M. M. Ricardi, and N. D. Iusem, Atypical epigenetic mark in an atypical location: cytosine methylation at asymmetric (CNN) sites within the body of a non-repetitive tomato gene, BMC Plant Biol, vol.11, p.94, 2011.

W. You, A. Tyczewska, and M. Spencer, Atypical DNA methylation of genes encoding cysteine-rich peptides in Arabidopsis thaliana, BMC Plant Biol, vol.12, p.51, 2012.

H. Saze, K. Tsugane, T. Kanno, and T. Nishimura, DNA methylation in plants: relationship to small RNAs and histone modifications, and functions in transposon inactivation, Plant Cell Physiol, vol.53, pp.766-84, 2012.

M. A. Matzke, T. Kanno, and A. J. Matzke, RNA-directed DNA methylation: the evolution of a complex epigenetic pathway in flowering plants, Annual Review of Plant Biology, pp.243-267, 2015.

X. H. Zhong, C. J. Hale, and J. A. Law, DDR complex facilitates global association of RNA polymerase V to promoters and evolutionarily young transposons, Nat. Struct. Mol. Biol, vol.19, pp.870-875, 2012.

L. Gong, R. E. Masonbrink, C. E. Grover, S. Renny-byfield, and J. F. Wendel, A cluster of recently inserted transposable elements associated with siRNAs in Gossypium raimondii, 2015.

J. D. Hollister, L. M. Smith, Y. L. Guo, F. Ott, D. Weigel et al., Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.2322-2329, 2011.

I. Ahmed, A. Sarazin, C. Bowler, V. Colot, and H. Quesneville, Genome-wide evidence for local DNA methylation spreading from small RNA-targeted sequences in Arabidopsis, Nucl. Acids Res, vol.39, pp.6919-6950, 2011.

I. R. Henderson and S. E. Jacobsen, Tandem repeats upstream of the Arabidopsis endogene SDC recruit non-CG DNA methylation and initiate siRNA spreading, Genes Develop, vol.22, pp.1597-606, 2008.

S. W. Chan, D. Zilberman, Z. Xie, L. K. Johansen, J. C. Carrington et al., RNA silencing genes control de novo DNA methylation, Science, p.1336, 2004.

X. Li, J. Zhu, and F. Hu, Single-base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression, BMC Genomics, vol.13, p.300, 2012.

R. J. Schmitz, M. D. Schultz, and M. A. Urich, Patterns of population epigenomic diversity, Nature, vol.495, pp.193-201, 2013.

R. J. Schmitz, Y. He, and O. Valdes-lopez, Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population, Genome Res, vol.23, pp.1663-74, 2013.

F. Li, D. Pignatta, and C. Bendix, MicroRNA regulation of plant innate immune receptors, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.1790-1795, 2012.

P. V. Shivaprasad, H. M. Chen, K. Patel, D. M. Bond, B. A. Santos et al., A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs, Plant Cell, vol.24, pp.859-74, 2012.

V. M. Gonzalez, S. Muller, D. Baulcombe, and P. Puigdomenech, Evolution of NBS-LRR gene copies among dicot plants and its regulation by members of the miR482/2118 superfamily of miRNAs, Mol. Plant, vol.8, pp.329-360, 2015.

A. Yu, G. Lepere, and F. Jay, Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.2389-94, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02318315

Z. H. Hua, J. E. Pool, and R. J. Schmitz, Epigenomic programming contributes to the genomic drift evolution of the F-Box protein superfamily in Arabidopsis, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.16927-16959, 2013.

T. Wicker, F. Sabot, and A. Hua-van, A unified classification system for eukaryotic transposable elements, Nat. Rev. Genet, vol.8, pp.973-82, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00169819

T. Sultana, A. Zamborlini, G. Cristofari, and P. Lesage, Integration site selection by retroviruses and transposable elements in eukaryotes, Nat. Rev. Genet, vol.18, pp.292-308, 2017.

S. Fenyk, P. D. Townsend, and C. H. Dixon, The potato Nucleotide-binding Leucine-rich Repeat (NLR) immune receptor Rx1 is a pathogen-dependent DNA-deforming protein, J. Biol. Chem, vol.290, pp.24945-60, 2015.

A. Iwata, A. L. Tek, and M. M. Richard, Identification and characterization of functional centromeres of the common bean, Plant J, vol.76, pp.47-60, 2013.