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Abstract

Background

Peste des petits ruminants (PPR) is a highly contagious and widespread viral infection of

small ruminants (goats and sheep), causing heavy economic losses in many developing

countries. Therefore, its progressive control and global eradication by 2030 was defined as

a priority by international organizations addressing animal health. The control phase of the

global strategy is based on mass vaccination of small ruminant populations in endemic

regions or countries. It is estimated that a 70% post-vaccination immunity rate (PVIR) is

needed in a given epidemiological unit to prevent PPR virus spread. However, implementing

mass vaccination is difficult and costly in smallholder farming systems with scattered live-

stock and limited facilities. Regarding this, controlling PPR is a special challenge in sub-

Saharan Africa. In this study, we focused on this region to assess the effect of several vari-

ables of PVIR in two contrasted smallholder farming systems.

Methods

Using a seasonal matrix population model of PVIR, we estimated its decay in goats reared

in sub-humid areas, and sheep reared in semi-arid areas, over a 4-year vaccination pro-

gram. Assuming immunologically naive and PPR-free epidemiological unit, we assessed

the ability of different vaccination scenarios to reach the 70% PVIR throughout the program.

The tested scenarios differed in i) their overall schedule, ii) their delivery month and iii) their

vaccination coverage.

Results

In sheep reared in semi-arid areas, the vaccination month did affect the PVIR decay though

it did not in goats in humid regions. In both cases, our study highlighted i) the importance of
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targeting the whole eligible population at least during the two first years of the vaccination

program and ii) the importance of reaching a vaccination coverage as high as 80% of this

population. This study confirmed the relevance of the vaccination schedules recommended

by international organizations.

Introduction

Peste des petits ruminants (PPR) is an acute viral disease affecting goats, sheep and some wild

ruminant species. It is caused by a Morbillivirus from the Paramyxoviridae family. The PPR

virus (PPRV) is widespread in Africa, the Middle East and Asia [1]. When introduced in a

fully susceptible population, it can affect up to 100% of the individuals, killing from 10 to 90%

of the infected animals [2]. Therefore, the introduction of PPRV in previously free areas, as

well as its endemicity in many developing countries, result in severe consequences for food

security and sustainable livelihood of livestock farming communities. Such a situation exists in

sub-Saharan Africa where the poor rural communities rely on small-ruminant farming and

hence PPR control is of crucial importance for millions of people living in this area [3–6].

In 2015, the World Organisation for Animal Health (OIE) and the Food and Agriculture

Organization of the United Nations (FAO) launched an international initiative for the pro-

gressive control of PPR and its global eradication by 2030. As a matter of fact, efficient and

affordable vaccines, which provide lifelong immunity against PPRV are available [7–9]. There-

fore, relying on the lessons learnt from the successful eradication of rinderpest in 2008 [10],

the general PPR control strategy is based on mass vaccination of the whole small-ruminant

population in endemic countries or regions [11].

The effectiveness of PPR control strategies depends on numerous factors, such as the qual-

ity of the vaccine itself, the design of vaccination campaigns (e.g., the vaccination schedule or

the definition of the target population), the effectiveness of vaccine delivery (e.g., the mainte-

nance of the cold chain or the vaccination coverage reached in the target population) or the

willingness of farmers to present their animals for vaccination and to bear the cost of this vac-

cination [12]. However, specific data regarding PPR mass vaccination are scarce, making it dif-

ficult to plan and organize vaccination campaigns [13–15].

Following a successful pulse vaccination campaign (whole target population vaccinated

within a short time period), the proportion of immunized animals in a small ruminant popula-

tion (so-called post-vaccination immunity rate: PVIR) must be high enough to stop the PPRV

transmission, thus bringing it under the epidemic threshold [16]. Because of the population

turnover (offtake, mortality and birth), the immunized animals are progressively replaced with

susceptible animals (newborn, purchased animals, loans) until the epidemic threshold has

passed. Therefore, PVIR dynamics are closely related to this turnover and can be estimated

using a population dynamics model [17, 18]. In a previous study, based on a predictive model

of PVIR dynamics developed in Lesnoff et al. (2009) [17], the monthly PVIR dynamics was

estimated for an average year following a PPR vaccination campaign in a sheep population

reared in a semi-arid area [18]. In this latter study, a PVIR threshold of 70% was used: popula-

tions with a PVIR� 70% were considered as protected against PPR virus transmission, accord-

ing to international standards [11].

However, a wider range of agro-ecosystems is found in sub-Saharan Africa—from arid to

humid environments, with contrasted small-ruminant population dynamics. In addition, a

crucial step in the PPR eradication strategy is the control stage, aiming at breaking the PPRV
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transmission process and diminishing drastically or even suppressing the number of PPR clin-

ical cases [11]. This control stage relies on a pluri-annual mass-vaccination schedule, associ-

ated with post-vaccination evaluation to assess the population immune status and the

reduction in PPR clinical incidence.

The OIE/FAO recommended vaccination schedule involves one or two annual vaccination

campaigns targeting all immunocompetent animals i.e., older than three months. These “full”

campaigns may be followed by one or two annual “partial” vaccination campaigns targeting

the immunocompetent offspring (age between three and 12 months), i.e. excluding the adults

[11]). However, this recommendation relies more on empirical observations than on a rational

assessment.

The goal of this study is to provide an ex ante assessment of the PVIR dynamics in different

small ruminant smallholder farming systems, and over a pluri-annual PPR vaccination

schedule.

For this purpose, we simulated the PVIR dynamics according to different four-year mass-

vaccination schedules, in immunologically naive and PPR-free epidemiological units (Epi. U.)

from contrasting agro-ecological situations: a semi-arid area where the population dynamics is

highly seasonal because of climate-related nutritional constraints [19], and a sub-humid area

where the population turnover is fairly constant—but faster due to higher mortality and repro-

duction rates [20]. As an indication of the importance of these systems, according to FAO’s

database Gridded livestock of the world [21], and considering the countries located in the

Sahelian region (Mauritania, Senegal, Gambia, Mali, Burkina Faso, Niger, Chad, and Sudan),

more than 100 million small ruminants are reared in semi-arid or sub-humid agro-ecological

areas.

For simplicity, and consistency with assumptions and findings made in Hammami et al.,

2016 [18], the Epi. U. were defined as isolated populations of a few thousand small ruminants

with no PPRV transmission occurring during the whole study period. As a matter of fact, in

Senegal as in most Sahelian countries, agro-pastoral populations are organized in rural com-

munities gathering several villages sharing the environment (grasslands, crop lands, water

resources), and services like health centres or veterinary posts. These communities and their

herds have more contacts and exchanges within them than between them. Therefore, consider-

ing this organization level as an Epi. U. makes sense in the frame of this study. At last, though

PPR is endemic in this region, epidemic waves occur every two to five years [1, 22], making it

relevant to consider PPR-free Epi. U., and the implementation of preventive vaccination dur-

ing PPR-free years.

Materials and methods

The Epi. U.-level monthly population dynamics was simulated using a seasonal population

matrix model described in Caswell, 2001 (see chapter 13, pp. 346-369) [23]. The basic demo-

graphic model and the PVIR estimation method were described for one average year in Ham-

mami et al. (2016) [18]. Following the international recommendations [11], we considered (a)

different four-year vaccination schedules according to the sequence of full annual campaigns

(targeting all immunocompetent animals) and partial annual campaigns (only targeting

immunocompetent offspring), and (b) two possible PVIR variables: i) the vaccination month

and ii) the vaccination coverage in the target population.

Small ruminant farming systems

To estimate the demographic parameters needed in the seasonal population matrix model, we

used sheep-and-goat demographic data collected during a long-term follow-up survey
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implemented in smallholder farms from 1983 to 1999 [19, 20, 24]. To represent the diversity of

agro-ecological situations and associated small-ruminant farming systems found in sub-Saha-

ran Africa, we selected sheep data from the Ndiagne municipality, located in the Sahelian,

semi-arid zone (Louga region, northern Senegal) and goat data from Kolda, in the Sudano-

Guinean, sub-humid area of southern Senegal (Fig 1). These low-input farming systems rely

on the utilization of natural grasslands. Consequently, animal breeds, as well as animal demog-

raphy and productivity, are closely related to climatic and forage conditions [19, 20].

In semi-arid areas, such as Louga region, the harsh climatic conditions experienced by the

small ruminants (Sahelian breeds) during the hot, dry season result in severe constraints on

their nutritional condition and physiological status. Therefore, mating is strongly seasonal,

mostly occurring during the rainy season. Thus, there is a marked parturition peak between

December and February [19, 27, 28] (Fig 2-A).

Conversely, in the sub-humid area of Kolda, forage resources are less scarce and available

throughout the year. Consequently, mating in small ruminants (West African dwarf breeds) is

less constrained than in the Sahelian zone, and parturition peaks are less marked (Fig 2-A).

Also, fertility and prolificacy rates are higher, resulting in better fecundity [20, 27] (Fig 2-B).

Such environment is also more suitable to parasites [29]. Therefore mortality rates are higher

than in semi-arid areas (Fig 2-C). In both sites, the male offtake rate is high and strongly sea-

sonal according to the Tabaski (Aïd El Kebir), a Muslim celebration during which a male lamb

is slaughtered in most Senegalese families. However, this offtake pattern does not affect the

PVIR dynamics [18]. Therefore, we did not account for it in this assessment.

Design for the PVIR assessment

From hyper-arid to humid areas, the same general vaccination schedule is recommended for

the PPR control stage [11]. In regions where PPR is endemic like in sub-Saharan Africa, it

relies on the implementation of one or two successive annual mass-vaccination campaigns tar-

geting all immunocompetent animals, i.e. sheep and goats older than three months: so-called

Fig 1. Distribution of aridity classes in Senegal. The small-ruminant follow-up demographic surveys were located in

the Ndiagne municipality (Louga region) and Kolda area. This map was adapted from Hammami et al., 2016 [18]

under a CC BY license, with permission from Dianne Cartwright—PLoS ONE, original copyright 2016. It was

generated using data sources from Zomer et al., 2006 [25] and Trabucco et al., 2009 [26]; spatial resolution: 10 arc

minutes.

https://doi.org/10.1371/journal.pone.0190296.g001
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full vaccination, hereafter denoted as “F”. These full vaccination campaigns may be compli-

mented by one or two partial annual campaigns, hereafter denoted as “P”, targeting only the

immunocompetent offspring, i.e. lambs or kids between three and 12 months.

• Whatever the schedule, in arid and semi-arid areas, a single vaccination round per annual

campaign is recommended at the beginning of the dry season (from September to Novem-

ber) [11, 18], i.e. before the parturition peak so that newborn kids and lambs can benefit

from their dam’s colostral antibodies.

• In sub-humid and humid areas, two rounds of vaccination (every six months) are recom-

mended for each annual campaign to account for the quicker demographic turnover than in

the arid and semi-arid environments [11].

The main question was the effect of different vaccination schedules (combination of full

and partial vaccination campaigns) on PVIR during the PPR control stage. Following interna-

tional recommendations, the length of this stage should range from two to five years, with an

average of three years: see [11]. Therefore, we assessed the effect of one to three full annual vac-

cination campaigns (1F, 2F and 3F), complimented by partial annual vaccination campaigns

(3P, 2P and 1P) up to a total of four years arbitrarily set as the length of the PPR control stage.

The compared vaccination schedules were thus 1F3P, 2F2P, and 3F1P, for a total of four vacci-

nation rounds in Louga (one per year), vs. eight in Kolda (two per year).

In addition, the effect of two other factors was assessed:

1. the vaccination month: following previous findings [18], three vaccination months were

compared in Louga: September, October, and November. In Kolda, this factor did not affect

PVIR, so it was not taken into account (see preliminary results in supporting information

S1 Fig).

Fig 2. Demographic rates in Louga sheep and Kolda goats. Upper plots (A and B) show the monthly parturition rate

for females older than 10 months, and the annual prolificacy rates. The lower plots show the natural mortality rates

(without offtake) for three age classes.

https://doi.org/10.1371/journal.pone.0190296.g002
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2. partial vaccination coverage, to account for possible difficulties in vaccine delivery (e.g.,

vaccination logistics, reluctance of farmers to bring their animals for vaccination): we

assessed four vaccination coverages: 30%, 60%, 80%, and 100%.

Assessment method

Monthly PVIR dynamics was simulated over a four-year control period using as input i) the

simulated population dynamics and ii) the vaccination scenarios defined by the combination

of vaccination schedule (1F3P, 2F2P and 3F1P), vaccination month (only in Louga: September,

October and November) and vaccination coverage (30%, 60%, 80%, and 100%).

The seasonal population matrix model and the PVIR estimation for one average year have

been previously described [18]. In this study, the PVIR estimation method was slightly modi-

fied to implement additional vaccination campaigns and target different subsets of the popula-

tion. It was based on two main assumptions:

• for immunocompetent animals, given the lifelong immunity provided by the vaccine [7, 30],

the probability for a given cohort to be immunized was constant between two vaccination

rounds (a cohort represented all the animals born during the same month: see the yellow

band on Fig 3 for an example);

• colostral antibodies against PPR were found in kids and lambs during the first three months

of their life. This passive immunity waned and disappeared after the age of three months

[31–34]. The proportion of lambs benefiting from those antibodies was proportional to

dams’ immunity rate (see the shades of green in Fig 3). Moreover, the immune system of

lambs under three months of age is immature and then unable to produce an efficient

immune response to the vaccine inoculation [35].

Demographic rates used in the demographic model were either natural (survival, parturi-

tion and prolificacy rates), or related to livestock management practices (offtake and intake

rates). Using generalized linear models, their means and standard errors were estimated for

each age class (newborn, sub-adults and adults) and time step (four-month seasons: January to

March, etc.) for each species and site (sheep in Louga, goats in Kolda). Assuming farmers

annually targeted a constant herd size, female offtake rates were adjusted to arrive at popula-

tion dynamics at the equilibrium.

To assess the uncertainty of statistical model predictions regarding the demographic

parameters, 10,000 simulations were run for each scenario using random demographic rates

drawn from the estimated Gaussian distribution of the demographic rates [36].

Data analysis

In this study, we were confronted with a huge amount of data. For instance, the simulated

Louga sheep dataset encompassed three vaccination schedules × three vaccination

months × four vaccination coverages × 10,000 simulations = 360,000 PVIR dynamics, which

means 360,000 × 48 months = 1,728,000 data points. In this situation, any statistical test would

provide very small p value, whatever the actual size of the epidemiological effect [37]. There-

fore, we defined an ad-hoc procedure to assess the epidemiological significance of the investi-

gated parameters (vaccination schedule, vaccination month and vaccination coverage).

We defined 2F2P as the reference vaccination schedule for each site (Louga and Kolda), i.e.,

(i) two full annual mass-vaccination campaigns (2F) targeting the whole immunocompetent

population followed by (ii) two partial annual mass-vaccination campaigns targeting the
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immunocompetent offspring (2P); to account for the local circumstance of small ruminant

population dynamics, each annual vaccination campaign was made of one (Louga) or two

(Kola) vaccination rounds. Therefore, in Louga, the reference vaccination schedule was

defined by one vaccination round every 12 months, while, in Kolda, it was defined by one vac-

cination round every six months.

Then, we estimated the four-year PVIR dynamics for these two regions (Louga and Kolda),

according to the other investigated variables: vaccination month and vaccination coverage.

For each combination of the variables, we computed the 50% (median), as well as the 2.5%

and 97.5% (95% distribution interval) quantiles for three statistics (θi) summarizing the

dynamics of PVIR:

Tthr was the proportion of time during which the PVIR was above the 70% population immu-

nity threshold during the four years of the PPR control stage, i.e. during which the popula-

tion was protected against virus transmission. In practice, we counted the number of

months during which the PVIR was higher than 70% and divided this number by the length

of the program: 48 months. For example, if the PVIR remains above 70% during seven

months, Tthr = 7/48 = 15%;

MPVIR was the mean PVIR over the PPR control stage;

PVIR48 was the PVIR at the end of the PPR control stage.

We implemented the same analysis for the other investigated vaccination schedules (1F3P

and 3F2P).

Thirdly, for each statistics (θi = {Tthr, MPVIR, PVIR48}), we computed the relative difference

(Δi,j) between the reference schedule and the others for each combination of variables as:

Di;j ¼ ðyi;j � yi;refÞ=yi;ref

Fig 3. Theoretical population immunity rate dynamics over two years with annual vaccination campaigns,

illustration adapted from Hammami et al., 2016 [18]. For simplicity, only animals up to two-year old were shown.

https://doi.org/10.1371/journal.pone.0190296.g003

Ex-ante assessment of different vaccination-based control schedules against the PPRV in sub-Saharan Africa

PLOS ONE | https://doi.org/10.1371/journal.pone.0190296 January 19, 2018 7 / 20

https://doi.org/10.1371/journal.pone.0190296.g003
https://doi.org/10.1371/journal.pone.0190296


with θi,ref the statistics for the reference vaccination schedule 2F2P, and j the vaccination

schedule to be compared with the reference schedule: 1F3P and 3F1P.

Finally, we defined an epidemiological interval around Δi, arbitrarily set to Δi ± 7%. This

interval represented a 5% relative difference for the 70% immunity threshold (5%’ 70% ×
7%). The rationale of this choice is that in most PPR sero-monitoring surveys implemented to

assess the post-vaccination PVIR, survey design and actual sample size usually provide confi-

dence intervals of similar order: see the on-line appendix in [11].

Results

Overview

An overview of the results is provided in Table 1 for Louga sheep, and in Table 2 for Kolda

goats.

In Louga sheep, a vaccination coverage of 30% never allowed reaching, or getting close to,

the 70% population immunity threshold, whatever the vaccination month and vaccination

schedule: indeed, the cumulative effect of successive vaccination campaigns on PVIR was not

high enough to compensate the sheep population turnover. A vaccination coverage of 60% did

not allow reaching this threshold with the 1F3P schedule; however, the median value for the

estimated mean PVIR (MPVIR) was close to, or above, 60% for 2F2P and 3F1P. Regarding the

immunity rate at the end of the control stage (PVIR48), it was close to, or above, 50% irrespec-

tive of the vaccination schedule and vaccination month. Logically, better values were obtained

with 80% and 100% vaccination coverages. However, even with the 3F1P schedule and a full

vaccination coverage, the median value for MPVIR was never greater than 80%, and the median

value for PVIR48 just exceeded 60%.

Regarding the vaccination month, the best values for the investigated indicators were

obtained in September, with the exception of PVIR48 for which the highest median values were

reached in October and November. However the differences in PVIR48 between the three vac-

cination months were low, without any epidemiological consequence.

In Kolda goats, similar trends were observed: a 30% vaccination coverage never allowed

reaching values close to the targets for any of the three indicators, with the same result as with

Louga sheep regarding the lack of cumulative effect along the control stage irrespective of the

vaccination schedule. As soon as the vaccination coverage was 60% or higher, median values

greater than 60% were reached for MPVIR and PVIR48. However, vaccination coverages� 80%

and at least two full vaccination campaigns were needed to reach values of Tthr > 60%.

In fine, a vaccination coverage of 30% or lower was certainly insufficient to get an appropri-

ate PVIR, whatever the agro-ecological zone and vaccination schedule. Also, a single full vacci-

nation campaign (1F3P) only provided correct PVIR for vaccination coverages of at least 80%.

The reference vaccination schedule 2F2P

In both investigated agro-ecological systems, with a full vaccination coverage (100% fo the

immunocompetent population), the 2F2P vaccination schedule allowed keeping the PVIR
above, or close to, the 70% population immunity threshold during the PPR control stage (Fig

4). In Louga sheep (OviLou: a single vaccination round each year), the PVIR was above this

threshold 67% of the time, declining below it eight months after each vaccination round. In

Kolda goats (CapKol: two vaccination rounds each year), the PVIR was always above the

threshold during the control stage. However, the PVIR estimated immediately after the vacci-

nation round was higher in OviLou (96%, 95% confidence interval [95; 96]) than in CapKol

(81% [80; 82]).
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With vaccination coverages of> 80%, these PVIR results should allow reaching the goals

assigned to the PPR control stage: break PPRV transmission and suppress PPR clinical expres-

sion. Therefore, the data support the relevance of the 2F2P vaccination schedule as a reference

for comparisons with other schedules.

Relative difference with respect to the 2F2P vaccination schedule

In Louga sheep, the combined effects of the vaccination month and the vaccination coverage is

shown on Figs 5 to 7. A common pattern is the low effect of the vaccination month. We did

not investigate this effect further.

Table 1. Distribution of indicators of PVIR according to the PPR vaccination scenarios (combination of vaccination schedule, month, and coverage (%)) for a sheep

population in Louga, northern Senegal. A total of 10,000 simulations were run for each scenario. Q02.5: quantile 2.5%, Q97.5: quantile 97.5%; Tthr: time spent above the

70% threshold; MPVIR: mean PVIR over the PPR control stage; PVIR48: PVIR at the end of the PPR control stage.

Schedule Coverage Month Tthr MPVIR PVIR48

Median Q02.5 Q97.5 Median Q.025 Q97.5 Median Q02.5 Q97.5

1F3P 30 September 0 0 0 38 37 40 24 22 26

1F3P 30 October 0 0 0 37 36 39 24 22 26

1F3P 30 November 0 0 0 36 34 38 23 21 26

1F3P 60 September 8 6 8 55 53 56 39 36 41

1F3P 60 October 6 6 6 53 52 55 39 36 42

1F3P 60 November 2 2 2 51 50 53 38 35 41

1F3P 80 September 42 38 46 66 64 68 49 46 52

1F3P 80 October 35 29 38 64 62 66 49 46 52

1F3P 80 November 27 23 31 62 60 64 48 45 51

1F3P 100 September 65 62 71 77 75 79 59 55 62

1F3P 100 October 58 54 62 75 73 77 59 56 62

1F3P 100 November 50 44 54 72 70 74 57 54 61

2F2P 30 September 0 0 0 42 40 44 26 24 29

2F2P 30 October 0 0 0 41 39 43 27 24 30

2F2P 30 November 0 0 0 40 38 42 27 24 30

2F2P 60 September 21 15 25 60 58 62 42 39 45

2F2P 60 October 17 15 21 58 57 61 43 40 46

2F2P 60 November 10 8 15 57 55 59 42 39 46

2F2P 80 September 50 48 56 70 68 72 51 48 55

2F2P 80 October 46 42 50 68 66 70 52 49 55

2F2P 80 November 38 35 42 66 64 68 51 48 55

2F2P 100 September 67 65 73 79 77 80 60 56 63

2F2P 100 October 62 56 65 76 75 78 60 57 64

2F2P 100 November 54 48 56 74 72 76 59 56 63

3F1P 30 September 0 0 0 45 43 47 31 28 34

3F1P 30 October 0 0 0 44 43 47 31 28 35

3F1P 30 November 0 0 0 44 42 46 32 28 35

3F1P 60 September 33 27 40 63 61 65 47 43 50

3F1P 60 October 27 23 33 62 60 64 47 44 51

3F1P 60 November 21 15 25 60 58 62 47 44 51

3F1P 80 September 56 54 62 72 71 74 55 51 58

3F1P 80 October 52 46 54 70 69 72 55 52 59

3F1P 80 November 44 40 48 69 67 71 55 52 59

3F1P 100 September 67 67 75 80 78 81 61 58 64

3F1P 100 October 65 58 67 78 76 79 62 59 65

3F1P 100 November 56 50 58 76 74 77 62 58 65

https://doi.org/10.1371/journal.pone.0190296.t001
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For the time spent with PVIR� 70% (Tthr, Fig 5), the 60% vaccination coverage provided a

positive relative difference for the 3F1P vaccination schedule (upper panel of plots) with a sub-

stantial epidemiological meaning, in favour of 3F1P. This can be seen as a cumulative effect

along the PPR control stage, made possible by three successive full vaccination campaigns.

This effect disappeared with higher vaccination coverage: the immunity rate was close to its

maximum value after each annual vaccination campaign, thus nullifying the possibility of a

cumulative effect.

Not surprisingly, a symmetrical negative relative difference was observed for the 1F3P vac-

cination schedule (lower panel of plots), indicating that this schedule was consistently worse

than the 2F2P schedule in terms of PVIR, with the exception of the 100% vaccination coverage,

for which the relative difference was not epidemiologically important.

For the relative difference in the mean PVIR (MPVIR, Fig 6), all the values fell within the 7%

epidemiological interval with the exception of the relative difference for the 60% vaccination

Table 2. Distribution of indicators of PVIR according to the PPR vaccination scenarios (combination of vaccination schedule and coverage (%)) for a goat popula-

tion in Kolda, southern Senegal. A total of 10,000 simulations were run for each scenario. Q02.5: quantile 2.5%, Q97.5: quantile 97.5%; Tthr: time spent above the 70%

threshold; MPVIR: mean PVIR over the PPR control stage; PVIR48: PVIR at the end of the PPR control stage.

Schedule Coverage Tthr MPVIR PVIR48

Median Q02.5 Q97.5 Median Q02.5 Q97.5 Median Q02.5 Q97.5

1F3P 30 0 0 0 33 33 34 29 28 30

1F3P 60 4 2 6 59 59 60 52 50 53

1F3P 80 56 52 60 72 72 73 63 62 65

1F3P 100 100 100 100 82 82 83 72 70 74

2F2P 30 0 0 0 40 39 40 33 32 34

2F2P 60 25 21 27 64 63 64 55 53 56

2F2P 80 65 60 69 74 74 75 65 63 66

2F2P 100 100 100 100 82 82 83 72 70 74

3F1P 30 0 0 0 43 43 44 39 38 40

3F1P 60 33 29 38 66 65 66 58 56 59

3F1P 80 69 65 73 75 74 76 66 64 68

3F1P 100 100 100 100 82 82 83 72 70 74

https://doi.org/10.1371/journal.pone.0190296.t002

Fig 4. PVIR dynamics during a four-year control stage (2F2P schedule) in a sheep population from Louga

(northern Senegal: Red line) and in a goat population from Kolda (southern Senegal: Blue line), with different

vaccination coverages and the first vaccination round implemented in October. The vaccination coverages

represent the proportion of vaccinated animals among the immunocompetent animals (> 3 months). Each line

represents the PVIR for the whole population. The 70% PVIR threshold is represented by a black dotted line.

https://doi.org/10.1371/journal.pone.0190296.g004
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coverage with the 1F3P vaccination schedule. We can conclude that for this indicator, there

was no important epidemiological difference between the 2F2P and 3F1P vaccination sched-

ules when vaccination coverage was� 80%.

The same observations applied to the statistics of the PVIR at the end of the PPR control

stage (PVIR48, Fig 7).

To sum up the findings for Louga sheep, the 60% vaccination coverage consistently pro-

vided worse relative indicators than 80% and 100% coverages, supporting the implementation

of three full vaccination campaigns rather than one or two. On the other hand, with the latter

coverages, no marked difference was observed between the 1F3P and 3F1P vaccination sched-

ules, with respect to 2F2P.

Regarding the Kolda goats (Fig 8), similar conclusions can be made. A cumulative effect of

successive vaccination campaigns was observed for the relative difference in Tthr with the 30%

as well as 60% vaccination coverages. On the other hand, no marked difference was observed

between the 1F3P and 3F1P vaccination schedules, with respect to 2F2P, for the two other

indicators (MPVIR and PVIR48) with vaccination coverages� 60%.

Discussion

Validity of the small ruminant demographic dataset

Demographic data were collected in smallholder, low-input small ruminant farming systems,

the most challenging systems for PPR vaccination, because herds are small, sparse, mobile and

therefore difficult to reach and monitor. These systems rely on the availability of natural

Fig 5. Relative difference in time spent abovethe 70% threshold (Tthr) for post-vaccination PVIR with respect to the 2F2P vaccination schedule for Louga sheep,

northern Senegal. The red, solid line indicates the reference situation (2F2P), and the red, dashed lines above and under it indicate a positive or negative relative 7%-

difference with this reference situation.

https://doi.org/10.1371/journal.pone.0190296.g005
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resources: surface water during the rainy season, grasslands, and crop by-products (in the

southern regions). Small ruminant demography (mortality, age at first parturition, fecundity)

and growth strongly depend on these conditions [28, 38]. However, when these conditions are

better (higher rainfall), more room is given by the farmers to crop production, whereas rumi-

nant livestock farming is left to more arid environment. Therefore, though such climate

changes occurred in Senegal and in the whole Sahel with increased rainfall and vegetation

index [39], the demographic parameters of small ruminants reared in low-input smallholder

farming systems probably remained stable. Obviously, formal evidences would be better than

assumptions, but the dataset we have used for this paper has no up-to-date counterpart. Thus,

this study highlights the need for implementing more long-term follow-up demographic stud-

ies in small ruminant population to increase the accuracy of such demographic models.

Vaccination month

The effectiveness of a vaccination campaign is directly related to the actual vaccination cover-

age. If the population is mainly composed of immunocompetent animals at the time of vacci-

nation, the PVIR is higher than if the vaccination campaign is achieved just after the

parturition peak (when present) [18]. Indeed, newborn animals benefit from maternal anti-

bodies (passive immunity). This immunity wanes after the age of three months, and offspring

thus become susceptible to the virus. However, their immune system is then mature enough to

produce antibodies [33, 40].

Therefore, when the small ruminant reproduction shows a marked seasonal pattern, like in

arid and semi-arid areas, the ideal period for implementing the vaccination would be three

months after the parturition peak, i.e. between April and June in the case of Louga [18, 27, 28].

Fig 6. Relative difference in the mean PVIR (MPVIR) with respect to the 2F2P vaccination schedule for Louga sheep, northern Senegal. The red,

solid line indicates the reference situation (2F2P), and the red, dashed lines above and under it indicate a positive or negative relative 7%-difference with

this reference situation.

https://doi.org/10.1371/journal.pone.0190296.g006
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However, this period is also the beginning of the hot, dry season. At that time, farmers lack

financial resources to pay for the vaccination because they already sold their crops [19, 41].

Moreover, sheep and goats are left straying at that time, and farmers—as well as vaccinators,

are reluctant to catch and gather them when air temperature often exceeds 40˚C. At last, most

animals are in a poor body condition, thus possibly affecting their immune system and causing

vaccination failure at the individual level, even if the vaccine was correctly administered [42,

43]. Therefore, in arid and semi-arid areas, the best period to implement PPR vaccination

should be from September (end of the rainy season, when body condition is optimal) and

November (before the parturition peak, to make sure that dams may transmit colostral anti-

bodies to their offspring). Estimates of the median indicators (Table 1: Tthr, MPVIR, and

PVIR48) consistently showed that September was the best month to implement vaccination.

This trend was not altered by the vaccination coverage (Figs 5 to 7).

Vaccination coverage and vaccination schedule

Three major features were highlighted by our results:

• Vaccination coverage must be> 60% to reach the 70% PVIR threshold (MPVIR indicator),

whatever the vaccination month (Louga sheep) and site (Louga vs. Kolda). However in

Kolda goats, the 3F1P schedule associated with a 60% vaccination coverage brought MPVIR

very close to the threshold, in the context of two vaccination rounds per annual campaign.

Fig 7. Relative difference in the PVIR at the end of the PPR control stage (PVIR48) with respect to the 2F2P vaccination schedule for Louga sheep, northern

Senegal. The red, solid line indicates the reference situation (2F2P), and the red, dashed lines above and under it indicate a positive or negative relative 7%-difference

with the reference situation.

https://doi.org/10.1371/journal.pone.0190296.g007
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• When the vaccination coverage decreased, the number of full vaccination campaigns had to

be higher to reach the 70% PVIR threshold.

• Symmetrically, when the number of full vaccination campaigns was higher, the PVIR were

better, whatever the vaccination month (Louga) and PVIR indicator.

Good results were obtained in Kolda with the 1F3P schedule and 60% vaccination coverage:

MPVIR and PVIR48 were both above the 70% threshold. This is certainly related to the fact that

two vaccination rounds were achieved each year. However, it highlights the possible vaccine

savings that could be done to compensate the higher vaccination frequency in sub-humid and

humid areas. Nevertheless, several pitfalls are encountered with partial vaccination:

• vaccine cost is a minor part of the overall vaccination costs encompassing, among other

things, wages of veterinary staff, vehicles, gasoline and maintenance of the cold chain. For

instance, in a study of vaccination costs for the rinderpest campaign, Ly et al. (1998) reported

vaccine represented 23% of the overall costs [44].

• Partial vaccination is not easy to implement in actual field conditions: indeed, given the gen-

eral lack of vaccination pens for small ruminants, kids and lambs have to be sorted and

caught one by one by the farmers and vaccinators, thus causing additional work and decreas-

ing the productivity of vaccination teams.

• Farmers might be reluctant to only vaccinate the offspring, thus neglecting the adult animals

—in particular ewes and nannies, which constitute their productive capital.

Therefore, in practice, we would recommend to implement only full vaccination

campaigns.

Fig 8. Relative difference in indicators of post-vaccination PVIR with respect to the 2F2P vaccination schedule for Kolda goats, southern Senegal.

The red, solid line indicates the reference situation (2F2P), and the red, dashed lines above and under it indicate a positive or negative relative 7%-

difference with the reference situation.

https://doi.org/10.1371/journal.pone.0190296.g008
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The PVIR threshold

The PVIR threshold is defined as the population immunity level needed to break the PPRV

transmission cycle and to suppress the PPR clinical signs during the PPR control stage [11].

Setting the PVIR to 70% is a somewhat arbitrary, because estimating it at the national level

from theoretical considerations—or using numerical simulations, is a difficult task (see

below). In this study, we made considerable simplifications by limiting the assessment to

small, homogeneous, and PPR-free Epi. U. Some milestones are useful to help assessing the

threshold itself.

Firstly, this PVIR threshold assumption is related to T, the control effort to bring the patho-

gen transmission below the epidemic threshold. In homogeneous populations, T = 1 − 1/R0,

where R0 is the basic reproduction number, i.e. the number of secondary disease cases after the

introduction of as single infectious individual in a fully susceptible population [16]. Therefore,

in our simple epidemiological framework, it is crucial to get accurate R0 estimates to derive

adequate values for T. Unfortunately, very few empirical estimates (obtained during PPR out-

breaks in field situations) are available [45, 46]. These estimates provided very high values for

T (> 80%) but they were obtained in conditions rather different from those encountered in

sub-Saharan Africa (animal breeds and density, farming systems, etc.). Furthermore, to our

knowledge, no PPRV transmission model has been published so far. Therefore, it is critical to

implement systematic PPR outbreak investigation studies, and to promote mathematical

modelling work to get reliable and adapted estimates of T.

Regarding this latter topic, coupling the PVIR model with a dynamic PPRV transmission

model might allow more precise estimations of the PVIR threshold needed to remain below

the epidemic threshold [16]. However, building such a model is a complex task even starting

with PPRV transmission in a small Epi. U. under the assumption of homogeneous mixing.

Indeed, at last two host species need to be taken into account (sheep and goats) because they

are both present in the same herds and villages, with frequent contacts and thus many PPRV

transmission opportunities. These species and breeds have specific susceptibilities to PPRV,

clinical expression and mortality rates. For instance, West-African dwarf breeds (found in

Kolda) are much more susceptible than Sahelian breeds (found in Louga) [1]. Moreover, basic

knowledge is scarce regarding important epidemiological parameters, such as the excretion

duration of viable PPRV in body fluids and feces [47–49], or the susceptibility of the different

small ruminant species and breeds found in sub-Saharan Africa [1]. In addition, PPRV viru-

lence shows some variability [50]. With so many uncertainties, we believe our PVIR-based

approach is useful and less prone to problematic assumptions.

Secondly, higher T values (80%) were set in the case of rinderpest control. This threshold

was never reached during decades when mass-vaccination campaigns were organized by the

Joint Program 15 (JP15), Pan-African rinderpest campaign (PARC), and Pan-African control

of epizootics (PACE) eradication programs [10, 51, 52]. Even in a small country like Senegal,

with a limited cattle population, only the oldest age classes were close to it after a decade of

mass-vaccination campaigns [53]. Nevertheless, rinderpest was finally eradicated, even though

the last virus sanctuary was located in remote and unsafe places [54] where the vaccination

coverage could not be very high. This might be an indication that for the control stage, the

threshold—while useful and important to maintain the motivation of stakeholders, was proba-

bly an overestimate of the actual T value, at least for sub-Saharan Africa.

Finally, Morocco was confronted for the first time to the emergence of PPR in 2008.

National veterinary services immediately implemented a PPR control strategy based on a 3F1P

schedule, followed by a successful eradication stage. During the control stage, more than 80%

of the national small ruminant stock (> 20 million heads) was vaccinated each year: pulse
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vaccination, a single vaccination round per year. In 2012, a nationwide serological survey was

implemented and provided an estimate of 70% for PVIR48 in adult ewes [55]. The overall

PVIR48 was probably lower than 70%. This is an empirical evidence that in small ruminant

farming systems similar to those found in Morocco (mixture of smallholder sheep farms and

fattening lots), the actual threshold might even be lower than 70%.

There is a good consistence between the results obtained in this simulation study and the

assumptions done when preparing the PPR global control and eradication strategy (GCES)

[11] which was designed with the objectives to control and then eradicate PPR at the country,

region and global levels, particularly with reference to the choice of the vaccination protocols.

The FAO-OIE PPR GCES uses vaccination as the major tool for combating PPR in endemic

countries. Nevertheless, other methods and tools must not be forgotten [56]. Disease surveil-

lance, including field and laboratory work, as well as preparedness for early action to eliminate

new PPR outbreaks occurring in free regions or countries.

Together with an appropriate communication strategy, the successful implementation of

the GCES also relies on the quality of the animal health services provided to the farmers, par-

ticularly by the private and public veterinary services (VS) as well as by other local health stake-

holders at the producer levels including community animal health workers [57].

In many sub-Saharan countries, VS efficiency and effectiveness with respect to the farmers

must be improved. This is why one of the three components of the FAO-OIE PPR GCES is

devoted to strengthening VS in charge of preventing and controlling animal diseases.

Conclusion

This study provided evidences that PPR control should be possible in sub-Saharan Africa. It

looks safer to promote the implementation of at least two full mass-vaccination campaigns (2F

schedule). In sub-humid and humid areas, partial vaccination (offspring) might provide good

epidemiological results, but its practical interest is questionable. Whatever the vaccination

schedule and agro-ecological area, the most important feature remains the vaccination cover-

age and for this purpose, a key aspect is the correct identification of the efficacy of the local

socio-technical networks actually providing animal health services to the farmers and espe-

cially the quality of VS.

This study was limited to a single, PPR-free Epi. U. The real world is much more complex,

with intense livestock movements (trade, transhumance) possibly associated with the intro-

duction of non-immunized animals, or even pathogen agents [58, 59]. Therefore, it is impor-

tant to maintain the vaccination coverage (introduced animals should be immunized), and to

prevent the introduction of the virus once the vaccination has ceased. Thus, the role of the Vet-

erinary Services is crucial both in designing / implementing the vaccination campaigns—

together with other stakeholders, and also in other aspects of PPR control, such as recording

and accounting for animal mobility. In turn, this information might be used to improve the

design of national PPR control program, with a regional and international coordination.
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Dakar, Senegal), the Directorate of Veterinary Services (DVS: Dakar, Senegal), and Cirad. We

warmly thank the farmers, DVS technicians and ISRA technicians, who implemented the field

surveys.

Author Contributions

Conceptualization: Renaud Lancelot, Joseph Domenech, Matthieu Lesnoff.

Data curation: Pachka Hammami.

Formal analysis: Pachka Hammami.

Funding acquisition: Renaud Lancelot.

Investigation: Pachka Hammami.

Methodology: Pachka Hammami, Renaud Lancelot, Matthieu Lesnoff.

Project administration: Renaud Lancelot, Matthieu Lesnoff.

Resources: Joseph Domenech, Matthieu Lesnoff.

Software: Matthieu Lesnoff.

Supervision: Renaud Lancelot, Matthieu Lesnoff.

Validation: Pachka Hammami, Renaud Lancelot, Joseph Domenech, Matthieu Lesnoff.

Visualization: Pachka Hammami, Matthieu Lesnoff.

Writing – original draft: Pachka Hammami.

Writing – review & editing: Pachka Hammami, Renaud Lancelot, Joseph Domenech, Mat-

thieu Lesnoff.

References
1. Baron MD, Diallo A, Lancelot R, Libeau G. Peste des Petits Ruminants Virus. vol. 95 of Advances in

Virus Research. Kielian M, Maramorosch K, Mettenleiter TC, editors. Academic Press; 2016. Available

from: http://www.sciencedirect.com/science/article/pii/S006535271630001X.

2. Lefèvre PC, Blancou J, Chermette R, Uilenberg G, editors. Infectious and parasitic diseases of live-

stock. Lavoisier Tec & Doc; 2010.

3. Stem C. An economic analysis of the prevention of peste des petits ruminants in Nigerien goats. Pre-

ventive Veterinary Medicine. 1993; 16(2):141–150. https://doi.org/10.1016/0167-5877(93)90084-7

Ex-ante assessment of different vaccination-based control schedules against the PPRV in sub-Saharan Africa

PLOS ONE | https://doi.org/10.1371/journal.pone.0190296 January 19, 2018 17 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0190296.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0190296.s003
http://www.sciencedirect.com/science/article/pii/S006535271630001X
https://doi.org/10.1016/0167-5877(93)90084-7
https://doi.org/10.1371/journal.pone.0190296


4. Diallo A. Control of peste des petits ruminants and poverty alleviation? Journal of Veterinary Medicine,

Series B. 2006; 53(s1):11–13. https://doi.org/10.1111/j.1439-0450.2006.01012.x

5. Perry BD, Stones K. Poverty reduction through animal health. Science. 2007; 315:333–334. https://doi.

org/10.1126/science.1138614 PMID: 17234933

6. Alary V, Corniaux C, Gautier D. Livestock’s contribution to poverty alleviation: how to measure it? World

Development. 2011; 39(9):1638–1648. https://doi.org/10.1016/j.worlddev.2011.02.008

7. Diallo A, Minet C, Le Goff C, Berhe G, Albina E, Libeau G, et al. The threat of peste des petits ruminants:

progress in vaccine development for disease control. Vaccine. 2007; 25(30):5591–5597. https://doi.org/

10.1016/j.vaccine.2007.02.013 PMID: 17399862

8. Buczkowski H, Muniraju M, Parida S, Banyard AC. Morbillivirus vaccines: Recent successes and future

hopes. Vaccine. 2014; 32(26):3155–3161. https://doi.org/10.1016/j.vaccine.2014.03.053 PMID:

24703852

9. Liu F, Wu X, Liu W, Li L, Wang Z. Current perspectives on conventional and novel vaccines against

peste des petits ruminants. Veterinary Research Communications. 2014; 38(4):307–322. https://doi.

org/10.1007/s11259-014-9618-x PMID: 25224755

10. Roeder P, Mariner J, Kock R. Rinderpest: the veterinary perspective on eradication. Philosophical

Transactions of the Royal Society of London B: Biological Sciences. 2013; 368 (1623):20120139.

https://doi.org/10.1098/rstb.2012.0139 PMID: 23798687

11. FAO, OIE. Global strategy for the progressive control and eradication of PPR. Paris, Rome: FAO and

OIE; 2015. Available from: http://www.oie.int/fr/PPR2015/doc/PPR-Global-Strategy-avecAnnexes_

2015-03-28.pdf.

12. Kairu-Wanyoike SW, Kaitibie S, Heffernan C, Taylor NM, Gitau GK, Kiara H, et al. Willingness to pay for

contagious bovine pleuropneumonia vaccination in Narok South District of Kenya. Preventive Veteri-

nary Medicine. 2014; 115(3–4):130–142. https://doi.org/10.1016/j.prevetmed.2014.03.028 PMID:

24774477

13. Abubakar M, Arshed MJ, Zahur AB, Ali Q, Banyard AC. Natural infection with peste des petits ruminants

virus: a pre and post vaccinal assessment following an outbreak scenario. Virus research. 2012; 167

(1):43–47. https://doi.org/10.1016/j.virusres.2012.03.018 PMID: 22504337

14. El-Yuguda AD, Baba SS, Ambali AG, Egwu GO. Field Trial of a Thermostable Peste des petits rumi-

nants (PPR) Vaccine in a Semi-Arid Zone of Nigeria. World Journal of Vaccines. 2014; 04(01):1–6.

https://doi.org/10.4236/wjv.2014.41001

15. Abubakar M, Manzoor S, Ali Q. Evaluating the role of vaccine to combat peste des petits ruminants out-

breaks in endemic disease situation. J Anim Sci Technol. 2015; 57:2. https://doi.org/10.1186/s40781-

014-0036-y PMID: 26290722

16. Heesterbeek JAP, Roberts MG. The type-reproduction number T in models for infectious disease con-

trol. Mathematical Biosciences. 2007; 206(1):3–10. https://doi.org/10.1016/j.mbs.2004.10.013 PMID:

16529777

17. Lesnoff M, Peyre M, Duarte P, Renard JF, Mariner J. A simple model for simulating immunity rate

dynamics in a tropical free-range poultry population after avian influenza vaccination. Epidemiology and

infection. 2009; 137(10):1405–1413. https://doi.org/10.1017/S0950268809002453 PMID: 19327199

18. Hammami P, Lancelot R, Lesnoff M. Modelling the Dynamics of Post-Vaccination Immunity Rate in a

Population of Sahelian Sheep after a Vaccination Campaign against Peste des Petits Ruminants Virus.

PLOS ONE. 2016; 11:e0161769. https://doi.org/10.1371/journal.pone.0161769 PMID: 27603710

19. Faugère O, Dockes A, Perrot C, Faugère B. Traditional small ruminant rearing system in Senegal. II.

Animal management and husbandry pratices by livestock owners in the Louga area. Revue d’Elevage
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