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What leads to classically recognized patterns of biodiversity remains an open and con-
tested question. It remains unknown if observed patterns are generated by biological 
or non-biological mechanisms, or if we should expect the patterns to emerge in non-
biological systems. Here, we employ analogies between GNU/Linux operating systems 
(distros), a non-biological system, and biodiversity, and we look for a number of well-
established ecological and evolutionary patterns in the Linux universe. We demon-
strate that patterns of the Linux universe generally match macroecological patterns. 
Particularly, Linux distro commonness and rarity follow a skewed distribution with a 
clear excess of rare distros, we observed a power law mean-variance scaling of temporal 
fluctuation, but there is only a weak relationship between niche breadth (number of 
software packages) and commonness. The diversity in the Linux universe also follows 
general macroevolutionary patterns: the number of phylogenetic lineages increases lin-
early through time, with clear per-species diversification and extinction slowdowns, 
something that has been indirectly estimated, but not directly observed in biology. 
Moreover, the composition of functional traits (software packages) exhibits significant 
phylogenetic signal. The emergence of macroecological patterns across Linux suggests 
that the patterns are produced independently of system identity, which points to the 
possibility of non-biological drivers of fundamental biodiversity patterns. At the same 
time, our study provides a step towards using Linux as a model system for exploring 
macroecological and macroevolutionary patterns.

Keywords: complex systems, cultural evolution, Debian, speciation, species-abundance 
distribution, Taylor’s power law
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Introduction

Despite the general paucity of strict laws in ecology and evo-
lution (Lawton 1999), there are several quantitative patterns 
that are consistently observed across taxonomic, geographi-
cal and temporal scales. For example, abundances of spe-
cies generally have skewed frequency distributions, with 
many more rare species than abundant ones (Gaston 1996a, 
McGill  et  al. 2007, Morlon  et  al. 2009), and there is a 
power-law relationship between the mean and the variance of 
temporal abundance fluctuations (Taylor and Woiwod 1980, 
Kendal 2004). In general, species diversity decreases from the 
equator towards the poles (Rosenzweig 1995, Gaston 2000) 
and increases with area (Rosenzweig 1995, Drakare  et  al. 
2006). Species with large geographic distributions tend to 
have wider niches, and vice versa (Slatyer et al. 2013). Species 
with similar functional traits are often phylogenetically related 
(Darwin 1859, Losos 2008). Diversification of evolutionary 
lineages slows down over evolutionary time (Rabosky and 
Lovette 2008, Rabosky and Glor 2010, Moen and Morlon 
2014), although generality of the latter pattern has been ques-
tioned (Harmon and Harrison 2015, Graham et al. 2016).

To explain these patterns, we can invoke uniquely eco-
logical and evolutionary processes: the patterns could be 
an outcome of assembly rules, natural selection, behav-
ior, species interactions, or interplay between specific 
functional traits and environments. However, it has been 
demonstrated that some of the patterns are not unique to 
ecological and evolutionary systems, and often emerge in 
other complex systems (Gaston et al. 1993, Mace and Pagel 
1995, Bettencourt  et  al. 2007, Nekola and Brown 2007, 
Warren et al. 2011, Blonder et al. 2014, Scheffer et al. 2017). 
Examples are: species-abundance distributions of music fes-
tival setlists (Nekola and Brown 2007) and basketball wins 
by a team (Warren  et  al. 2011), frequency distributions of 
components of software (Pang and Maslov 2013), latitudi-
nal gradients of language diversity (Mace and Pagel 1995), 
species–area relationships in corporations, industrial codes, 
and minerals (Blonder  et  al. 2014), and diversification 
slowdowns in American automobiles (Gjesfjeld et al. 2016). 
To explain such conspicuous universality, theories have been 
proposed that predict the patterns across different systems for 
pure statistical reasons, given that the systems share struc-
tural constraints (Frank 2009, Sizling  et  al. 2009, Harte 
2011, Blonder et al. 2014). One such typical constrain is the 
partition of populations of objects into categories.

However, structural constraints are not the only way 
that biological and non-biological systems can resemble one 
another – similarity may also arise from analogous underly-
ing processes. Striking examples can be found in the rapidly 
expanding literature on cultural evolution (Dawkins 1976, 
Cavalli-Sforza and Feldman 1981, Boyd and Richerson 
1985, Sperber 1996, Mesoudi 2016) which exploits paral-
lels between (mostly) Darwinian evolution and the evolu-
tion of languages, beliefs, skills, knowledge, institutions or 
other forms of socially transmitted information. There has 

also been a continuous feedback between evolutionary biol-
ogy, ecology and economics (Malthus 1798, Maynard Smith 
1982, Worster 1994, Bonds et al. 2012), and some adoption 
of ecological and evolutionary principles for understanding 
the development and maintenance of software (Fortuna et al. 
2011, Valverde and Sole 2015). However, these fields have 
been emphasizing micro-evolutionary, population-genetic, 
or population-dynamic processes, lacking an evaluation of 
the emerging macro-ecological and macro-evolutionary pat-
terns. The notable exceptions (Mace and Pagel 1995, Nekola 
and Brown 2007, Blonder et al. 2014, Gjesfjeld et al. 2016) 
often focus on one selected pattern or on multiple but closely 
related ecological patterns (Blonder  et  al. 2014). While 
there are many examples of non-biological systems follow-
ing patterns observed in biology, we are unaware of a system 
simultaneously exhibiting macroecological and macroevolu-
tionary patterns.

Here, we propose structural analogies between biological 
diversity and the universe of open source GNU/Linux-based 
computer operating systems (hereafter Linux). We have 
chosen Linux, since its components are all openly available 
and well-documented, and because a large number of struc-
tural analogies can be drawn with the biological system of 
evolution, distribution and abundance of biological species, 
hereafter biodiversity (see Table 1 and Material and meth-
ods for details). Based on these analogies, we test the Linux 
universe for classical macroecological and macroevolution-
ary patterns and relationships, and we discuss the structural 
properties that likely generate common patterns in both 
biological and computer operating systems.

Material and methods

Biodiversity structures in Linux

The development and distribution of GNU/Linux operating 
systems uses various open-source licenses (e.g. GNU GPL2, 
www.gnu.org), which allows the code to be freely copied 
and modified. This has led to the development of hundreds 
of operating systems, connected in a branching pattern of 
descent with modification. These different operating sys-
tems possess different applications, and are used with vari-
ous degrees of popularity. We propose that each Linux-based 
operating system, commonly referred to as a distro (Table 1) 
can be viewed as a lineage or species (Mens et al. 2014a, b). 
Our decision to give a Linux distro a distinct name, rather 
than calling it another version of an existing distro, was based 
on developers’ subjective view that the distro is sufficiently 
different, which is similar to how many biological species 
have been defined to date. 

The number of hardware devices on which a distro is 
installed can be interpreted as its commonness (e.g. popu-
lation abundance or related, but not identical, range size). 
While popular distros can spread across devices, unpopular 
ones may go extinct. Thus, because distro abundances change 

http://www.gnu.org﻿


1790

through time, distros have population dynamics. Further, 
computer operating systems, and especially Linux distros, 
come with diverse functionalities, which are pre-installed 
in the form of software packages, and which can be made 
analogous to functional traits of biological species. Finally, 
new distros emerge through a process similar to biological 
speciation: When developers decide to come up with a new 
distro, part of the code of an ancestor distro is reused and 
combined with custom-tailored new code, and with existing 
open-source packages. The evolution of distros is influenced 
by environmental factors such as hardware architecture and 
user requirements (Yan et al. 2010); and constrained by user 
habits and the need for cost-effective development through 
reuse of code (Myers 2003, Fortuna et al. 2011); as a result, 
Linux distros have a genealogy which is potentially analogous 
to a phylogenetic tree.

Once the qualitative structural analogies were set, we 
examined if the analogous structural elements of Linux 
follow the same quantitative patterns as biodiversity. Dur-
ing this process, we found that some biodiversity patterns 
were hard to imagine in the Linux realm; such as the lati-
tudinal gradient of biodiversity, which would depend on 
a reasonable analogy to latitude. Hence, from the set of 
known biodiversity patterns, we chose those for which 
reasonable analogies can be made given available data on 
Linux. Specifically, we looked for the following macroeco-
logical patterns: 1) the skewed species-abundance distribu-
tions, 2) power-law mean-variance scaling of population 
fluctuations, and 3) a positive relationship between niche 
breadth and range size. Between macroevolutionary pat-
terns we looked for: 4) slowdowns of diversification rates 
over evolutionary time and 5) a phylogenetic signal in 
functional traits.

We note that the analogies between Linux and biology 
(Table 1) are imperfect. For example, the evolution of Linux 
distros involves no genetic inheritance, there is little indi-
vidual-level variation, and the inheritance is not from one 

user’s computer to another, but is instead enforced centrally 
by developers. Thus, the micro-evolutionary mechanism is 
not Darwinian sensu stricto (Lewontin 1970). This is a prob-
lem that is widely discussed in the field of cultural evolution 
(Mesoudi 2017), and it is usually concluded that even imper-
fect analogies are useful. In our case the analogies work well 
at the macro-evolutionary level – there certainly is a selec-
tion by users, there is origination and extinction, and distros 
do change in time. As a result, a clear phylogeny emerges, 
with each tip of the phylogeny (distro) having a unique and 
inherited combination of traits. We can then argue that if 
biodiversity and Linux share similar categorization of objects, 
but they differ in their inner processes and mechanisms, and 
yet they display the same emerging patterns, then we have a 
case for a non-biological and non-mechanistic explanation of 
these patterns.

Data on species commonness

We considered popularity (i.e. the number of users) of each 
distro as a measure of species commonness, which is analogous 
to either species abundance or range size. However, because 
most GNU/Linux operating systems are freely available for 
download and use, there is no single way to directly deter-
mine how frequently each distro is used. Therefore, we used 
three sources of data as proxies of commonness.

1) We used popularity metrics from Distrowatch (www.
distrowatch.com), measured as hits per day (HPD), which 
is the daily number of clicks on each distro-specific page on 
Distrowatch. We assume that HPD correlated to the actual 
number of users, i.e. to the number of individuals in the 
global population of a particular Linux species. Although this 
assumption is problematic (Edge 2011), we still consider the 
HPD worth exploring, but we also consider alternative mea-
sures. From Distrowatch we extracted data on HPD of 275 
distros averaged over a yearly period between 27/04/2016 

Table 1. Summary of analogies between ecological terms and the ‘Linux universe’, i.e. the system encompassing all Linux distros, Linux 
software packages, their developers and users, and relationships between those.

Ecological terminology Linux definition

Species or lineage A Linux distribution, most commonly referred to as ‘distro’. A distro is a computer operating system comprised 
of a collection of software packages.

Phylogeny Genealogical relationships between distros. Most Linux distros have evolved from one of three main distros: 
Debian, Red Hat or SLS. We are not aware of a merging between distros, and hence a tree seems to be a 
good representation of Linux evolutionary history.

Commonness 
(abundance, range size)

Hits per day (HPD) or number of machines that run a distro. HPD is a yearly average of the number of times 
per day any given distro page on DistroWatch.com is accessed. HPD is a proxy for distro popularity.

Diversification event Approximate date at which the development of a distro began.
Extinction event Approximate date at which development on a distro ceased. De-extinction may occasionally happen, if 

development of a distro is resumed.
Functional or life-history 

traits
Software packages available with each distro. These packages or ‘functional traits’ determine the applicability 

of the distro.
Natural selection Use and popularity of a distro is based on users and downloads. Unused and unpopular distros go extinct.
Niche breadth Number of functions, purposes, or capabilities that a distro has. Similar to multidimensional niche volume.
Area/Productivity Population of country where distro was developed. Alternatively, this could be the user base of each distro, 

however those statistics are not available.

http://www.distrowatch.com
http://www.distrowatch.com
http://DistroWatch.com
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and 28/04/2015 taken from  http://goo.gl/hMjUXr . 
These data were used to examine the species-abundance 
distributions (SAD), and to assess the relationship between 
niche breadth and commonness. We also extracted HPD for 
each year between (and including) 2002 to 2015 (from the 
main page on  www.distrowatch.com , section Page Hit 
Ranking; downloaded on 28/04/2015). In each year, these 
data were available only for the 100 most popular distros. 
This makes them unsuitable for any comprehensive tempo-
ral dynamics of SAD, but it allows analyses of population 
dynamics for the more common distros. We used distros that 
were present in the data for  10 consecutive years to assess 
the temporal mean-variance scaling (Taylor’s power law; 
TPL).

2) As an alternative and a more direct measure of distro 
commonness we used the sample of 164,726 computers regis-
tered, by volunteers, at LinuxCounter ( www.linuxcounter.
net/statistics/distributions ; downloaded on 27/11/2017), 
where the identity of each distro on each computer is known. 
These data were used to examine the species-abundance 
distributions (SAD), and to assess the relationship between 
niche breadth and commonness.

3) Finally, we used Wikimedia traffic analysis reports 
( http://goo.gl/2h6Rq6 ), which give monthly counts 

of requests (squids) on Wikipedia for pages on specific 
operating systems. We downloaded two sets of data: 1) 
data logged between 2010 and 2011 for 8 most popu-
lar distros at the time, and 2) data logged between 2012 
and 2014 for 17 most popular distros at the time. These  
were used for calculations of Taylor’s Power Law (TPL), 
separately in each of the two time periods.

Models of species-abundance distribution (SAD)

We fitted the lognormal and logseries models to the data on 
frequency of commonness from Distrowatch (HPD) and 
LinuxCounter (no. of machines). We chose these models 
since they describe well the generally observed excess or 
rare species in ecological abundance data (Baldridge et al. 
2016). We fit the logseries model using package sads in 
R (function fitls). To fit the lognormal model, we used 
the mean and standard deviation of log commonness as 
the maximum likelihood estimates of parameters of the 
lognormal probability density function. To plot the fit-
ted models alongside the data, we drew a random sample 
from each distribution and ordered the outcomes. This was 
repeated 500 times and the average is shown as the solid 
lines in Fig. 1.
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Figure 1. Rank-commonness distributions of 275 extant Linux distros from DistroWatch (a–b) and 307 distros from LinuxCounter (c–d). 
HPD stands for ‘hits-per-day’ on www.distrowatch.com; no. of machines is number of actual computers on which a particular distro 
is installed in the set of all computers registered on LinuxCounter – both are proxies for distro commonness (abundance). Black points are 
the data, solid lines are the lognormal (red) and logseries (blue) SAD models fitted to the data.
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Calculation of Taylor’s power law (TPL)

For each distro with  10 yr monitored on Distrowatch, 
and for each distro monitored by Wikimedia traffic reports, 
we calculated log-transformed temporal variance of the 
commonness (Distrowatch HPD or monthly Wikipedia 
requests) and log-transformed temporal mean of common-
ness. Although a non-linear regression is potentially better 
suited to estimate the TPL scaling exponent, we followed 
the practice in the broad literature on TPL and fitted a nor-
mal linear regression to the data using log variance versus 
log mean. We took the slope of the regression as the esti-
mate of the TPL scaling exponent, and we hereafter call it  
‘TPL slope’.

Data on niche breadth

Niche and niche breadth can be complex concepts (Chase 
and Leibold 2003, Peterson et al. 2011), here we use a simpli-
fied definition of niche breadth as the suite of environments 
or resources that a species can inhabit or use (Gaston et al. 
1997). We used three proxies of niche breadth of Linux 
distros.

1) Number of packages. We made the analogy between 
species functional traits and software packages that come 
pre-installed with each distro on an installation medium, for 
example as an .iso file on a live DVD. We defined the number 
of software packages as niche breadth – more packages mean 
wider niche breadth. The number of packages was extracted 
for each distro listed at  www.Distrowatch.com  between 
28/04/2015 and 27/04/2016. Distrowatch provides detailed 
information on each distro, from which we extracted the 
full list of packages (Ubuntu-specific example:  http://goo.
gl/0Qhflk ).

2) Number of applications. We used 32 ‘applica-
tion’ categories defining the broad purposes of each distro. 
These categories were Assistive, Beginners, Chromebooks, 
Clusters, Data Rescue, Desktop, Disk Management, Educa-
tion, Firewall, Forensics, Free Software, Gaming, High Per-
formance Computing, Live CD, Live DVD, Live Medium, 
Multimedia, Myth TV, Netbooks, Network Attached Storage, 
Old Computers, Privacy, Raspberry Pi, Router, Scientific, 
Security, Server, Source-Sbased, Specialist, Telephony, Thin 
Client, and UNIX. We use number of these applications as 
a measure of niche breadth. We merged Live CD, Live DVD 
and Live Medium to a single category. On Distrowatch, each 
distro can be labeled with any combination of these catego-
ries. These labels can be obtained from each distro-specific 
website (example of Ubuntu:  http://goo.gl/VDMUt6 ).

3) Number of special applications. In many biodiversity 
datasets, patterns are mainly influenced by a small number of 
common species, which can hide potentially interesting pat-
terns of the rare species (Jetz and Rahbek 2002). We applied 
this concept here and used the same number of applications 
as above, but excluded the prevalent ‘Desktop’ and ‘Live CD’ 
categories, so that the number reflects only the relatively 
narrow applications. 

In total, we obtained the data for 275 distros, from 
which we further removed operating systems based on 
BSD, rolling release distros (e.g. Arch Linux), distros with 
more than 8000 packages, and the Debian distro. This was 
because package lists for these distros on Distrowatch show 
all available packages in their repositories, not packages that 
are bundled on installation media (L. Bodnář, Distrowatch 
administrator, pers. comm.). This left us with 227 distros 
for the analysis.

Relationship between niche breadth and commonness

We fit a generalized linear model (quasipoisson family, log 
link function) with commonness as a response and the three 
measures of niche breadth (described above) as predictors; we 
log-transformed the number of packages prior to the mod-
eling. For commonness, we used both the HPD measure 
obtained from Distrowatch (227 data points) and the num-
ber of machines with a given distro obtained from Linux-
Counter (108 data points).

Phylogenetic information

The majority of current GNU/Linux distros descended from 
three original distros: Debian, Red Hat and Soft Landing 
Linux system (SLS, later known as Slackware). Family trees 
of these three Linux families were compiled by the GNU/
Linux Timeline project (GLDT) consisting of A. Lundqvist, 
D. Rodic, M. A. Mustafa, A. Urosevic and J. A. Sandoval; the 
coded trees are available at  http://futurist.se/gldt/  under 
GNU Free Documentation Licence. These trees were last 
updated in 2012, which is also the point at which our phylo-
genetic analyses terminate. We converted the family trees into 
Newick phylogenetic trees, and for each distro we extracted 
the date at which its development began (‘speciation’), and 
the date at which development ceased (‘extinction’). Here we 
rely on the dates provided by the GLDT project, which does 
not consider the possibility of renewed development after a 
‘dormancy’ period. Although such ‘de-extinctions’ can hap-
pen in theory, they either did not occur, or were not coded in 
our three Linux phylogenies. Further, the GLDT estimates 
of the last development dates may be imprecise – here we 
assume that the imprecision is either lower, or comparable 
with, the imprecision of extinction dates derived from fossil 
data (Wang and Marshall 2016) or phylogenies (Morlon 
2014), which itself can be substantial.

Speciation and extinction through time

We separated the process of diversification among GNU/
Linux distros into speciation and extinction. For each of the 
three distro families we plotted: 1) the cumulative number 
of speciation events, which is the number of distros that 
had been created up to a given date (even if development  
had ceased) – analogous to cumulative speciation through 
time plots created for biological systems, the so-called 

http://www.Distrowatch.com
http://goo.gl/0Qhflk
http://goo.gl/0Qhflk
http://goo.gl/VDMUt6
http://futurist.se/gldt
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‘lineage-through-time plots’ (Nee et al. 1994). 2) The cumu-
lative number of extinction events through time, which is 
the cumulative number of distros that had ceased develop-
ment. 3) Per-species instantaneous speciation and extinction 
rates; these are numbers of distros that were created or their 
development ceased in a given month, divided by the total 
number of all extant distros in that month. 4) Per-species 
instantaneous diversification rate, defined as speciation rate 
minus extinction rate. This quantity is of key interest, since it 
is expected to slow down over time.

Phylogenetic signal of traits

For this analysis, we used 56 distros that descended from 
Debian (excluding Debian) – these are the distros for which 
we have both data on traits (i.e. packages) and phyloge-
netic relationships. We used the same data on packages as 
in the analysis of niche breadth (above). Data and lists for 
all software packages of the 56 distros were collected from 
 www.distrowatch.com  on 14/05/2016 (see the Material 
and methods section on niche breadth for more details). We 
created a package by distro binary matrix, with 1 for presences 
of the package, and 0 for absence. To test for the phylogenetic 
signal we performed two analyses.

1) We estimated if the dissimilarity in composition of 
binary traits is related to the phylogenetic distance between 
distros. We calculated two distance matrices of compositional 
dissimilarity, one using βj (Jaccard beta), the other βsim (Beta 
sim) (Koleff et al. 2003). We also calculated a distance matrix 
based on phylogenetic distance between the 56 distros. We 
then used Mantel tests (1000 permutations) to detect sig-
nificant correlations between distance matrices representing 
compositional dissimilarity and phylogenetic distance. We 
also calculated Spearman correlations (Rho) between the 
matrices.

2) We measured the strength of phylogenetic signal 
in each trait separately. If the traits were continuous, it 
would have been possible to use lambda (Pagel 1999) or K 
(Blomberg et al. 2003) statistics. Since our traits are all binary 
(presence or absence of a package), we used the D statistic 
(Fritz and Purvis 2010) implemented in function phylo.d in 
R package caper. D measures phylogenetic signal in binary 
traits, and can have negative or positive values, with D  0 
indicating phylogenetically conserved traits, D  1 indicat-
ing random distribution of trait states along the phylogeny, 
and indicating D  1 overdispersed traits. We calculated 
D for each package, together with the probability that the 
observed D comes from a randomly distributed package 
along the phylogeny.

Data and code

All of the data and R code used for the analyses are archived 
at Zenodo.org  http://doi.org/10.5281/zenodo.1120445  
under GNU General Public License, ver. 2.

Results

We found that the diversity patterns observed in the GNU/
Linux universe matched different macroecological and 
macroevolutionary patterns to varying degrees.

Macroecological patterns

Species commonness measured as the number of machines or 
as HPD, followed a skewed frequency distribution (Fig. 1), 
with many distros being uncommon and few distros being 
common, which is typical for ecological abundance data. In 
both metrics, the distribution can be approximated by a log-
normal probability density function, which performed better 
than the logseries model. Although the distribution of HPD 
lacked the typical tail of singletons (Fig. 1d), this is likely 
because Distrowatch does not keep track of the extremely 
rare distros – in this respect the data from LinuxCounter are 
more representative.

We found that the relationship between commonness 
mean (M) and variance (V) can be modelled by a power 
function in all three examined datasets (Fig. 2), with slope 
of approximately 2 (Table 2). We detected no significant 
positive relationship between commonness and the three 
measures of niche breadth (Fig. 3), with the exception of a 
weak but significant, positive relationship between common-
ness and the number of all software packages (quasipoisson 
deviance explained  7%, p  0.01, Fig. 3a), and between 
commonness and the number of all applications (quasipois-
son deviance explained  12%, p  0.001, Fig. 3b) in the 
HPD metric from Distrowatch.

Macroevolutionary patterns

In all three Linux families (i.e. larger groups of Linux distros 
with the same origin), the cumulative number of phyloge-
netic lineages increased linearly through time (Fig. 4a, b).  
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Figure 2. Taylor’s power law (TPL) of temporal fluctuation of com-
monness of Linux distributions, estimated from three data sources. 
Each point represents a Linux distribution. Dashed lines have slopes 
1 and 2, and are presented for visual guidance. Parameters of the 
linear regressions are in Table 1.
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In the Debian family, there was a peak in instantaneous 
per-species speciation rate around 2005, followed by a pro-
nounced slowdown and a peak of extinction rates with a 
subsequent slowdown in 2006 (Fig. 4c). Similar patterns 
occurred in the Red Hat family, but three years earlier  
(Fig. 4c). Diversification in all three Linux families always 
showed a decline after 2005 (Fig. 4d). However, in Debian 
and SLS there also was a relatively low rate of diversifica-
tion rate prior to 2005, while Red Hat underwent a rapid 
diversification even prior to 2005 (Fig. 4d).

Our analyses of phylogenetic signal in trait composition 
showed that more closely related distros (measured by tempo-
ral distance from their nearest common ancestor) were more 
similar in their composition of traits measured by beta-diversity 
of package composition (Fig. 5b, c) than randomly selected 
pairs of distros. Further, 17% and 23% of the 14,161 pack-
ages exhibited phylogenetic signal significant at α  0.05 and 
α  0.1 respectively, measured by the D statistic (Fig. 5d, e).

Discussion

Our analyses demonstrate that the Linux universe and bio-
logical systems not only showcase many structural analogies 
(as already pointed out by Mens  et  al. 2014a, b), but also 
share quantitatively similar emerging properties, including 
patterns of commonness and evolutionary rates. This is in 
line with findings from other complex systems, which also 
exhibit macroecological patterns (Gaston et al. 1993, Mace 
and Pagel 1995, Bettencourt et al. 2007, Nekola and Brown 
2007, Warren et al. 2011, Blonder et al. 2014); and macroevo-
lutionary patterns (Gjesfjeld et al. 2016). The Linux universe 
shows that not one, but a whole spectrum of biological 
patterns can emerge in a single non-biological system. Thus, 
we should expect similar patterns to emerge in other complex 
systems with categories of objects that evolve, for example in 
languages, musical styles, political parties, companies, or even 
countries and religions.

At this point the reader might call for a mechanistic model 
that could replicate, or predict, the patterns across unrelated 
systems. Although aimed at describing the origin of different 
patterns compared to this investigation, such an approach has 
been already adopted e.g. by Gherardi et al. (2013), where a 
simple stochastic model was able to predict both distribution 
of Linux package sizes and mammalian body masses. How-
ever, to replicate the multitude of patterns presented here, 
we would have to attain a degree of sophistication that goes 

beyond the scope of a single paper. Instead, for now we resort 
to a parsimonious and non-mechanistic explanation for the 
prevalence of the patterns. Simply, when systems share struc-
tural constraints, such as partitioning of objects to categories 
(species) across space (Frank 2009, Harte 2011), or when 
variables in the system interact in similar ways [additively 
vs multiplicatively; (Blonder et al. 2014)], they will exhibit 
similar quantitative patterns, independent on system identity 
and its detailed inner working. This follows from both the 
central limit theorem (McGill and Nekola 2010) and the the-
ory of maximum entropy (Harte 2011). Thus, we can explain 
the emergence of the patterns without any typically biologi-
cal mechanism such as genetic basis for phenotypic variation, 
complex species interactions, behavior, or community assem-
bly rules. In fact, all of these mechanisms are mostly absent in 
the Linux universe, yet the biodiversity patterns emerge any-
way, which really points to their non-biological causes. In the 
following, we discuss each investigated pattern individually.

Macroecological patterns

We showed that commonness of GNU/Linux-based oper-
ating systems follows both a skewed frequency distribution 
and a power relationship between mean commonness and its 
temporal variance. In ecology, species-abundance distribu-
tions (Fischer 1943, McGill et al. 2007, Nekola and Brown 
2007) and distributions of range sizes (Gaston 1996b, 2003) 
are often best described by the same skewed lognormal or 
logseries model (Baldridge et al. 2016). This pattern emerges 
when individuals within a population have roughly constant 
per-individual probabilities of reproducing or dying, which 
in turn leads to stochastic multiplicative (as opposed to addi-
tive) dynamics of population size (Lande et al. 2003). In the 
Linux universe, these multiplicative dynamics emerge when 
users install (reproduction) and uninstall distros (death) 
on computers, and when each user has a roughly con-
stant probability of installing his/her favourite distro on a 
computer, or abandoning the distro.

Similar dynamics can also produce the mean-variance scal-
ing of population abundance fluctuations known as Taylor’s 
power law (TPL), which we also detected in the Linux uni-
verse. TPL generally has a proportion of explained variance 
of  0.8 in both single- and multi-species systems (Taylor 
and Woiwod 1980, 1982, Hubbell 2001), with the slope 
typically falling between 1 and 2 (Kendal 2004, Keil  et  al. 
2010). Multiple hypotheses have been suggested to interpret 
empirical TPL slopes (Kendal 2004). Slopes closer to 1 were 
linked to reproductive asynchrony (Ballantyne and Kerkhoff 
2007), species interactions (Kilpatrick and Ives 2003), hard 
upper limits on population size (Keil et al. 2010), and even to 
statistical artifacts (Kiflawi et al. 2016), while slopes closer to 
2 emerge from simple multiplicative models such as random 
walk or deterministic chaos (Perry 1994). The slopes close to 
2 observed here suggests that the temporal dynamics of Linux 
commonness follow an unbounded stochastic multiplicative 
model, which is also what we expect to lead to the observed 
skewed frequency distributions.

Table 2. Parameters of the Taylor’s power law (TPL) describing 
temporal fluctuation of commonness of Linux distributions. Pro-
vided are slope and intercept of the linear regression of log temporal 
variance vs log temporal mean, their standard errors (SE) and the 
coefficient of determination (R2).

Source Intercept (SE) Slope (SE) R2

DistroWatch –3.34 (1.25) 2.18 (0.2) 0.8
Wikipedia 2010–2011 –1.4 (2.42) 1.7 (0.32) 0.81
Wikipedia 2012–2014 0.11 (1.43) 1.94 (0.08) 0.97
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We detected no, or only very weak, positive relationships 
between commonness and niche breadth of distros (i.e. the 
functionality that distros offers), both when measuring it as 
the number of software packages in a distro or as the number 
of applications (as stated by the developers). In ecology, such 
positive correlation between niche breadth and common-
ness (specifically, geographical range size) is a general pattern 
(Slatyer et al. 2013). The hypothesized ecological explanation 
is that by exploiting a greater array of resources and main-
taining populations in a wider variety of conditions, species 
may become more common (Brown 1984). However, our 
findings fail to generalize this ecological relationship to the 
Linux universe. A possible reason for the absence (or weak-
ness) of the link could be our definition of niche breadth, as 
the number of software packages that come pre-installed with 
a distro can be easily expanded. Unlike biological phenotypes, 
which are usually fixed over ecological timescales, numerous 
additional packages are available for many distros that can 

be custom-added at any time, and this likely weakens the 
strength of using pre-installed software for determining the 
success of an operating system.

Macroevolutionary patterns

Diversification slowdowns are often observed in biological  
systems [Rabosky and Glor (2010), Moen and Morlon 
(2014), but see Harmon and Harrison (2015) and Graham  
et  al. (2016)], and can be explained by competition for 
limited resources or space. Similar reasoning can also explain 
the diversification slowdowns that we detected in the Linux 
universe: we suggest that between years 2000 and 2005 
Linux users had become comfortable with certain distros 
that satisfied most of the potential applications and user 
requirements and therefore diversification slowed down. An 
alternative explanation can be borrowed from (Gjesfjeld et al. 
2016) who observed diversification slowdowns in American 
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Figure 3. Three measures of niche breadth and their relationship with commonness measured as HPD or no. of machines. (a, d) Niche 
breadth measured as number of packages, (b, e) niche breadth measured as number of all applications, (c, f ) niche breadth measured as 
number of special applications (not including ‘Desktop’ and ‘Live CD’). Solid red lines are means of quasipoisson log-linear regressions, 
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automobiles, and who argue that the slowdowns can be 
explained by the emergence of dominant designs (Abernathy 
and Utterback 1978). As Gjesfjeld  et  al. (2016) explains, 
when technologies become too specialized, the cost of imple-
menting innovations becomes too high and diversification 
slows down, leading to long-term dominance of the most 
successful designs. However, since the community-driven 

universe of Linux is open and largely free from the usual cost 
or copyright constraints, we consider this economical expla-
nation implausible, and we tend to lean towards explain-
ing the slowdowns by the ecological mechanism involving 
saturation of a finite niche space.

As mentioned, Linux distros come with diverse func-
tionalities, which are pre-installed in the form of software 

(a)

(b)

(c)

(d)

Figure 4. Speciation, extinction, and diversification of Linux distros through time in three major distro families. (a) Phylogenetic trees of 
the three families of Linux distros that were used to make the panels (b), (c), and (d). Branches of two major distros, Ubuntu and Debian, 
are highlighted by green and purple. (b) Accumulation of new species (distros) and extinctions over time. (c) Instantaneous per-distro rates 
of speciation and extinction rate. (d) Instantaneous per-distro diversification rate (speciation rate – extinction rate). Solid black lines are 
LOWESS regressions (smoothing span 0.3), shading indicates standard errors of the smoothed means.
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packages, and which we have made analogous to functional 
traits of biological species. We found that more closely related 
distros were more similar in their composition of traits than 
randomly selected pairs of distros, and 17 to 23% of indi-
vidual software packages were significantly phylogenetically 
conserved. These results are consistent with a widespread 
macroevolutionary pattern known as phylogenetic ‘signal’ or 
‘autocorrelation’ of traits, i.e. the tendency of more closely 
related species to be ecologically (functionally) more similar 
than species drawn at random from the phylogenetic tree of 
closely related species (Harvey and Pagel 1991, Wiens et al. 
2010).

Finding a phylogenetic signal in Linux distros is expected. 
Some degree of functional similarity of a descendant dis-
tro with the parent is indeed desired, perhaps by the users 
(they like the familiar), by the developers (they like to build 
on what has already been built), as well as by the need to 

avoid radical changes that cause bugs due to complex pack-
age dependencies (Mens et al. 2014a, b). At the same time, 
the signal is not particularly strong. The likely reason for the 
weakening is that distros are not fully confined to directly 
inherit packages from their ancestors. Instead, developers of 
distros are free to load them with existing open-source soft-
ware that was originally developed for other distros, making 
the process of package inheritance more similar to horizontal 
gene transfer in bacteria (Ochman et al. 2000) or to horizon-
tal transmission of culture in human societies (Henrich and 
Broesch 2011, Hewlett et al. 2011).

Linux as a model system for biodiversity

Being well-documented, Linux may serve as a useful model 
system for studying certain macroecological or macroevolu-
tionary patterns and dynamics that are particularly hard to 
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get by, given our limited capacity to document biological 
processes across space, time, and taxa (Hortal  et  al. 2015, 
Meyer et al. 2015), and the difficulty of conducting experi-
ments over large spatial and temporal scales. For instance, 
we unveiled slowdowns in both diversification and extinction 
rates in Linux, processes that happen at timescales that are 
impossible to directly observe in nature, and usually need to 
be indirectly inferred using strong assumptions and complex 
models.

The potential use of the Linux universe as a model for 
biodiversity may indeed extend beyond the comparisons 
made here. Here, we have made the first steps, and these ini-
tial analogies can be complemented with a more thorough 
exploration of the Linux system to fully assess their utility for 
macroecological and macroevolutionary research. More anal-
ogies could be made, and patterns analyzed, based on easily 
retrievable empirical data on Linux. For instance, economic 
activity tied to Linux applications could serve as an anal-
ogy to productivity of geographical areas and allow study-
ing the similarity in productivity–biodiversity relationships 
(Currie  et  al. 2004) of the two systems. Another example 
is the positive relationship between area and speciation rate 
(Lomolino et al. 2010, Wagner et al. 2014): populations in 
larger areas are more likely to become isolated and drift apart 
genetically, or to encounter a larger variety of selection pres-
sures and undergo adaptive radiations. Our preliminary anal-
yses suggest that such a relationship can be observed in the 
Linux universe (Supplementary material Appendix 1 Fig. A1). 

Towards cultural ecology

Darwinian evolutionary thinking and models have success-
fully been adapted to study evolution of cultural systems 
(Dawkins 1976, Cavalli-Sforza and Feldman 1981, Boyd and 
Richerson 1985, Sperber 1996, Mesoudi 2016, 2017). How-
ever, as shown in our results and elsewhere, there is a broader 
variation of culture that also has analogies in ecology, and 
that exhibits ecological patterns. Here we see potential for a 
new discipline of cultural ecology, which would use ecologi-
cal models to explain culture. For example, fluctuation and 
distribution of rarity and commonness can be used to pre-
dict extinction risk (Kunin and Gaston 1997) in cultures and 
technologies. There is also a potential for biodiversity theory, 
and its popular models, such as the neutral model (Hubbell 
2001) or the theory of island biogeography (MacArthur and 
Wilson 1967), to predict and map patterns of cultural diver-
sity. We suggest that one aspect of cultural variation that can 
benefit from biodiversty theory, is the issue of cultural and 
technological diversity (e.g. in nations, towns, or companies) 
and its relationship with productivity and stability – a large 
body of relevant theory can be offered here by the biodiver-
sity-ecosystem function research (BEF; Loreau et al. 2002). 
Finally, some ecological models, such as the neutral theory 
of biodiversity (Hubbell 2001), offer direct connections to 
evolutionary theory, and thus to an even broader interdisci-
plinary integration.
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