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The Ralstonia solanacearum species complex (RSSC) is a highly diverse cluster of
bacterial strains found worldwide, many of which are destructive and cause bacterial
wilt (BW) in a wide range of host plants. In 2009, potato production in Madagascar
was dramatically affected by several BW epidemics. Controlling this disease is
critical for Malagasy potato producers. The first important step toward control is
the characterization of strains and their putative origins. The genetic diversity and
population structure of the RSSC were investigated in the major potato production
areas of the Highlands. A large collection of strains (n = 1224) was assigned to RSSC
phylotypes based on multiplex polymerase chain reaction (PCR). Phylotypes I and III
have been present in Madagascar for a long time but rarely associated with major
potato BW outbreaks. The marked increase of BW prevalence was found associated
with phylotype IIB sequevar 1 (IIB-1) strains (n = 879). This is the first report of phylotype
IIB-1 strains in Madagascar. In addition to reference strains, epidemic IIB-1 strains
(n = 255) were genotyped using the existing MultiLocus Variable-Number Tandem
Repeat Analysis (MLVA) scheme RS2-MLVA9, producing 31 haplotypes separated into
two related clonal complexes (CCs). One major CC included most of the worldwide
haplotypes distributed across wide areas. A regional-scale investigation suggested
that phylotype IIB-1 strains were introduced and massively spread via latently infected
potato seed tubers. Additionally, the genetic structure of phylotype IIB-1 likely resulted
from a bottleneck/founder effect. The population structure of phylotype III, described
here for the first time in Madagascar, exhibited a different pattern. Phylotype III strains
(n = 217) were genotyped using the highly discriminatory MLVA scheme RS3-MLVA16.
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High genetic diversity was uncovered, with 117 haplotypes grouped into 11 CCs.
Malagasy phylotype III strains were highly differentiated from continental African strains,
suggesting no recent migration from the continent. Overall, population structure of
phylotype III involves individual small CCs that correlate to restricted geographic areas
in Madagascar. The evidence suggests, if at all, that African phylotype III strains are not
efficiently transmitted through latently infected potato seed tubers.

Keywords: Ralstonia solanacearum, genetic diversity, MLVA, population structure, Madagascar

INTRODUCTION

The soil-borne Ralstonia solanacearum species complex (RSSC)
is among the plant pathogenic bacteria that are most highly
destructive to crops (Mansfield et al., 2012), leading to significant
economic losses for growers worldwide and resulting in dramatic
consequences for sustainable crop production and food security.
The RSSC is a group of pathogens that causes vascular wilt
disease in almost 200 plant species (Hayward, 1994) and is
hosted as a latent infection in an unusually broad range
of 450 plant species in approximately 54 families, including
food and high-value cash crops worldwide, such as potatoes,
tomatoes, tobacco, ginger, and bananas as well as vegetables
and ornamentals (Elphinstone, 2005). The RSSC comprises three
species (Safni et al., 2014) and is classified into four major lineages
according to their initial geographical origin (Prior and Fegan,
2005): Ralstonia pseudosolanacearum includes phylotype I from
Asia and phylotype III from Africa, R. solanacearum includes
phylotype II with IIA and IIB subdivisions from the Americas,
and Ralstonia syzygii contains phylotype IV from Indonesia and
likely Japan, the Philippines, Korea, and Australia (Poussier et al.,
2000; Fegan and Prior, 2005; Villa et al., 2005; Jeong et al., 2007).
The phylotypes are further subdivided into sequevars, each of
which comprises great phenotypic diversity (Fegan and Prior,
2005; Wicker et al., 2012). RSSC strains have disparate lifestyles
and exhibit pathogenic behavior, such as the ability to survive in
heterogeneous niches and asymptomatic plants (Álvarez et al.,
2010; CABI, 2016). Thus, in addition to the versatility and
diversity of these strains, limited host resistance makes it difficult
to manage the RSSC. Currently, there is no effective treatment
against the RSSC. Hence, due to its social and economic impact,
the RSSC has been extensively investigated to understand aspects
of its biology and to engineer optimal and durable strategies to
control this destructive plant pathogen (Mansfield et al., 2012).

In Madagascar, bacterial wilt (BW) caused by the RSSC
was first reported in tobacco crops in 1936 (Bouriquet, 1946).
Well-established and consistently present for many years in
major market gardening areas in the Central Highlands and
the Western and Eastern Coastal areas, this organism affects
tomato, eggplant, tobacco, peanut, bean, and potato, generally
at an acceptable level of impact (Rasolofo, 1965). Recently,
the Central Highlands of Madagascar have experienced a
spectacular potato BW epidemic, causing major damage to
potato production. Since 2009, major outbreaks have been
reported in the main basin where potato is produced, specifically
in the Vakinankaratra region and have become increasingly

widespread to other basins in the Central Highlands. These
outbreaks are associated with meaningful changes to the BW
epidemiological profile. Whereas BW previously occurred
primarily during the rainy season on rain-fed potato crops, since
2009, there has been a dramatic increase in its incidence on
irrigated potato crops cultivated in rice fields or volcanic soil
where the disease was not previously noted (Rabakoarihanta
and Rakotondramanana, 1984; Rakotondramanana, 1984;
MAEP-UPDR, 2004). Previously, wilting symptoms were
typically observed during tuber initiation to flowering; however,
symptoms today are spotted very early during vegetative growth.
For years, BW was controlled through the use of BW-tolerant
resistant cultivars, specifically potato accessions from the
International Potato Center (CIP) germplasm collection that
were developed by the National Centre for Rural Development
and Applied Research, FIFAMANOR. Approximately 10 BW-
tolerant potato cultivars were disseminated to farmers. However,
these have become susceptible to BW. The extent of the current
epidemiological situation has not previously been observed.

Currently, potato BW in the Madagascar Highlands is a
national pandemic that Malagasy authorities must control and
manage. BW outbreaks are a major concern for stakeholders
in agriculture, including potato growers; potato production has
fallen by 30%, leading to huge economic losses and directly
affecting food security and livelihoods in rural areas. The major,
basic potato seed growing fields are infested by the RSSC and
thus are unfit for the cultivation of other crops susceptible to
BW, and the lack of availability of healthy potato seeds has
worsened the situation because farmers use potato seed tubers
that are not certified as RSSC-free. Thus, BW has the potential
to majorly impact the Malagasy potato trade. To address BW
disease, there is an urgent need to identify RSSC strain types that
are prevalent in the Central Highlands of Madagascar, specifically
those associated with potato BW and those responsible for
the current BW epidemics. In addition, further assessment
of the epidemiological factors underlying the persistence and
emergence of RSSC strains and their spread in potato growing
zones is needed.

Historically, strains collected in Madagascar, identified by
Lallmahomed et al. (1988) as “Malagasy brown rot,” were
assigned to phylotype III (Poussier et al., 2000), named “African
brown rot” (Mahbou et al., 2009) and to phylotype I, both
of which have been collected from the plains and tray areas
first described by Prior et al. (2006, unpublished data). All
phylotypes are composed of lineages pathogenic to potatoes, and
there is pathological and genetic diversity within and among
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phylotypes (Cellier and Prior, 2010). BW epidemics result from
the emergence of more aggressive strains of existing, indigenous
bacteria or cryptic strains that have not yet been characterized
or that would have recently jumped to a new host. In addition,
epidemics are likely associated with the introduction and spread
of aggressive exotic strains such as the regulated quarantine
organism (EPPO, 2015) and the select agent (USDA/APHIS,
2005) phylotype IIB sequevar 1 (IIB-1) strains named “Andean
brown rot,” to which cultivated varieties of potato may be more
susceptible. Furthermore, insights into the major epidemiological
traits of this disease, such as inoculum sources and reservoirs,
patterns of dispersal and other factors that may influence the
spatial dynamics of inoculum dispersal and disease spread, are
prerequisites for the design of logical and effective management
strategies that limit and control the spread of BW.

Molecular epidemiological approaches have been widely used
for animal and human infectious disease and distribution studies
(Tompkins, 1994; Foxman, 2010; Lindstedt et al., 2013). Using
such molecular epidemiological approaches, clinicians have shed
light on diseases and developed more effective prevention
strategies compared to conventional epidemiological approaches
(Foxman and Riley, 2001). Examples include the investigation of
Mycobacterium tuberculosis (Kamerbeek et al., 1997; Barnes and
Cave, 2003; Van der Spuy and Warren, 2008; Cannas et al., 2016;
Jagielski et al., 2016), Escherichia coli (Bender et al., 1997; Johnson
et al., 2002; Bonacorsi and Bingen, 2005; Grad et al., 2012), and
Influenza A virus (Palese and Young, 1983; Cox and Bender,
1995; Cox and Subbarao, 2000). Molecular epidemiology has also
been applied to plant pathology to investigate host–pathogen
interactions, strain phylogenetic backgrounds, reservoirs, and
transmission pathways to assess potential control strategies.
A few approaches to describe plant bacteria epidemics have
been successfully developed, particularly for Xanthomonas citri
(Pruvost et al., 2014; Vernière et al., 2014; Leduc et al.,
2015) and Erwinia amylovora (Bühlmann et al., 2014). With
the development of microbial genome sequencing, genomic
comparisons of pathogens have been conducted for rapid and
accurate diagnosis and the characterization of markers suited
for epidemiological analyses (Aarestrup et al., 2012; Land et al.,
2015). Based on the amplification of specific and highly variable
tandem repeat (TR) loci as markers, MultiLocus Variable-
Number TR Analysis (MLVA) is a high-throughput genotyping
tool that allows the exploration of TR loci polymorphisms
between organisms at the intra or inter population level within
species (Lindstedt, 2005). Different MLVA schemes based on
combinations of variable TR loci were developed to genotype
plant pathogenic bacteria of high agricultural significance,
including Xylella fastidiosa (Coletta-Filho et al., 2001; Francisco
et al., 2017), X. citri (Bui Thi Ngoc et al., 2009; Pruvost et al.,
2014; Vernière et al., 2014), Pseudomonas syringae (Gironde
and Manceau, 2012; Ciarroni et al., 2015), Xanthomonas oryzae
(Zhao et al., 2012), Clavibacter michiganensis (Zaluga et al., 2013),
E. amylovora (Bühlmann et al., 2014; Alnaasan et al., 2017),
and Xanthomonas arboricola (López-Soriano et al., 2016). Several
MLVA schemes for genotyping the RSSC have been published:
N’Guessan et al. (2013) developed four schemes, specifically, a
13-loci MLVA scheme for phylotype I, a 12-loci MLVA scheme

for phylotype II, an 11-loci MLVA scheme for phylotype III,
and a six-loci MLVA scheme for phylotype IV. Ravelomanantsoa
et al. (2016) published a novel 16-loci MLVA scheme called
RS3-MLVA16 that is optimized for phylotype III, and Guinard
et al. (2016) developed an seven-loci MLVA scheme to closely
monitor the microevolution of phylotype I populations.

In this study, 1224 BW strains, which were collected from
isolated wilted plants or minor outbreaks and from the major
emerging epidemics observed on potato in the Madagascar
Central Highlands, were assigned to RSSC phylotypes by
multiplex PCR. The population structure of a subset of phylotype
IIB-1 and III strains was studied using previously developed
MLVA markers (N’Guessan et al., 2013; Parkinson et al., 2013;
Ravelomanantsoa et al., 2016). We showed that the cold-tolerant
potato Andean brown rot phylotype IIB-1 was clearly introduced
to Madagascar, provoking a major epidemic. Phylotype IIB-1 was
previously recognized to be clonal with same epidemiological
traits (Graham and Lloyd, 1979; Janse, 1996, 2012; Wenneker
et al., 1999; Pradhanang et al., 2000; Allen et al., 2005;
Álvarez et al., 2008; Milling et al., 2009; Khoodoo et al., 2010;
Clarke et al., 2015; Huerta et al., 2015). Here, we highlighted
a small amount of genetic diversity and described the genetic
structure of phylotype IIB-1. Additionally, we were interested
in African brown rot (R. pseudosolanacearum phylotype III)
strains whose epidemiological traits are unknown but are of
agronomic importance and endemic to Africa and the South-
West Indian Ocean islands (Fegan and Prior, 2005). Although
both phylotypes have adapted to cool temperatures, molecular
epidemiology clearly suggested two different epidemiological
situations associated with these two phylotypes.

MATERIALS AND METHODS

Collection of RSSC Strains
RSSC strains were collected in major potato production areas in
the temperate Central Highlands. Samples were collected from
fields historically associated with frequent BW infections and
sites associated with outbreaks that recently occurred within
12 agroecological zones (AEZs). Sampling sites with potato
BW lasting for two main growing seasons and with major
symptom development were chosen: the season with rain-fed
and irrigated crops on hillsides in April 2013 and the rainy
season for rain-fed crops on upland soils in December 2013.
Foliar epinasty or plant wilting characterized symptomatic plants.
In an attempt to reflect the entire infected plant population in
each surveyed field, approximately 20–30 georeferenced stem
samples, approximately 10 cm in length and above the root
collars of symptomatic hosts were randomly collected. To explore
RSSC diversity in potato growing areas, stems from putative
symptomatic and asymptomatic host species, namely Solanum
lycopersicum (tomato), Solanum gilo (African eggplant), Solanum
nigrum (black nightshade), Phaseolus vulgaris (bean), Bidens
pilosa (weed), Capsicum annuum (pepper), Pelargonium sp.,
Physalis sp. (cape gooseberry), Eucalyptus sp., and Manihot
esculenta (cassava) were sampled, as were rhizosphere and
irrigation water. All samples were cut with disinfected shears
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(wiped with 90% alcohol), placed in a labeled plastic bag and
stored in a cool box for shipment to the local laboratory.
Additional surveys were conducted to address issues of particular
interest, primarily focusing on the history of BW at the field and
local levels, the origin and trade of potato seeds and cropping
pathways and practices.

At the lab, the stem samples were cleaned, dried, and
surface decontaminated by wiping them with 90% alcohol and
briefly passing them through a flame. Then, the samples were
cut into pieces using a sterilized scalpel, placed into tubes,
and immersed in pure sterile water for 15 min to recover
the bacterial ooze. Five microliters of the bacterial suspension
were streaked for isolation on Kelman’s agar plates (Kelman,
1954) and incubated at room temperature (approximately 28◦C)
for 2 days. Single virulent colonies of RSSC, irregular in
shape and pearly white with pink centers, were suspended
in pure sterile water in Eppendorf tubes. At the CIRAD-3P
laboratory (Saint-Pierre, La Réunion), the bacterial suspensions
were cultured in nutrient broth at 28◦C for 2 days for culture
purification. Then, bacterial cultures were streaked both on
Kelman and modified Sequeira agar plates (Poussier et al.,
1999) and incubated at 28◦C for 2 days. Single colonies were
transferred to Sequeira plates and subsequently purified. The
pure colonies for each isolate underwent long-term storage at
−80◦C on Microbank beads (Pro-Lab Diagnostics, Toronto,
Canada).

Strain Phylotyping
A first subset of isolates (CSEQ; n = 289) representative
of the geographic regions (agricultural zones), agroecological
environments (lowland and highlands), known soil types (acidic
to calcareous, clay to loam soils), and host diversity (species and
potato cultivars) from the 12 surveyed AEZs was selected from
the whole collection for sequevar identification. A second subset
of phylotypes IIB-1 (n= 255) and III (n= 217) isolates primarily
sampled from potato in Madagascar (CMG) were submitted to
MLVA analysis. Because only a limited number of phylotype I
strains originated from potato (n = 20), this lineage was not
further considered for MLVA analysis. A third set of strains called
CREF included worldwide reference strains maintained in the
RUN collection at CIRAD (Saint-Pierre, La Réunion): CREF-I
(n = 42), CREF-II (n = 30), CREF-III (n = 65), and CREF-
IV (n = 9), referred to as phylotypes I, II, III, and IV in the
reference strain collection, respectively. The selected strains were
representative of known genotypic diversity, geographic origins,
years of isolation and hosts (Supplementary Table S1).

Single colonies from a Kelman agar plate were transferred
to a modified Sequeira agar plate, and 1-µl loops of colonies
grown overnight were suspended in 200 µl of sterile HPLC-
grade water and used as templates for PCR amplification.
The amplification of the 282-bp universal RSSC-specific
DNA fragment and the phylotype-specific 16S–23S ITS
DNA fragments (Opina et al., 1997), the 144-bp phylotype
I-specific fragment, the 372-bp phylotype II-specific fragment,
the 91-bp phylotype III-specific fragment, and the 213-bp
phylotype IV-specific fragment, was carried out by phylotype
multiplex PCR using a set of six oligonucleotide primers:

759F (5′-GTCGCCGTCAACTCACTTTCC-3′), 760R (5′-GT
CGCCGTCAGCAATGCGGAATCG-3′) (Opina et al., 1997);
Nmult 21:1F (5′-CGTTGATGAGGCGCGCAATTT-3′), Nmult
21:2F (5′-AAGTTATGGACGGTGGAAGTC-3′); Nmult 23-AF
(5′-ATTACGAGAGCAATCGAAAGATT-3′), Nmult 22-InF
(5′-ATTGCCAAGACGAGAGAAGTA-3′), and the reverse
primer Nmult 22-RR (5′-TCGCTTGACCCTATAACGAGTA-3′)
(Fegan and Prior, 2005). PCR amplification was performed in
15-µl reaction volumes with 3 µl of GoTaq Flexi 5× GREEN
reaction buffer (Promega), 0.9 µl of MgCl2 (25 mM, Promega),
0.3 µl of dNTPs mixture solution (10 mM each, Promega),
1.5 µl of a mix of forward and reverse primers (10×), 0.125 µl of
GoTaq R© G2 Flexi DNA polymerase solution (5 U/µl, Promega),
1 µl of fresh bacterial suspension, and 15 µl of QSP with sterile
HPLC water. The 10× primer mix was composed of 759R
and 760F at 4 pmol each; Nmult 21:1F, Nmult 21:2F, Nmult
22-InF, and Nmult 22-RR at 6 pmol each; and Nmult23-AF at
18 pmol. The reaction was performed in a GeneAmp R© PCR
System 9700 thermal cycler (Applied Biosystems, Foster City,
CA, United States) using the following conditions: an initial
denaturation step at 96◦C for 5 min, 30 cycles of denaturation
at 94◦C for 15 s, annealing at 59◦C for 30 s, and extension at
72◦C for 30 s, and a final extension step at 72◦C for 10 min.
Six microliters of PCR product were loaded into a 1.5% (w/v)
SeaKem R© LE Agarose gel (Lonza, Basel, Switzerland) in 1× TAE
buffer at 110 V for 1 h. After migration, the gels were stained in
an ethidium bromide bath and photographed under ultraviolet
light using the G-BOX gel imaging system (Syngene, Cambridge,
United Kingdom). A 100-bp DNA ladder (Promega, Madison,
WI, United States) was used to estimate the molecular size of
each amplicon.

Phylotype II strains were further processed to detect
IIB-1 brown rot strains using the primer pair 630F/631R
(5′-ATACAGAATTCGACCGGCACG-3′ and 5′-AATCACATG
CAATTCGCCTACG-3′, respectively), which amplified a 307-
bp IIB-1-specific DNA fragment (Fegan et al., 1998). The PCR
reaction was carried out in a 15-µl volume, as previously
described, with 0.36 µl each of the primers 630 and 631 (10 µM
each) and 8.96 µl of sterile HPLC water. The following PCR
program was used: initial denaturation at 96◦C for 6 min,
followed by 30 cycles of 94◦C for 15 s, 60◦C for 30 s, and 72◦C
for 30 s, with a final extension step of 72◦C for 10 min.

Each phylotype was subdivided into sequevars based
on polymorphism of the partial endoglucanase (egl)
sequence (Fegan and Prior, 2005). Approximately 780-
bp was amplified using the primer pair EndoF/EndoR
(5′-ATGCATGCCGCTGGTCGCCGC-3′ and 5′-GCGTTGCCC
GGCACGAACACC-3′, respectively) (Fegan and Prior, 2005).
The PCR protocol was described previously by Ravelomanantsoa
et al. (2016). PCR products were sequenced on both
strands by Beckman Coulter Genomics Company (Takeley,
United Kingdom). All sequences were further aligned using
the MUSCLE algorithm (Edgar, 2004) and analyzed using
Molecular Evolutionary Genetics Analysis (MEGA 7.0.18)
software (Kumar et al., 2016). The sequences were compared to
known egl sequences in a database to identify the sequevars to
which Malagasy strains were assigned. Sequence homology was
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at least 99%. The database egl sequences used for comparison in
this study were retrieved from GenBank. The accession numbers
of these sequences are listed in Supplementary Table S2.

MLVA Analysis
MLVA was performed as described previously (Ravelomanantsoa
et al., 2016). Briefly, MLVA exploits length variations of TR
arrays that occur at different TR loci. An allelic profile was
created for each strain based on the number of repeats in a
set of TR loci (alleles) combined into a string. Each unique
profile (or haplotype) was assigned an MLVA type (MT), which
was were grouped into a clonal complex (CC). The previously
described RS3-MLVA16 scheme (Ravelomanantsoa et al., 2016),
was applied to investigate the genetic relationships between
phylotype III strains (RS3-MLVA16: RS3L27, RS3L28, RS3L29,
RS3L17, RS3L19, RS3L30, RS3L31, RS3L32, RS3L33, RS3L34,
RS1L05, RS3L35, RS3L36, RS1L10, RS3L37, and RS1L12). In
addition, we selected nine highly polymorphic TR loci from the
literature to genotype phylotype IIB-1 strains, specifically five
TR loci (RS2AL01, RS2BL21, RS2BL22, RS2BL24, and RS2BL25)
from the 12-locus MLVA scheme proposed by N’Guessan et al.
(2013), plus four TR loci (L504, L539, L540, and L563) published
by Parkinson et al. (2013), to form the MLVA scheme RS2-
MLVA9. Characteristics of the TR loci used in this study are
presented in Supplementary Table S3.

Population Structure
Analyses were performed with the R v 3.0.2 software package
(R Core Team, 2013). The software QGIS V2.0.1-Dufour (QGIS
Development Team, 2013) was used to map the geographical
distribution of the sampling locations and the corresponding
phylotypes. Genetic variation was estimated at three levels: within
phylotypes, within populations, and among populations. The
populations were arbitrarily divided into AEZs. We calculated
the standard measures of genetic diversity for each phylotype
and population, including the number of alleles (Na), the
proportion of polymorphic loci (P), the number of haplotypes
(Hap), and the haplotype diversity (HE), using the GenAlEx
version 6.5 program (Peakall and Smouse, 2012). The allelic
richness by rarefaction (A) (El Mousadik and Petit, 1996) was also
estimated using the function “allelic.richness” in the “hierfstat”
package (Goudet, 2014). Clustering of the allelic profiles was
performed with PHYLOVIZ software (Francisco et al., 2012), and
minimum spanning trees (MST) were built with the goeBURST
full MST algorithm using global optimal eBURST (goeBURST)
and Euclidean distances. The discriminatory power of the MLVA
scheme was evaluated by calculating the Hunter–Gaston index1

(HGDI; Hunter and Gaston, 1988; Hunter, 1990). Genetic
divergence among populations and among individuals within
populations were calculated by analyzing the molecular variance
(AMOVA) and calculating the differentiation indices Fst (Nei,
1977) and Rst (Slatkin, 1995). Because TRs are subdivided into
microsatellites (1–6 bp repeat units, Goldstein and Schlotterer,
1999) and mini-satellites (more than 6 bp in length) do not
evolve at a uniform rate and follow different mutation models

1http://insilico.ehu.es/mini_tools/discriminatory_power/

(Shriver et al., 1993; Estoup and Angers, 1998), the two indices
Fst and Rst were calculated together to test the importance
of allele size over allele identity in the estimation of genetic
differentiation. AMOVA, Fst and Rst estimates were computed
using ARLEQUIN version 3.5 software (Excoffier and Lischer,
2010).

A Bayesian clustering approach implemented in GENELAND
software (Guillot et al., 2005, 2008) was applied to spatially
delineate and infer the genetic structure of the RSSC within
the potato growing areas in the Central Highlands without
prior information regarding clusters. The number cluster (K)
and the individual posterior cluster membership probabilities
were computed assuming a correlated allele frequencies model
on the one hand and an uncorrelated model without spatial
coordinates on the other (spatially implicit model). We ran 10
independent runs, in which we allowed K to vary from 1 to 20,
and the number of MCMC iterations (Markov Chain Monte-
Carlo inference of clusters from genotype data) was 200,000 with
a thinning of 100. The maximum rate of Poisson processes was
set to 100. For each run, the most likely number of clusters was
automatically displayed, and the runs with the highest likelihood
scores were kept. The posterior probability of cluster membership
was computed for each pixel of the spatial domain (500 × 500
pixels). Individuals were assigned unambiguously to the modal
cluster when the posterior probability of cluster membership was
greater than 0.70.

We estimated genetic diversity within each of the inferred
clusters by calculating Na, P, Hap, HE, and A. To determine
the levels of differentiation within and among the inferred
genetic clusters, AMOVA and pairwise Fst and Rst values were
calculated using ARLEQUIN version 3.5 software. Survey data
were compared with molecular data to better explain BW disease.

RESULTS

Three Phylotypes and Eight Sequevars
among the RSSC Strains in the Central
Highlands of Madagascar
A total of 1224 isolates were collected from 74 sites across 12
AEZs in predominantly potato growing areas. They were isolated
from the rhizosphere soils of potatoes, irrigation water, and from
various symptomatic plant species, including Solanum tuberosum
(potato), S. lycopersicum (tomato), S. gilo (African eggplant),
P. vulgaris (bean), B. pilosa (weed), S. nigrum (black nightshade),
C. annuum (pepper), Pelargonium sp., and symptomless Physalis
sp. (cape gooseberry). One hundred twenty-four (10%) isolates
belonged to phylotype I and were located on the northwestern
side of the Central Highlands at an altitude of approximately 1000
to 1600 masl. Two hundred twenty-one (18%) isolates belonged
to phylotype III and the remainder (n = 879, approximately
72%) belonged to phylotype IIB1 (IIB-1); both were located in
most prospected AEZs at an altitude between 1000 to 2000 m.
This is the first official report of Andean potato brown rot IIB-1
in Madagascar. The spatial distribution of the three phylotypes
across the 12 AEZs is reported Figure 1.
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FIGURE 1 | Spatial distribution and frequency of the phylotypes I, II, and III across the 12 AEZs in the Central Highlands of Madagascar.

Partial egl sequences were obtained from a set of 289
representative strains, CSEQ, including 70 strains from phylotype
I, 77 strains from phylotype II, and 142 strains from phylotype
III (Supplementary Table S1). Seven sequevars were identified
based on phylogenetic analysis with existing sequences in
databases. Among the seven sequevars, sequevar 1 (belonging
to phylotype IIB), 18 and 33 (belonging to phylotype I), and
19 (belonging to phylotype III) have been previously identified.
The three remaining sequevars are newly identified and were
defined as sequevars 58, 59, and 60 (belonging to phylotype III).
The known sequevar 46 belonging to phylotype I, previously
identified by Prior et al. (2006, unpublished data) from the
Malagasy lowland area (27 m), was not recovered in this Highland
study. Taken together, seven distinct sequevars have been found
to date in the Central Highlands of Madagascar. The newly
generated sequences were deposited in the GenBank database
under accession numbers MF134833 to MF134835.

Genetic Diversity Based on MLVA Was
Narrow among Introduced Andean
Brown Rot Strains (IIB-1) and Broad
among Endemic African Brown Rot
Strains (III).
MLVA scheme RS2-MLVA9 was applied to 285 IIB-1 strains,
including 30 reference strains (CREF-II) and 255 Malagasy
representative strains (CMG-II). Phylotype IIB-1 was resolved
into 47 haplotypes (P= 94%, A= 1.73, HE= 0.20, HGDI= 0.80):

19 haplotypes were assigned to strains of the CREF-II collection
(P= 88%, A= 1.66, HE = 0.24, HGDI= 0.89), and 31 haplotypes
were assigned to strains of CMG-II (P = 100%, A = 2.12,
HE = 0.19, HGDI = 0.78). MLVA scheme RS3-MLVA16 was
used to examine the genetic diversity of 280 phylotype III strains,
including a worldwide collection of 63 references (CREF-III)
and a collection of 217 Malagasy representative strains (CMG-
III). Phylotype III had 163 haplotypes (P = 100%, A = 11,
HE = 0.50, HGDI= 0.99): 46 haplotypes in the collection CREF-
III (P = 100%, A = 4.88, HE = 0.61, HGDI = 0.95) and 117
haplotypes (P = 81%, A = 2.96, HE = 0.40, HGDI = 0.98) in
the collection CMG-III. Globally, genetic diversity among the
phylotype III strains (HE ≥ 0.40, A < 11) was higher than
phylotype IIB-1 (HE ≤ 0.24, A < 2.12).

RS2-MLVA9 Clustering Analysis Defined
a Closely Related Genetic Group
To study the genetic relationships between phylotype IIB-1
haplotypes isolated in the Central Highlands of Madagascar and
worldwide haplotypes, a MST based on 47 haplotypes of 285
IIB-1 strains (MST-II47) was constructed (Figure 2). Strains
from Madagascar clearly yielded a major CC (CCII-A), a minor
CC (CCII-B) and three singleton haplotypes (different from
each MT at more than one TR locus) (Figure 2B). Globally
these IIB-1 haplotypes were closely related as all of the links
between the haplotypes consisted of single or double-locus
variations (DLVs). The largest clonal complex, CC-IIA, grouped
together haplotypes from the Central Highlands of Madagascar
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FIGURE 2 | Minimum spanning tree (MST) representation of the MLVA clustering. (A) MST of global RSSC phylotype IIB-1 strains (n = 285). (B) MST of Malagasy
RSSC phylotype IIB-1 strains collected in the Central Highlands of Madagascar (n = 255). (C) MST of African RSSC phylotype III strains (n = 280). (D) MST of
Malagasy RSSC phylotype III strains collected in the Central Highlands of Madagascar (n = 217). Each circle represents a unique MLVA haplotype (MT) and its size is
proportional to the number of strains having the same MT. The thicker branches link MT differing by only one TR locus (SLV), the thinner branches link MT that differ
in 2 TR loci (DLV), and the gray dashed branches link MT that differ in three TR loci. No link is indicative of variation at >4 loci. Color represents the country or the
agroecological zone of origin. Halos indicate the distinct clonal complexes (CCs). CSC, clonal sub-complex.

and haplotypes widely distributed throughout the world. Three
haplotypes isolated in the Malagasy potato growing areas were
shared with strains from other countries (Figure 2A). The
frequent haplotype MTII-9 was present in some African countries
(Nigeria, Guinea, Rwanda), in Europe (Sweden, Spain, and the
United Kingdom), in the Mediterranean (Morocco and Turkey),
in Guadeloupe (Caribbean), and in the Reunion (Indian Ocean)
Islands. Haplotype MTII-8 was present in Israel and France,
and haplotype MTII-6 was present in the Netherlands. These
results provided strong support for the hypothesis that multiple
phylotype IIB-1 strains were introduced, as the IIB-1 brown rot
pathogen has never previously been reported in Madagascar. In
the Central Highlands of Madagascar, the grouping of a large
proportion of phylotype IIB-1 strains into a single complex
(MST-II31) with a few additional DLVs suggests phylotype IIB-
1 strains are epidemiologically linked. A limited number of
evolutionary links were missing to structure the whole population
as a single CC, likely as a result of incomplete sampling. The
star-like structure of the haplotype network where nearly all
of the evolutionary steps could be drawn, and the presence
of numerous shared haplotypes between strains from different
AEZs supports the emergence of recent potato BW-IIB-1 in this
region from a few closely related strains as well as their relatively
fast geographical expansion across various AEZs (Figure 2B).

goeBURST identified haplotypes MTII-3 and MTII-9 as the
most likely founder haplotypes for the two different sampling
dates, April and December, respectively. The structure of the
large clonal complex CC-IIA showed three clonal sub-complexes
(CSC). The two major clonal sub-complexes CSC1 and CSC2,
the founders of which are MTII-9 and MTII-3, respectively, are
connected through MTII-2, the predicted founder of the clonal
sub-complex CSC3. At the field scale, haplotype diversity showed
the coexistence of multiple CCs that differed by two loci (DLV)
and singleton haplotypes with DLV from each other.

MLVA16 Genotyping of Phylotype III
Strains Separated Epidemiologically
Unrelated Groups
In contrast to phylotype IIB-1, the MST based on 163 haplotypes
from 280 phylotype III strains (MST-III163) resulted in 14 distinct
CCs, most of them separated by more than triple-locus variants
(TLVs). All of the delineated CCs consisted of strains from a
single country with a single exception, which was composed
of a haplotype from Madagascar (MTIII-72) and a haplotype
from Reunion Island (MTIII-9) distinguishable at a single locus
(Figure 2C). In the CMG-III collection, which was made up of
217 Malagasy representative phylotype III strains, 11 CCs (mostly
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separated by TLVs) and 37 singletons were found among the AEZ
strains. Interestingly, the two largest CCs were mainly composed
of strains from AEZ 1, 3, 10, and 11 and from AEZ 1, 3, and
10 for CCIII-A and CCIII-B, respectively (Figure 2D), which
could suggest a common origin or migration events between
strains of AEZ 1, 3, and 10. Eight of these CCs have a unique
AEZ origin and may reflect local outbreaks. Strains from the
same AEZ can be dispersed over different CCs and singletons.
These epidemiologically unrelated haplotypes suggest different
origins of introduction in these AEZ and/or a long-time of
divergence within an AEZ population. Further analysis at the
field scale showed a significant proportion of singleton haplotypes
related to each other by more than four locus variations,
indicating a high within-field genetic diversity of the phylotype
III strain population, and could reflect an inoculum of multiple
origins and/or differentiation among the field strains over time
(Supplementary Table S1).

Contrast between the Spatial Genetic
Structures of Phylotype IIB-1 and III
Populations in the Central Highlands of
Madagascar
Using the RS2-MLVA9 data, a MCMC analysis of the population
structure using GENELAND indicated that the genetic variation
across the CMG-II collection was best represented by three
distinct clusters (K = 3) from a 70% posterior probability
assuming an uncorrelated allele frequency model as the best-fit
model for the data. The three inferred genetic clusters, CLII-1
(87 strains, HE = 0.12, 18 MTs, eight polymorphic loci), CLII-
2 (148 strains, HE = 0.13, 19 MTs, eight polymorphic loci),
and CLII-3 (20 strains, HE = 0.12, six MTs, five polymorphic
loci), displayed a low level of genetic diversity. The spatial
structure (Figure 3A) appeared to be consistent with topographic
features characterized by the presence of the Ankaratra Mountain
range that extend from north to south in the Central Highlands
(Supplementary Figure S1). The cluster CLII-1 was localized to
AEZs around the Ankaratra Mountains (approximately 1100–
1700 m), whereas clusters CLII-2 and CLII-3 were distributed
in the Highlands above 1700 m. The clusters were genetically
differentiated from one another with an average Fst = 0.47
(p < 0.001) and Rst = 0.40 (p < 0.001) and AMOVA partitioned
48% (Fst)/41% (Rst) of the total genetic variation within a
cluster and 52% (Fst)/59% (Rst) among clusters. The spatial
organization of the two clusters CLII-1 and CLII-2 demonstrated
the characteristics of populations that had undergone a large
expansion across all surveyed AEZs. The cluster CLII-1 covered a
huge geographic area reaching from the northwestern portion of
the Central Highlands in the Itasy basin (AEZ6, AEZ7, AEZ8),
throughout the Vakinankaratra basin (AEZ1, AEZ3, AEZ4),
and the southern portion (AEZ10, AEZ11). The cluster CLII-
2 occurred in the two major producing basins, Vakinankaratra
and Ambohimiadana (AEZ1, AEZ2, AEZ3, AEZ4, and AEZ5),
while the third cluster CLII-3 was limited to only one AEZ
(AEZ2) (Figure 3A). Furthermore, the clusters CLII-1 and CLII-
2 occurred and overlapped in AEZ1, AEZ2, and AEZ3, while the
clusters CLII-2 and CLII-3 co-occurred in AEZ2. Overall, there

were consistencies in the patterns of spatial structure in IIB-1
with GENELAND and the genetic structure in the MSTs (April
and December) (Figures 4B,C).

Using the RS3-MLVA16 data, GENELAND inferred 11
distinct clusters (K = 11) from the CMG-III collection,
assuming a correlated allele frequency that was the
most appropriate fit for the data. The 11 inferred genetic
clusters were significantly genetically differentiated with a
global Fst= 0.26 (p < 0.001) and Rst= 0.46 (p < 0.001): CLIII-1
(18 strains, HE = 0.32, 10 MTs, nine polymorphic loci), CLIII-2
(16 strains, HE= 0.21, seven MTs, eight polymorphic loci), CLIII-
3 (seven strains, HE = 0.36, five MTs, 10 polymorphic loci),
CLIII-4 (18 strains, HE = 0.41, 14 MTs, 10 polymorphic
loci), CLIII-5 (49 strains, HE = 0.30, 24 MTs, 12 polymorphic
loci), CLIII-6 (two strains, HE = 0.13, two MTs, two polymor-
phic loci), CLIII-7 (28 strains, HE = 0.39, 14 MTs, 12
polymorphic loci), CLIII-8 (34 strains, HE = 0.38, 27 MTs,
13 polymorphic loci), CLIII-9 (15 strains, HE = 0.26, nine
MTs, 10 polymorphic loci), CLIII-10 (19 strains, HE = 0.07,
six MTs, three polymorphic loci), and CLIII-11 (nine strains,
HE = 0.41, nine MTs, 11 polymorphic loci). Based on AMOVA,
most of the genetic variation in the CMG-III collection was
observed within clusters (Fst = 0.74, Rst = 0.56). Spatial
organization of the 11 genetic clusters revealed a highly
consistent geographic structure, as shown in Figure 3B. AEZ1
was infested by clusters CLIII-2, CLIII-3, CLIII-7, and CLIII-9,
and AEZ11 contained clusters CLIII-6 and CLIII-10, which were
each located in a well-delimited geographic area. The clusters
CLIII-1, CLIII-4, CLIII-8, and CLIII-11 occurred in AEZ4,
AEZ7, AEZ3, and AEZ8, respectively. Finally, cluster CLIII-5
occurred in AEZ2 and AEZ10.

DISCUSSION

The genetic diversity and population structure of the RSSC
strains prevalent in Malagasy potato growing basins were
investigated, and our understanding of potato BW epidemiology
was improved. Most studies have investigated the population
diversity and biology of plant pathogens to gain better insight
into disease etiology (Milgroom and Peever, 2003). Major
agronomic areas of the potato growing basins of Madagascar
were prospected for RSSC strains at different agroecological
scales and strains were typed using MLVA schemes. This article
represents the first report on the molecular epidemiology of the
phylotype III and is one of the first to use a molecular genotyping
method to discriminate phylotype IIB-1 strains. Phylotypes IIB-
1 (R. solanacearum) and III (R. pseudosolanacearum) are two
distinct phylogenetic groups with an average nucleotide identity
value of 91.3% (Remenant et al., 2010). Our aim was that
genotyping be based on techniques offering a maximal typeability
(a multilocus TR genotype can be produced for all assayed
strains). This precluded using some loci that had been reported
by N’Guessan et al. (2013) as present in both phylogenetic
groups. Therefore, two distinct genotyping schemes, RS2-MLVA9
(nine loci) and RS3-MLVA16 (16 loci) were used. Variable TR
loci are sufficiently reliable to perform fine-scale genotyping
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FIGURE 3 | GENELAND analysis of RSSC populations in Central Highlands of Madagascar. (A) Spatially explicit estimate of population clusters, and the distribution
of each phylotype IIB-1 genetic cluster defined by GENELAND at K = 3 from 70% posterior probability assuming uncorrelated allele frequency model (n = 255). The
highest membership values are in light yellow, and the curves indicate spatial changes in assignment values. (B) Spatial distribution and population structure of the
RSSC phylotype III strains inferred in GENELAND analyses at K = 11 from 70% posterior probability assuming correlated allele frequency (n = 217). The black dots
indicate the sampling locations. The plot is based on the highest probability run for a given value of K. The abscissa and ordinate show the coordinates of sampling
locations. (C) General flow of potato seed system in the potato growing basins.

despite the risk of homoplasy (Lindstedt, 2005; Lindstedt et al.,
2013; Struelens and Brisse, 2013). Combining multiple TR loci
in each MLVA scheme allowed increasing their discriminative
power and decreasing the effects of homoplasy (Estoup et al.,

2002; Reyes et al., 2012). In this study, RS2-MLVA9 showed
a good ability at differentiating monomorphic-like phylotype
IIB-1. In addition, epidemiological relevance of the two MLVA
datasets was shown. Our analyses provide additional knowledge
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FIGURE 4 | Minimum spanning tree (MST) representation of RSSC phylotype IIB-1 strains during the survey period. (A) MST of 255 phylotype IIB-1 strains. (B) MST
of 206 phylotype IIB-1 strains collected in April 2013. (C) MST of 49 phylotype IIB-1 strains collected in December 2013. Each circle represents a unique MLVA
haplotype (MT), and its size is proportional to the number of strains with the same MT. Color represents the population clusters computed in GENELAND.
(D) Distribution of the sampling sites during the two survey sampling periods, April and December 2013.

Frontiers in Plant Science | www.frontiersin.org 10 January 2018 | Volume 8 | Article 2258

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-08-02258 January 11, 2018 Time: 16:44 # 11

Ravelomanantsoa et al. Bacterial Wilt in the Madagascar Highlands

regarding the occurrence of BW disease in the potato growing
areas, especially haplotypic diversity of the pathogen, population
structure, inoculum sources, putative dispersal patterns, and
disease development in the Central Highlands of Madagascar.

Multiple Phylotypes Coexist in a Single
AEZ, a Single Locality, and a Single Field
Phylotypes I, II, and III co-occurred throughout the potato
growing basins in the Malagasy Central Highlands. A similar
picture of co-occurrence in a single region has been reported
in other countries, for example in Cameroon, the southeastern
United States and Guatemala (Sanchez Perez et al., 2008; Mahbou
et al., 2009; Hong et al., 2012). The three phylotypes co-occurred
in single AEZs, such as in AEZ7 as well as in AEZ8, and further
co-existed at a single site, as shown at site S50 located in AEZ7
(Supplementary Table S1). In addition, co-occurring phylotypes
I and II was detected from potato and tomato crops, each located
in a single field, as shown in AEZ6 and AEZ7. The combination of
phylotypes II and III was also found primarily on potato crops as
well as on beans and in water irrigation, such as in AEZ1, AEZ2,
AEZ3, AEZ4, AEZ8, AEZ10, and AEZ11. Finally, phylotypes II
and III were typically found on peppers cropped in the same field
in AEZ8. These observations corroborate the findings of Huerta
et al. (2015) regarding the coexistence of different phylotypes in
cropping areas.

Andean brown rot IIB-1 strains grow better at cool
temperatures (Ciampi et al., 1980; Milling et al., 2009), resulting
in a high frequency in the Highlands at 1000–2000 m elevation.
However, the rationale for the phylotype I distribution only on
the northwestern side of the Central Highlands has yet to be
explained because there is no clear-cut evidence suggesting an
underlying role for elevation in the effects of temperature on
fitness and their geographical distribution. However, questions
have been raised regarding the competitive fitness of the
phylotype III strains in cropping areas and in planta when
they coexist with other phylotypes. Additionally, the effects of
temperature on the ability of these strains to co-occur and to
cause disease must be addressed.

African Brown Rot Strain Phylotype III Is
Not Epidemiologically Active
The RSSC phylotype III population showed a high genetic
diversity, suggesting that these strains have probably been present
for a long time in Madagascar. This phylotype is genetically
structured into 11 distinct clusters that clearly correlated to
the geographic location. Supporting evidence was deduced from
the MST and GENELAND structuring analyses (Figure 3B).
In regards to potato supply and trade routes, the geographic
structure found in the Malagasy phylotype III populations was
not related to any physical barriers in the potato growing basins,
as is typically found in most cases (Manel et al., 2003; Frantz
et al., 2009; Balkenhol et al., 2015). Because potato tubers can
be major carriers of RSSC strains, genetically and geographically
separated phylotype III clusters are consistent with the lack of
potato tuber inoculum dispersal. We hypothesize that this is due
to the inability of this phylotype to be latently transmitted in

potato tubers. This hypothesis will be tested by screening for the
presence/absence of phylotype III in asymptomatic tubers from
infected plants.

Some shared haplotypes were only isolated from S. tuberosum
(including haplotypes MTIII-55, MTIII-56, MTIII-58, and
MTIII-60), and others (MTIII-51 and MTIII-68) were found
in various species, e.g., haplotypes MTIII-61, MTIII-62, MTIII-
64, MTIII-69, and MTIII-82. The close genetic link between
haplotypes found in distant AEZs that clustered in a same
CC (for example, between haplotypes MTIII-78, MTIII-49, and
MTIII-107 or between haplotypes MTIII-51, MTIII-82, and
MTIII-58 in CCIII-A) suggests a dispersal likely promoted by
infected plant exchanges. Phylotype III strains were indeed
isolated from various solanaceous species (C. annuum, Physalis
sp., S. lycopersicum, S. nigrum), from weeds (B. pilosa) and
other species (Pelargonium sp.), which can be considered as
potential sources of inoculum or reservoirs in the field. This
wide host range could likely contribute to the survival and
evolution potential of the phylotype III. Isolation of phylotype III
from shared water irrigation indicates the latter as a vehicle for
transmitting inoculum from one field to another. There have been
no published reports that formerly exclude the transmission of
phylotype III strains by latently infected potato tubers; and latent
infection by phylotype III strains in potato tubers has yet to be
analyzed. This information is crucial for disease management.

Epidemiologically Active Andean
Phylotype IIB-1 Potato Brown Rot Strain
A recent study using 17 core genomes of a IIB-1 worldwide
collection from isolates sampled over several decades revealed
a very limited amount of SNPs. It also suggested a South
American origin of this group, which spread to the rest of
the world via European Mediterranean countries (Clarke et al.,
2015). These authors also noticed that all but one of their
isolates from Europe, Africa, and Asia belonged to a single
clonal lineage. Our study investigated a smaller spatial scale and
confirmed a narrow genetic diversity of IIB-1 strains despite the
use of a highly discriminatory genotyping scheme, suggesting
a recent introduction of the phylotype IIB-1 in Madagascar.
The changing epidemiological profile observed with potato BW
in the Central Highlands resulted most likely from the recent
emergence of these highly pathogenic strains, which are widely
distributed in Madagascar in regions where this pathogenic
population was not previously reported. This recent emergence
is supported by the major CCII-A strains that are closely related
to a minor CCII-B strain as well as a few haplotypes that
are DLVs of CCII-A. Only one evolutionary step is missing
to attach CCII-B and these singletons to CCII-A, probably
the result of sampling bias. This clonal expansion structure
(Figure 2B) may have initially derived from one or several
polyclonal introductions of closely related haplotypes, likely from
the same imported potato lot. This is a major contribution
on genetic diversity among phylotype IIB-1 strains that was
generally recognized in the literature to form a monomorphic
group. Within epidemic IIB-1 strains, genetic diversity was
thoroughly explored up to the CC level, and CCII-A appears
to be genetically structured into three groups scattered among
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AEZs. CSC1 and CSC2 comprise an over-represented central
haplotype from which haplotypes differing at one locus (SLV)
are radially linked (haplotypes MT9 and MT3 for CSC1 and
CSC2, respectively). Such CC structures may suggest one
polyclonal or several mono/polyclonal introduction events in
the Malagasy Central Highlands from an original population,
followed by subsequent clonal expansion and divergence by
mutation, or they could imply a simple pattern of clonal
expansion and diversification from a primary founder (Feil et al.,
2004).

Moreover, when we analyzed strains according to the survey
period (April 2013 vs December 2013), the haplotypes and
population structure yielded from the first survey differed
strongly from those identified during the second survey, although
some haplotypes (MTII-3, MTII-4, MTII-6, MTII-9, and MTII-
11) were collected in both surveys (Figure 4A). The first survey
was performed in the central potato seed production areas
(Vakinankaratra region), where basic seeds were multiplied and
subsequently marketed for extensive production in the remaining
potato producing basins surveyed during the second period
(Figure 4D). The haplotype MTII-3 was the most frequent (49%)
in the first survey. The haplotype MTII-9 was the most frequently
(73%) observed haplotype in the second survey, while MTII-
3 almost disappeared (only one strain). One hypothesis is that
haplotypes present in the original population may be absent in
following generations when random events eliminate haplotypes
from the main population, resulting in genetic drift in which
haplotype frequencies change over generations due to chance
(Hartl et al., 1997; Halliburton, 2004). Bottleneck and founder
effect events may occur due to the sampling of contaminated
potato seed tuber lots during retail sales, which are then used
as seeds for planting during the next crop season. As noted
above, a high genetic diversity of phylotype IIB-1 strains was
observed within a field. Randomly, only a subset of the total
diversity in an original potato seed tuber lot may be picked and
may produce a new population. In addition, genetic bottleneck
and founder events may be related to the choice of potato

cultivars and crops grown in an AEZ. The choice of varieties
obviously refers to the local environment and conditions in
terms of growing cycle and preservation as well as taste and
use. A second hypothesis is that haplotypes can spread over a
geographical range, and the gene pool may vary due to adaptive
ecological reasons that need to be determined (Hartl et al., 1997;
Robinson et al., 2010). Such a strong selective ecological effect
could explain the disappearance of MTII-3 during the second
sampling as this haplotype was sampled in all of the AEZ from
the first survey

Interestingly, based on further analysis of the data,
biogeographical features may also shape the current population
structure of phylotype IIB-1. Genetic cluster analysis of the
whole data set (collection CMG-II) clustered the phylotype IIB-1
strains into three distinct genetic groups, which supports our
previous finding. The co-occurrence and large-scale distribution
of both CLII-1 and CLII-2 across many AEZs is consistent with
a common transmission source such as infected potato tubers,
which is very well known for harboring phylotype IIB-1 strains
(Graham and Lloyd, 1979; Ciampi et al., 1980; Hooker et al.,
1981; French, 1984; Granada, 1988; Elphinstone, 1996; Allen
et al., 2001). More interestingly, the spatial structure of the
clusters mirrored potato tuber supply as they crossed different
AEZs for distribution and trade (Figure 3C). In terms of potato
seed production and supply chain, the National Centre for Rural
Development and Applied Research, FIFAMANOR, located in
AEZ1, is primarily in charge of the selection and multiplication
of accessions that come from the International Potato Center
(Peru and Kenya). FIFAMANOR is also responsible for
certifying basic potato seed production and distribution and
for selecting seed growers for mass production, particularly
in the most important potato seed flow, AEZ1, and in every
AEZ throughout the country. Due to the limited supply of
certified potato seed tubers, seed growers produce and sell non-
certified commercial seeds to farmers for food and commercial
production. Farmer-to-farmer and neighbor seed exchanges
and self-supplies are also emerging, which may lead to the

TABLE 1 | Contrasting epidemiological patterns of the two co-occurring RSSC strains: Andean phylotype IIB-1 and African phylotype III.

Andean phylotype IIB-1 African phylotype III

Genotyping MLVA scheme RS2-MLVA9 RS3-MVLVA16

Genetic diversity Haplotype diversity within a major CC Highly diverse haplotypes within disparate CCs

Genetic relatedness with
worldwide haplotypes

Malagasy haplotypes shared with worldwide haplotypes Highly differentiated from worldwide haplotypes

Genetic relationship between
AEZs

Numerous haplotypes spread over the AEZ range CCs associated with a single geographic origin each

Spatial population structure Three genetic clusters Population structure mirroring
potato tuber supply and shaped by biogeographical
features

Eleven genetic clusters Distinct populations according
to geographic regions. Population structure shaped by
local adaptation

Strains origin and features Introduced strains and epidemiologically active Endemic strains specific to a geographic area

Transmission mode Transmitted through latently infected potato tubers Not efficiently transmitted through latently infected
potato tubers

Dispersion Multiple contaminations over AEZs resulting from
infected potato tuber exchange

Limited to AEZs

Reservoirs Irrigation water, weeds, crop hosts (beans. . .) Irrigation water, weeds, crop hosts (solanaceous crops,
pelargonium. . .)
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quick spread of disease. Long-range dispersal of phylotype
IIB-1 is probably associated with the distribution processes
of potato seed tubers carrying latent infections. Furthermore,
distribution routes also play a role in the dispersal of clones
to different fields and local areas. At a small-scale level, an
intermix of factors such alternate hosts, contaminated soil, water
irrigation, and stream runoff, favor short distance dispersal.
The observation of S. lycopersicum and P. vulgaris infections in
water irrigation and rhizospheres indicates these are potential
reservoirs for phylotype IIB-1 survival, as reported in the
literature (Hayward, 1991; Swanepoel, 1992; Janse et al., 2004;
Álvarez et al., 2010).

CONCLUSION

This is the first molecular epidemiology study comparing two
coexisting RSSC phylotypes, phylotype IIB-1 vs phylotype III,
throughout the RSSC distribution area in the Central Highlands
of Madagascar (Table 1).

MLVA schemes RS2-MLVA9 and RS3-MLVA16 genotyped
a large collection of RSSC phylotype IIB-1 and phylotype III
strains, respectively, and allowed a thorough exploration of
the diversity of these two phylotypes giving patterns of their
distribution. This allowed us to identify the types of outbreak-
and epidemic-associated strains and those associated with
recurrent BW in the Central Highlands of Madagascar.
The previously developed MLVA scheme RS3-MVA16
(Ravelomanantsoa et al., 2016) allowed the differentiation of
geographically distant phylotype III strains and epidemiologically
linked related strains at several scales: in potato growing basins
and AEZs and at the field scale. On the other hand, the
MLVA scheme RS2-MLVA9 opened the possibility of subtyping
monomorphic phylotype IIB-1 strains and epidemiologically
connected strains at different scales.

Our findings highlight two contrasting epidemiological
patterns of Andean brown rot and African brown rot. The
recent epidemic BW occurring in the Central Highlands of
Madagascar is associated with the introduced phylotype IIB-1.
Latently infected potato tubers quickly and widely propagated
these strains due to their ability to cause latent infection in potato
seeds resulting in a strong epidemic pattern for phylotype IIB-1
strains. Conversely, diverse phylotype III strains were involved
in persistent BW disease outbreaks in potato growing basins.
Considering the spatial organization of their genetic diversity, the
rare transmission of phylotype III strains resulted from potato
tuber distribution. However, these strains are permanently locally
present in distinct areas. In addition, phylotype IIB-1 strains were
described for the first time in Madagascar, providing insight into
their population biology. This is the first epidemiological report
describing haplotypes within the globally well-known genetically
clonal IIB-1.

The MLVA schemes RS2-MLVA9 and RS3-MLVA16, which
are well-suited and compatible for genotyping RSSC strains,
may be applied as a routine genotyping tool for the fine-scale
epidemiological trace-back analysis of Andean brown rot strains
(phylotype IIB-1) and African brown rot strains (phylotype III),

respectively, and for the surveillance and control of BW in
Madagascar and around the world.
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FIGURE S1 | Locations of the potato producing areas in Madagascar and a map
of the study areas located in the Central Highlands of Madagascar indicating the
general topography of the Ankaratra Mountains and the 12 AEZs.

TABLE S1 | List of RSSC strains used in this study and corresponding genotyping
data. List of hosts: A, Anthurium andreanum; AH, Arachis hypogaea; BP, Bidens
pilosa; CA, Capsicum annuum; MA, Morus alba; MU, Musa sp.; NT, Nicotiana
tabacum; P, Pelargonium sp.; PV, Phaseolus vulgaris; S, Rhizosphere; SG,
Solanum gilo; SL, Solanum lycopersicum; SM, Solanum melongena; Sma,
Solanum macrocarpon; SN, Solanum nigrum; SO, Symphytum officinale; SP,
Solanum panduriforme; SS, Solanum scabrum; ST, Solanum tuberosum; W,
Water of irrigation; ZO, Zingiber officinale; AEZ, Agroecological zone; masl, meters
above sea level.

TABLE S2 | GenBank accession numbers for the egl sequences used in this
study. Accession numbers of the sequences retrieved from GenBank are in italics.
Accession numbers of new sequences are in bold.
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TABLE S3 | Description of TR markers, corresponding oligonucleotide primers
and multiplex combinations, and PCR conditions used in this study. (A) The
nomenclature for the TR locus was as follows: marker alias_replicon of origin (ch:
chromosome or mp: megaplasmid)_start physical position expressed in kilobases
in the genome of strain origin_TR unit size (bp)_amplicon size in the genome of
strain origin (bp)_number of repeats (units) (e.g., RS1L12_1774_6bp_196bp_12u)
(Le Fléche et al., 2002; N’Guessan et al., 2013). The marker alias is RS

(R. solanacearum), followed by the phylotype number of origin (1, 2, 3, or 4), and
the reference of the locus (e.g., RS3L12). (B) All positions are in the genome of the
strain origin. Accession numbers: CMR15 chromosome (FP885895), CMR15
megaplasmid (FP885896), Molk2 genome (GCF_000212635.3), UW551 genome
(GCF_000167955.1), IPO1609 genome (GCF_001050995.1), and CFBP2957
genome (FP885897.1). (C) Fluorescent dye labeled at the 5′ end of the forward
primer.
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