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Abstract: 

Sequencing pools of individuals rather than individuals separately reduces the costs of 

estimating allele frequencies at many loci in many populations. Theoretical and empirical 

studies show that pool-sequencing a limited number of individuals (typically fewer than 50) 

provides reliable allele frequency estimates, provided that the DNA pooling and DNA 

sequencing steps are carefully controlled. Unequal contributions of different individuals to 
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the DNA pool and the mean and variance in sequencing depth both can affect the standard 

error of allele frequency estimates. To our knowledge, no study separately investigated the 

effect of these two factors on allele frequency estimates; so that there is currently no method 

to a priori estimate the relative importance of unequal individual DNA contributions 

independently of sequencing depth. We develop a new analytical model for allele frequency 

estimation that explicitly distinguishes these two effects. Our model shows that the DNA 

pooling variance in a pool-sequencing experiment depends solely on two factors: the number 

of individuals within the pool and the coefficient of variation of individual DNA 

contributions to the pool. We present a new method to experimentally estimate this 

coefficient of variation when planning a pool-sequencing design where samples are either 

pooled before or after DNA extraction. Using this analytical and experimental framework, we 

provide guidelines to optimize the design of pool-sequencing experiments. Finally, we 

sequence replicated pools of inbred lines of the plant Medicago truncatula and show that the 

predictions from our model generally hold true when estimating the frequency of known 

multi-locus haplotypes using pool-sequencing. 

 

Introduction 

Population genetic studies often require sequencing a large number of individuals at many 

loci. Over the last decade, individual-based genotyping using next-generation sequencing 

technologies (NGS) have revolutionized the field. However, the cost of sequencing whole 

genomes of many individuals in many populations with high coverage remains prohibitive. 

Sequencing pools of individuals (pool-seq) allows reducing both library preparation and 

sequencing costs. Pool-seq is obviously preferred to individual-based sequencing when the 

original sample is naturally pooled or when the amount of DNA recovered per individual is 

too low for individual sequencing (e.g. typically in microbes). It can also be combined with 
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RAD- or exome sequencing, when the cost of whole genome sequencing remains prohibitive 

(e.g. in organisms with large genome sizes, Schlötterer et al. 2014). 

When using pool-seq data, estimates of the frequency of a focal allele in a population 

(hereafter  ) are affected by three main sources of variation. First, sampling variance stems 

from both sampling a limited number of individuals and from the actual frequency of the 

focal allele in the population (Gautier et al. 2013a). Second, DNA pooling variance arises 

through unequal individual contributions to the DNA pool. When samples are pooled before 

DNA extraction, variation in DNA yield across individual samples can result in unequal 

individual DNA contributions. Such variation in DNA yield can arise from phenotypic 

variation in body size (e.g. if whole individuals are directly pooled) or whenever individual 

samples with similar mass differ in their DNA content (e.g. if samples from different 

developmental stages are pooled). Alternatively, when samples are pooled after DNA 

extraction, DNA quantification and pipetting errors across samples can result in unequal 

individual contributions to the DNA pool. Third, sequencing variance comprises the 

variability introduced during the library preparation (e.g. through the use of PCR to increase 

DNA quantity) and during sequencing itself (e.g. through stochastic changes in sequencing 

depth). 

These three sources of variation should not bias allele frequency estimates (  ), unless 

a certain genotype is more likely to be sampled, to yield more DNA, or to produce more 

sequencing reads compared to other genotypes in the population. However, they can greatly 

decrease the precision and increase the standard error of allele frequency estimates. A sound 

pool-seq design should seek to minimize the bias and maximize the precision of allele 

frequency estimates. The impact of sampling and sequencing variances on the precision of 

allele frequency estimates (     ) has been quantified in several theoretical studies (e.g. 

Futschik & Schlötterer 2010; Gautier et al. 2013a; Lynch et al. 2014). Yet, only Gautier et al. 



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Rode, N. O. (Auteur de correspondance), Holtz, Y., Loridon, K., Santoni, S., Ronfort, J., Gay,

L. (2018). How to optimize the precision of allele and haplotype frequency estimates using
pooled-sequencing data. Molecular Ecology Resources, 18 (2), 194-203. , DOI : 10.1111/1755-0998.12723

A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

(2013a) investigated the impact of DNA pooling variance on      . They define the effective 

sample size of a DNA pool,   , which represents the number of individuals with equal 

contributions in an idealized pool that would show the same amount of variance in allele 

frequency estimates. They propose a Bayesian model to estimate    a posteriori, based on 

the results of previous pool-seq experiments. This retrospective estimation limits the usage of 

their method for the prospective design of pool-seq experiments. In addition, their estimation 

of the effective pool size,   , does not explicitly distinguish DNA pooling variance from 

DNA sequencing variance. The empirical estimates of    are therefore systematically biased 

downward, as they vary positively with sequencing depth (Gautier, pers. com.). 

For a given sequencing cost, Gautier et al. (2013a) show that even with large unequal 

individual DNA contributions (based on their underestimated   ), sequencing pools of 100 

individuals provides allele frequency estimates as or more accurate than sequencing 

individually barcoded samples. Molecular ecologists have frequently considered 50-100 

individuals as the lower limit to decide on whether using pool or individual sequencing, 

following recommendations of Schlötterer et al. (2014). However, this limit appears to be 

overly conservative. Whenever the number of samples is a limiting factor (e.g. when working 

with rare or endangered species), pooling fewer than 50 individuals can still result in reliable 

allele frequency estimates, provided that DNA pooling and sequencing variances are 

carefully accounted for. For example, Gautier et al. (2013a) showed that allele frequency 

estimates when pool-sequencing 30 individuals or when sequencing 20 individuals separately 

were highly correlated with each other (with correlation coefficients ranging from 0.93 to 

0.99 depending on SNP coverage depth). This contradicts the general consensus of pooling 

always more than 50-100 individuals. However, whether 30 individuals is adequate or 50-100 

individuals is necessary is not yet clear, as none of the current models for the precision of 

allele frequency estimations explicitly separates DNA pooling and DNA sequencing 
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variances. Hence, making informed decisions regarding the choice of individual- vs. pool-

sequencing remains difficult. 

In this study, we derive a new analytical model for the precision of allele frequency 

estimates based on pool-sequencing data. Our model accounts for the respective effects of the 

three main sources of variation on       (sampling, DNA pooling and sequencing variances). 

Contrary to previous models, this model can estimate the precision of allele frequency 

estimates of a planned pool-seq experiment a priori, without performing an expensive and 

time-consuming preliminary pool-seq experiment. Our model also allows a comparison of the 

accuracy of different experimental designs (e.g using individual vs. pool-sequencing). 

Capitalizing on our modeling framework, we synthesize and improve the recommendations 

scattered across different studies regarding the preparation of pool-seq experiments (e.g. 

Gautier et al 2013, Schötterer et al 2014). In particular, we correct the equation for the 

effective pool size    (Gautier et al 2013). We also provide a new method to experimentally 

estimate the coefficients of variation of DNA yield and the coefficient of variation of DNA 

quantification and pipetting. We thus provide additional recommendations regarding the 

pooling of individuals before or after DNA extraction. Finally, we show that our general 

recommendations hold true when estimating the frequency of multi-locus haplotypes based 

on the sequencing of replicated pools of the plant Medicago truncatula. 

 

Materials and Methods 

We consider a haploid population, from which   individuals are independently sampled. We 

present analytical expressions for the expectation and variance of  , the frequency of a focal 

allele in the population, at each step of a typical sequencing experiment: individual sampling 

(step 1), DNA pooling (step 2) and pool sequencing (step 3). 
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Step 1: Individual sampling 

We define the sampling variance as           . The number of individuals with the focal 

allele among a total of   (haploid) individuals independently sampled from the population 

follows a binomial distribution. Hence, the frequency of the focal allele is characterized by 

the expectation              and the variance            
      

 
 (Casella & Berger 2002, 

p. 332). 

 

Steps 1-2: Individual sampling and DNA pooling 

We define the sampling variance and the variance due to unequal individual contributions to 

the DNA pool as             . For a given experiment, individuals can be pooled before or 

after DNA extraction and this will affect the expectation and variance of individual 

contributions to the DNA pool. When pooling individuals before DNA extraction, for each 

individual, a certain amount of material (e.g. tissue, whole individual, etc) is added to the 

pool. Each individual contributes an unknown amount of DNA ( ) with some variance (  ). 

This variance in DNA yield can be due to differences in DNA accessibility or DNA content 

across individuals (e.g. if grinding is less efficient for individuals with thicker cell walls). 

When pooling individuals after DNA extraction, DNA from each individual is extracted 

separately and quantified so that a predefined amount of DNA ( ) is added to the DNA pool 

with some variance (  ) that depends both on the variance in DNA quantification and 

pipetting. When pooling individuals after DNA extraction, the expectation   depends on 

individual DNA concentration (              ) and on the pipetted volume (       ) so that: 

                           , (1) 

and the variance    depends on the same parameters and on the variation in individual DNA 

concentration (              
 ) and volume (       

 ) as follows: 
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   (2) 

Note that it is possible to compare the coefficients of variation (defined as     
 

 
 ) when 

pooling individuals before or after DNA extraction (hereafter          and        ) to decide 

whether to pool individuals before or after DNA extraction (see below for the experimental 

method regarding this comparison). 

 

Steps 1-3: Individual sampling, DNA pooling and pool sequencing 

             includes the sampling variance, the variance due to unequal individual 

contributions to the DNA pool and the sequencing variance. We assume that sequencing 

depth is the only factor affecting individual frequency within the pool of reads and thus 

ignore potential other factors such as library preparation or sequencing errors. Kofler et al. 

(2016) have shown that library preparation explains less than 1% of the variation in allele 

frequency estimates. Following previous studies (Robinson & Smyth 2008; Gautier et al. 

2013a), we assume that increasing the average sequencing depth increases the variance in 

sequencing depth. Hence, we assume a count distribution for the total number of reads 

observed at a given genomic position. Accordingly, the sequencing depth of the pool can 

either be a Poisson distribution of parameter   or a negative binomial distribution of 

parameter   and   (Hilbe 2011, p. 3).   corresponds to the expectation of the number of 

reads, whereas   is the overdispersion (i.e. we assume               , where          

represents the variance in read counts). When   tends toward 0, the negative binomial 

converges toward a Poisson distribution of parameter  . Gautier et al. (2013a) used an 

alternative parameterization for the negative binomial (            , where   is the 

multiplicative overdispersion). As the variance in sequencing depth often increases 

quadratically with the mean sequencing depth (e.g. Fig. 1a, Anders & Huber 2010), estimates 
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of   are likely to vary greatly between pool-seq experiments differing in sequencing depth. In 

contrast, estimates of   should mostly be independent of sequencing depth and should 

therefore be more consistent across pool-seq experiments. Without loss of generality, we will 

only use the negative binomial distribution in the following formulae (as     corresponds 

to the Poisson assumption). We derived the analytical expression for the expected variance 

when performing a pool-seq experiment,             . We computed the square root of the 

ratio of              and the variance expected when performing individual sequencing of 20 

diploid organisms,        (based on Eq. 2 in Gautier et al. 2013a). We compared the relative 

importance of each parameter, using a range of values relevant to pool-seq experiments (  : 

20%, 50% and 100%;  : 50X, 100X and 200X and  : 0.2, 0.5 and 1). The web 

implementation of our model, created in R using a shiny web framework (Chang et al. 2015), 

is available at http://www.agap-sunshine.inra.fr/unics/. It should help molecular ecologists to 

evaluate the precision of allele frequency estimates in their pool-seq experiments and 

possibly improve their experimental design. 

 

Experimental estimations of          and         

We developed a new method to experimentally estimate the coefficients of variation of DNA 

yield (         ) and the coefficient of variation of DNA quantification and pipetting 

(       ). We sampled an equal amount of young leaves from each of 28 plants of the model 

legume Medicago truncatula. When DNA yield is strongly correlated to tissue mass, 

individual DNA contributions can be standardized by weighing each sample individually. 

When this correlation is weak or absent, such standardization is time consuming and 

estimating the amount of tissue of each sample by eye appears preferable. To test for a 

correlation between tissue mass and DNA yield, we sampled approximately equal amounts of 

young leaves (as judged by eye) and weighed each of the 28 samples individually on an 
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AE260 DR microbalance (Mettler-Toledo, Columbus, Ohio, USA). Thus, we retrospectively 

tested for the existence of a correlation between tissue mass and DNA yield. DNA from each 

sample was extracted following the protocol detailed in Loridon et al. (2013) (Supporting 

Information S2). DNA concentration was estimated using either the Quant-iT PicoGreen 

dsDNA Assay Kit (Thermo Fisher Scientific, Waltham, Massachusetts, USA), following the 

supplier’s indications or using Hoechst (bis-benzimide) spectrofluorometry. We used 

independent samples (hereafter technical replicates) from each of the 28 DNA extracts and 

estimated the DNA concentration of each technical replicate four times (hereafter reading 

replicates), resulting in a total of 560 observations for Picrogreen quantification (28 plants 

DNA extracts x 5 technical replicates x 4 reading replicates) and 448 observations for 

Hoechst quantification (28 plants DNA extracts x 4 technical replicates x 4 reading 

replicates). We partitioned the variance in DNA concentration using a linear mixed model in 

the lme4 package (Bates et al. 2015) in R (R 3.3.1, http://www.r-project.org/, R Development 

Core Team 2013). The DNA concentration of the k
th

 reading replicate of the j
th

 technical 

replicate of the i
th

 sample was estimated as: 

                                                                  , (3) 

where                (the average DNA concentration across samples) and       (mass of 

the ith sample) are fixed effects and sample, replicate and the error      are random effects. 

We estimated the variance in DNA yield across samples (       
 ), across technical replicates 

(          
 ) and across reading replicates (residual variance   

 ).          was estimated as: 

       

              
   (4) 

To experimentally estimate        , we quantified the pipetting variance (       
 ) using six 

years of calibration data from four 10 µl-multichannel micropipettes (Biohit Oyj, Helsinki, 
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Finland, see Supporting Information S2). The variance in DNA quantification 

(              
 ) was computed as           

     
 .         was estimated as: 

               
         

                
         

           
                

 

                         
  

(5) 

where         = 5 µl (set by the experimenter). We used parametric bootstrapping with 1000 

replicates to estimate the 95% confidence interval of each fixed or random effect, as well as 

         and         (percentile bootstrap method, Davison & Hinkley 1997; Bates et al. 

2015; Canty & Ripley 2016). Briefly, for each bootstrap replicate,          was estimated 

using the bootstrap values of         and               , while         was estimated by 

combining the bootstrap values of        
 ,               

  and                according to Eq. 

5. Variance estimates are inversely proportional to the number of replicates used to estimate 

them (Casella & Berger 2002, p. 331). When the heterogeneity in DNA yield is the same 

within and among individuals (i.e. when DNA yields of different leaves from the same 

individual are not correlated), using       samples per individual decreases the variance to 

       
 

     
. We investigated the effect of increasing       on          using a range of 

parameters (i.e.       ranging from 1 to 10 leaf samples per individual). We similarly 

investigated the effect of        , the number of pipetting replicates (using 
       
 

       
 with 

        ranging from 1 to 10), and the volume pipetted on         (with         ranging 

from 0.1 to 10 µl). Finally, we examined how increasing the number of technical replicates 

(using 
          
 

          
 with            ranging from 1 to 10) and reading replicates (using 

  
 

  
 with    

ranging from 1 to 10) decreases        . 

 

Haplotype frequency estimations using Genotyping-by-Sequencing 
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Most experimental pool-seq studies have evaluated the reliability of allele frequency 

estimations, but never considered haplotype frequency estimations (e.g. Gautier et al. 2013a; 

Rellstab et al. 2013). To fill this gap, we tested whether the relationship between              

and unequal individual DNA contributions or sequencing depth predicted by our single-locus 

model holds true when estimating haplotype frequencies using pool-seq. We extracted DNA 

from pools of leaves of several inbred lines of the selfing plant Medicago truncatula. We 

performed replicated sequencing of these DNA pools and estimated the frequency of each 

original haplotype using the software Harp (Kessner et al. 2013). We estimated the effect of 

unequal individual DNA contributions, sequencing depth and the number of loci sequenced 

on              after controlling for sampling variance. Details regarding the methods and 

results are presented in Supporting Information S3. 

 

Results 

Details of analytical derivations of the following formulae are available in Supporting 

Information S1 (Table S1). Simulations show that the predictions of our analytical model are 

valid over most of the range of the different parameters tested (Figures S1-S4). The sampling 

variance (for Step 1) is presented in the Materials and Methods section. 
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Steps 1-2: Individual sampling and DNA pooling  

The expectation and variance of the frequency,   , of a focal allele in a sample of   

individuals due to both sampling variance (Step 1) and DNA pooling (Step 2) can be written 

as: 

               (6) 

             
      

 
   

        

 
   

(7) 

where    represents the coefficient of variation of the DNA amount of each individual. 

 

Steps 1-3: Individual sampling, DNA pooling and pool sequencing 

Taking into account the variance due to the sequencing process (Step 3), the expectation and 

variance of the estimator becomes: 

               (8) 

             
      

 
   

        

 
   

        

  
       

        

  
 , (9) 

where   represents the average sequencing depth and   represents the overdispersion in 

sequencing depth (see methods for details). This formula is valid for both haploid organisms 

and completely inbred lines or diploid outcrossing organisms, when substituting   for   . 

 

Relative importance of DNA pooling variance and sequencing variance 

Equation 9 shows that unequal individual contributions and the overdispersion in sequencing 

depth both have a relatively small effect on the variance of allele frequency estimates 

compared to the average sequencing depth (Figure 1). Pool-sequencing more than 40 diploid 

individuals, rather than sequencing 20 diploid individuals separately provides more accurate 

allele frequency estimates under a wide range of experimental conditions (typically with 
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        and     X). In addition, it is worth noting that decreasing unequal 

contributions (e.g. from         to       ) has a larger effect for small sample sizes 

compared to large sample sizes (Figure 1). 

 

Comparison with previous models 

Equation 9 is equivalent to Eq. 4 in Gautier et al. (2013a), when individual contributions to 

the DNA pool are equal (i.e.     ) and when there is a linear relationship between their 

parameter of overdispersion in sequencing depth,  , and the average sequencing depth   (i.e. 

      ). Contrary to Gautier et al. (2013a), our parameter for the overdispersion in 

sequencing depth,  , is independent from  . Whenever sequencing depth is variable across 

pool-seq experiments, our parameterization is therefore better at predicting the precision of 

allele frequency estimates of future pool-seq experiments (see Supporting Information S3). 

Gautier et al. (2013a) define the effective sample size of a DNA pool,   , which 

represents the number of individuals with equal contributions in an idealized pool that would 

show the same amount of variance in allele frequency. They also define the experimental 

error rate,  , which quantifies the amount of unequal individual contribution within the DNA 

pool such as:    
 

    
. Based on Eq. 9 and assuming that all sequencing variance is due to 

the variance in sequencing depth (i.e. considering that library preparation does not affect the 

proportion of each individual within the pool), we show that: 

   
 

  
        

 

  
(10) 

and       
   

 
 (see Supporting Information S1 for computational details). This shows that 

   and   are independent from the mean and variance in sequencing depth.  
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According to the hierarchical model of Gautier et al. (2013a), the allele frequency at 

the i
th

 locus of the j
th

 replicate, pij, follows a truncated Gaussian distribution (Eq. 8): 

                        
       . 

Our model allows correcting the formula for   , such that: 

   
 

  
      

         
   

   

    
       

   
   

   

  
 , 

where   
   

,    and    are respectively the effective pool size, the average sequencing depth of 

replicate j and the coefficient of variation in individual contributions to the DNA pool. For 

diploid organisms,   
   

 has to be substituted by 2  
   

. 

 

Experimental estimations of          and         

Although there was a two-fold variation in mass across our samples, we did not detect any 

positive relationship between leaf tissue mass and DNA yield (Hoechst quantification: R= -

0.0969, 95%CI:-0.1878; -0.0043;       ; PicoGreen quantification: R= 0.0821; 95%CI:-

0.0007, 0.1639;       , Figure S5). The negative correlation detected with Hoechst 

quantification is likely to be spurious, as suggested by the near zero correlation and the high 

p-value. The coefficient of variation of individual contributions to the DNA pool was smaller 

when pooling samples before than after DNA extraction for Hoechst quantification (         

= 26.8%,         = 29.3%, Table 1), but not for PicoGreen quantification (         = 24.0%, 

        = 21.1%, Table 1). However, the 95% confidence intervals of the different estimates 

largely overlapped, indicating no significant differences between the different DNA 

extraction and quantification protocols tested. Increasing the number of replicates helps 

reduce variances (e.g. DNA yield, DNA quantification or pipetting variances). For example, 

using three DNA quantification replicates results in a variance of 
          
 

 
.          

decreases to 13.8% when using three independent samples per individual plant (Figure 2) 
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and          decreases to 7.6% when using PicoGreen quantification with three technical 

replicates per individual and three reading replicates per technical replicate (Figure 3a). In 

contrast, increasing the volume pipetted or the number of pipetting replicates only has a 

negligible effect on         (Figure 3b). 

 

Discussion 

In this study, we derive a new analytical model for the estimation of the effective pool size of 

pool-seq experiments. The parameters from our model can be computed without performing a 

preliminary pool-seq experiment. We provide a theoretical framework and a web application 

(available at http://www.agap-sunshine.inra.fr/unics/) to quantify the precision of allele 

frequency estimates in a future pool-seq experiment in a cost and time-effective manner. Our 

theoretical and experimental framework comprises a variety of experimental designs (e.g. 

pool-sequencing a small or a large number of individuals with a high or low coverage, 

pooling individuals before or after DNA extractions, etc.). In Supporting Information S3, we 

experimentally demonstrate that pool-seq can be used to reliably estimate the frequencies of 

known haplotypes within a DNA pool. We also discuss the specificities of multi-locus 

haplotype frequency estimations using pool-seq.  

 

Comparison with previous models 

In line with previous models, our model accounts for both sampling and sequencing 

variances and predicts that the precision of frequency estimations increases with the number 

of individuals sampled and with the average sequencing depth (Futschik & Schlötterer 2010; 

Gautier et al. 2013a; Lynch et al. 2014). Contrary to other models, it explicitly distinguishes 

the variance due to unequal individual DNA contributions from the sequencing variance 

(Step 2 vs. Step 3). Gautier et al. (2013a) built a Bayesian hierarchical model to estimate a 

http://www.agap-sunshine.inra.fr/unics/
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posteriori the effective pool size of pool-seq experiment data (  ) and plug the estimates into 

their PIFs software to design future pool-seq experiments. Our model highlights that their 

Bayesian model confounds unequal individual DNA contributions (i.e. their experimental 

error rate,  ) with sequencing depth. Our correction for their Eq. 8 improves the estimation of 

   and allows an accurate estimation of    based on pool-seq experiment data. We also 

provide a method to empirically determine    without having to perform a preliminary pool-

seq experiment. We obviously expect that    estimates based on previous pool-seq data will 

provide better predictions for the precision of allele frequency estimates, provided that the 

experimental conditions remain unchanged. Finally, we developed the UNICS shiny web 

application to help design pool-seq experiments and improve the precision of allele frequency 

estimates. For instance, given a sequencing cost, this application can help compare the 

precision of allele frequency estimates for individual- vs. pool-sequencing. It should be 

particularly useful for experimental biologists, particularly those aiming at pool-sequencing a 

limited number of individuals. 

Although experimental conditions are likely to vary across study systems, samples, 

laboratory and sequencing conditions (e.g. library preparation, sequencing depth, platform or 

chemistry), we make several general recommendations. 

 

How to optimize a pool-seq experiment? Step 1: Individual sampling step 

The actual frequency of an allele in the population,  , impacts the precision of haplotype 

frequency estimation (Figure S1 and S2). The precision is thus expected to be lower in pools 

with balanced allele frequencies (i.e. with      ) compared to pools with unbalanced 

frequencies (see Figure 4 in Kessner et al. 2013). In most experiments, this frequency cannot 

be controlled for. In contrast, whenever possible, increasing the number of individuals 

sampled,  , is paramount. It reduces not only the sampling variance, but also the DNA 
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pooling and sequencing variances (see Eq. 9). Depending on the sequencing depth and on the 

amount of unequal individual contributions, pool-sequencing more than 40 diploid 

individuals can results in allele frequency estimates that are as or more reliable than 

sequencing 20 diploid individuals separately (Figure 1). 

 

How to optimize a pool-seq experiment? Step 2: DNA pooling step 

Our model shows that the coefficient of variation of the amount of DNA of each individual, 

  , has a low impact on the variance of the estimator    compared to the average sequencing 

depth and the overdispersion in sequencing depth. Yet, the results of our pool-seq experiment 

illustrate that unequal individual contributions can greatly decrease the precision of frequency 

estimations, even if this impact is likely overestimated due to our experimental design (as we 

used leaves from a single individual per haplotype for pool-sequencing, see Supporting 

Information S3). We provide simple recommendations to keep    as small as possible. 

Importantly, the choice of pooling samples before or after DNA extraction crucially depends 

on the number of individuals that can be pooled with one method or the other and the 

associated DNA extraction costs. The optimal choice is likely to vary across study systems 

and laboratory facilities. For example, pooling samples before rather than after DNA 

extraction might provide more reliable allele frequency estimates if it allows pooling more 

individuals or if the variance in DNA yield across individuals is low compared to the 

variance in DNA quantification (                  ). 

Our results suggest that decreasing          (i.e. when pooling individuals before 

DNA extraction) might prove technically more challenging than decreasing         (i.e. 

when pooling individuals after DNA extraction). Although we used young leaves with a 

similar physiological state, we observed a large variance in DNA yield across individuals that 

resulted in the lack of a positive correlation between DNA yield and leaf mass (Figure S5). 
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Decreasing the between-individual DNA yield variance can help reducing         . If whole 

individuals are pooled, we recommend using individuals of the same age that are more likely 

to have similar DNA content. Otherwise, we recommend choosing tissues or organs with 

similar developmental stages and with the lowest variance in DNA yield across individuals. 

Beside variation in DNA concentration among individuals, variation in DNA yield can arise 

through variation in extraction efficiency among individuals. Homogenization of ground 

tissue for all individuals together through simultaneous grinding can also minimize the 

variance in DNA yield across individuals. Note that the variance in DNA yield used for our 

experimental estimation of          accounts for both the variances in DNA concentration 

and in extraction efficiency. Increasing the number of samples (e.g. sampling several leaves) 

per individual can help further reduce         . However, this strategy will not reduce the 

variance in DNA yield whenever the heterogeneity in DNA yield between samples within 

individuals is small compared to the heterogeneity in DNA yield between individuals (i.e. 

when the DNA yields of samples from the same individual are correlated due to 

developmental or physiological differences across individuals). Similarly, DNA yields of 

samples from different individuals of the same genotype could be correlated. This is 

especially likely when working with field samples, for which controlling for the 

physiological state of tissues might be more challenging. For example, when whole 

individuals are pooled, individuals with a given genotype could emerge earlier, be on average 

larger and have a higher DNA yield per individual compared to other genotypes that emerge 

later in the season. Although more time-consuming and more costly, we recommend pooling 

samples after DNA extraction under such circumstances. Our results show that increasing the 

number of technical and reading replicates can help reducing        . In contrast, increasing 

the volume pipetted or the number of pipetting replicates has virtually no impact on        . 
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Using our new experimental method, molecular ecologists can compute the expected         

or         . 

 

How to optimize a pool-seq experiment? Step 3: Pool sequencing step 

Our model shows that the overdispersion in sequencing depth ( ) has a low impact on allele 

frequency estimation compared to the average sequencing depth   (when      , 
        

  
 ~ 

 

 
 in Eq. 9). As   cannot be controlled for, we recommend using a range of values from 0.1 to 

1 (i.e. around the average   estimated in our pool-seq experiment,        , Supporting 

Information S3) to compute the expected precision of frequency estimations of future pool-

seq experiments (http://www.agap-sunshine.inra.fr/unics/). In contrast, the average 

sequencing depth can be controlled for and its optimization is critical for accurate allele 

frequency estimations (Figure 1). In particular, increasing sequencing depth helps raising the 

precision of the frequency estimates of rare variants. When sequencing depth is higher than 

or equal to the number of individuals sampled,  , the variance of the allele frequency 

estimate,             , reaches a lower bound equal to the DNA pooling variance presented in 

Eq. 7 (ignoring interactions of order  
 

  ). There is also a necessary tradeoff between the 

number of loci sequenced and their average sequencing depth. We recommend adjusting the 

sequencing design according to the information available in the study system. For example, 

when using RAD-sequencing on an organism where a reference genome is available, the 

number of fragments sequenced can be computed a priori for any restriction enzyme. When 

polymorphism data are available, sequence capture can be used to specifically target known 

polymorphic loci and increase their sequencing depth (see Mertes et al. 2011 for a review). 

The expected sequencing depth can be computed based on sequencing productivity (e.g. 

which is higher for Illumina than for PacBio sequencing) and on the expected number of loci 
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sequenced (e.g. high for whole genome sequencing or more limited for sequence capture or 

RAD-sequencing). 

 Our model does not account for PCR duplicates or allele dropout that are likely to 

increase the level of unequal individual contributions to the final pool of reads. Whenever the 

DNA sequencing protocol includes a step of random DNA fragmentation (e.g. RAD-seq, 

Nextera kit, etc.), removing PCR duplicates will decrease    and increase    resulting in an 

increased precision of allele frequency estimates (Gautier et al. 2013a). We recommend using 

library preparation protocols that allow removing PCR duplicates or that limit the number of 

PCR cycles (Aird et al. 2011). Allele dropout can occur whenever the DNA sequencing 

protocol includes a step of DNA fragmentation using restriction enzymes (e.g. Genotyping-

by-Sequencing, RAD-seq, etc.). A potential solution is to identify and filter out SNP 

positions with allele dropout using information on read coverage depth or from previous 

individual-based sequencing experiments (Gautier et al. 2013b). Our model does not account 

either for sequencing errors, which can have a strong impact on allele frequency estimation of 

low frequency variants (Kessner et al. 2013; Lynch et al. 2014). When the positions of 

polymorphic sites are known, base quality score recalibration (e.g. using GATK BQSR, 

Auwera et al. 2013) can help improving the accuracy of allele frequency estimates. 

 In conclusion, by explicitly distinguishing DNA pooling and sequencing variance, the 

model we developed shows that the effective pool size is independent of sequencing depth, 

which was not apparent in the original parametrization used by Gautier et al. (2013a). Hence, 

our model corrects Eq. 8 of their Bayesian model, to properly estimate the effective pool size 

based on pool-sequencing data. We also propose a new experimental method to estimate a 

priori the expected level of unequal individual contributions to the DNA pool when pooling 

individuals either before or after DNA extractions. This method saves the time and money of 

pilot pool-seq experiments required by the method of Gautier et al. (2013a). We also 
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demonstrate experimentally that pool-seq can provide reliable estimates of the frequency of 

known haplotypes within a DNA pool. Our web app (http://www.agap-

sunshine.inra.fr/unics/) should help experimental biologists improve the design of their future 

pool-seq experiments. 

 

Acknowledgments 

We thank Mathieu Gautier for helpful discussions regarding his statistical model as well as 

Ruth Hufbauer and Arnaud Estoup for their comments on a previous version on the 

manuscript. We are also grateful to Darren Kessner, John Novembre, Timothée Flutre and 

Gautier Sarah for their help with bioinformatics analyses. Analyses were performed on the 

CIRAD - UMR AGAP HPC Data Center of the South Green Bioinformatics platform 

(http://www.southgreen.fr/). Funding was provided by the Agence National de la Recherche 

(ANR SEAD - ANR-13-ADAP-0011) and the Marie Skłodowska-Curie/AgreenSkills 

Program (NOR).  

 

References 

Aird D, Ross MG, Chen W-S et al. (2011) Analyzing and minimizing PCR amplification bias 

in Illumina sequencing libraries. Genome Biology, 12, R18. 

Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome 

Biology, 11, R106. 

Auwera GA, Carneiro MO, Hartl C et al. (2013) From FastQ data to high‐confidence variant 

calls: the genome analysis toolkit best practices pipeline. Current protocols in 

bioinformatics, 10–11. 

Bates D, Mächler M, Bolker B, Walker S (2015) Fitting Linear Mixed-Effects Models Using 

lme4. Journal of Statistical Software, 67. 

http://www.southgreen.fr/


V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Rode, N. O. (Auteur de correspondance), Holtz, Y., Loridon, K., Santoni, S., Ronfort, J., Gay,

L. (2018). How to optimize the precision of allele and haplotype frequency estimates using
pooled-sequencing data. Molecular Ecology Resources, 18 (2), 194-203. , DOI : 10.1111/1755-0998.12723

A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Canty A, Ripley B (2016) Package “boot”: Bootstrap R (S-Plus) Functions. , version 1.3-18. 

Casella G, Berger RL (2002) Statistical inference. Duxbury Pacific Grove, CA. 

Chang W, Cheng J, Allaire J, Xie Y, McPherson J (2015) Shiny: web application framework 

for R. R package version 0.11, 1. 

Davison AC, Hinkley DV (1997) Bootstrap methods and their application. Cambridge 

university press, Cambridge. 

Futschik A, Schlötterer C (2010) The next generation of molecular markers from massively 

parallel sequencing of pooled DNA samples. Genetics, 186, 207–218. 

Gautier M, Foucaud J, Gharbi K et al. (2013a) Estimation of population allele frequencies 

from next‐generation sequencing data: pool‐versus individual‐based genotyping. 

Molecular Ecology, 22, 3766–3779. 

Gautier M, Gharbi K, Cezard T et al. (2013b) The effect of RAD allele dropout on the 

estimation of genetic variation within and between populations. Molecular Ecology, 22, 

3165–3178. 

Hilbe JM (2011) Negative binomial regression. Cambridge University Press. 

Kessner D, Turner TL, Novembre J (2013) Maximum likelihood estimation of frequencies of 

known haplotypes from pooled sequence data. Molecular biology and evolution, 30, 

1145–1158. 

Kofler R, Nolte V, Schlötterer C (2016) The impact of library preparation protocols on the 

consistency of allele frequency estimates in Pool‐Seq data. Molecular ecology 

resources, 16, 118–122. 

Loridon K, Burgarella C, Chantret N et al. (2013) Single‐nucleotide polymorphism discovery 

and diversity in the model legume Medicago truncatula. Molecular ecology resources, 

13, 84–95. 

Lynch M, Bost D, Wilson S, Maruki T, Harrison S (2014) Population-genetic inference from 



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Rode, N. O. (Auteur de correspondance), Holtz, Y., Loridon, K., Santoni, S., Ronfort, J., Gay,

L. (2018). How to optimize the precision of allele and haplotype frequency estimates using
pooled-sequencing data. Molecular Ecology Resources, 18 (2), 194-203. , DOI : 10.1111/1755-0998.12723

A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

pooled-sequencing data. Genome biology and evolution, 6, 1210–1218. 

Mertes F, ElSharawy A, Sauer S et al. (2011) Targeted enrichment of genomic DNA regions 

for next-generation sequencing. Briefings in functional genomics, elr033. 

R Development Core Team R (2013) R: A Language and Environment for Statistical 

Computing (RDC Team, Ed,). R Foundation for Statistical Computing, Vienna, Austria. 

Rellstab C, Zoller S, Tedder A, Gugerli F, Fischer MC (2013) Validation of SNP Allele 

Frequencies Determined by Pooled Next-Generation Sequencing in Natural Populations 

of a Non-Model Plant Species. PLoS ONE, 8, e80422. 

Robinson MD, Smyth GK (2008) Small-sample estimation of negative binomial dispersion, 

with applications to SAGE data. Biostatistics, 9. 

Schlötterer C, Tobler R, Kofler R, Nolte V (2014) Sequencing pools of individuals [mdash] 

mining genome-wide polymorphism data without big funding. Nature Reviews Genetics, 

15, 749–763. 

  

Author Contributions 

N.O.R. derived the analytical formulae. Y.H. and N.O.R. developed the shiny application. 

K.L., S.S., J.R. and L.G. conceived and designed the pool-seq experiment. K.L. conducted 

the DNA concentration estimations and pool-seq experiment. N.O.R. and L.G. analyzed the 

data and wrote the manuscript together with Y.H., K.L., S.S. and J.R. All authors discussed 

the results, read and approved the final manuscript. 

 

Data Accessibility 

(i) The code used to verify the analytical derivations with R simulations and the data 

and script used to experimentally estimate          and         are available from 
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(ii) The web app of our model is available at: http://www.agap-sunshine.inra.fr/unics/. 

(iii) DNA sequences (in FASTQ format, after removal of adaptors) for each of the 11 

accessions and 8 pool replicates are deposited in the European Nucleotide Archive 

(http://www.ebi.ac.uk/ena/data/view/PRJEB22590). 

(iv) The VCF files of the 11 accessions, the concatenated reference genome and the 

BAM and DGRP files used for the Harp analyses are available from Dryad Digital 

Repository (http://dx.doi.org/10.5061/dryad.cr65v). The pipeline used for variant 

calling and for Harp analyses is available on github (https://github.com/nrode/src). 

Supporting information 

Additional supporting information may be found in the online version of this article.  

Supporting Information S1: Development of analytical expressions for the expectation and 

variance of the frequency of a focal haplotype in a pool of individuals 

Table S1 List of the parameters used for the analytical derivations. 

Fig. S1 Effect of sample size and sequencing depth on                 . 

Fig. S2 Effect of sample size and sequencing depth on                  . 

Fig. S3 Effect of dispersion in sequencing depth on                 . 

Fig. S4 Effect of dispersion in sequencing depth on                  . 

Supporting Information S2: Empirical estimations of          and         

Fig. S5 Relationship between leaf tissue mass and DNA yield. 

Supporting Information S3: Effects of average sequencing depth and overdispersion in 

sequencing depth on haplotype frequency estimates 

Table S2 List of the accessions used for individual sequencing and for the sequencing of 

pools with either eight (Pool8) or three accessions (Pool3). 

Table S3 Number of known SNP loci considered to investigate the minimum number of 

http://www.ebi.ac.uk/ena/data/view/PRJEB22590
http://dx.doi.org/10.5061/dryad.cr65v
https://github.com/nrode/src


V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Rode, N. O. (Auteur de correspondance), Holtz, Y., Loridon, K., Santoni, S., Ronfort, J., Gay,

L. (2018). How to optimize the precision of allele and haplotype frequency estimates using
pooled-sequencing data. Molecular Ecology Resources, 18 (2), 194-203. , DOI : 10.1111/1755-0998.12723

A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

SNPs necessary to estimate haplotype frequency accurately under different virtual 

experimental evolution designs. 

Table S4 Estimation of the mean sequencing depth     , the dispersion in sequencing depth 

(  ) and the percentage of the sum of squared errors (SSE) explained by the total bias due to 

unequal individual contributions to the DNA pool. 

Fig. S6 Correlation between the expected frequency of each haplotype based on weight and 

the observed frequency based on Harp estimations.  

Fig. S7 Correlation between the observed average sequencing depth (  ) and the observed 

dispersion in sequencing depth as defined in our model (  ) or in the model of Gautier et al. 

(2013a) (  ) estimated across the SNPs loci for each of the eight sequencing replicates. 

Fig. S8 Correlation between total sequencing variance and (A) average sequencing depth (  ) 

or (B) dispersion in sequencing depth (  ). 

Fig. S9 Correlation between total sequencing variance and dispersion in sequencing depth as 

defined in Gautier et al.'s (2013a)  model (  ). 

Fig. S10 Correlation between the total sequencing variance and the sum of the squared 

standard error estimated by Harp. 

Fig. S11 Power to discriminate the different haplotypes as a function of the number of SNPs 

known in the reference. 

Fig. S12 Effect of the number of known SNPs on total sequencing variance during four 

virtual experimental evolution experiments using Genotyping-by-Sequencing (ECOT22I-

digested DNA pools). 

Fig. S13 Effect of the number of known SNPs on total sequencing variance during four 

virtual experimental evolution experiments using Genotyping-by-Sequencing (ApeKI-

digested DNA pools). 
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TABLE 1 Estimation of the coefficient of variation of the DNA amount of an individual 

when pooling samples either before (        ) or after (       ) DNA extraction using 

Hoechst spectrofluorometry and PicoGreen DNA quantification.  

 

Quantification method          (95% CI)         (95% CI) 

Hoechst spectrofluorometry 

(bis-benzimide 

spectrofluorometry) 

26.8% (18.3%-37.0%) 29.3% (21.1%-42.2%) 

PicoGreen 24.0% (17.0%-31.0%) 21.1% (18.8%-24.0%) 

 

 

Figure legends: 

 

FIGURE 1 Effects of the size of the diploid individuals pool on the ratio of the standard 

errors of allele frequency estimates when sequencing a pool of individuals (             ) 

and of the standard errors of allele frequency estimates when separately sequencing 20 

barcoded diploid individuals with a sequencing depth of 5 X (        ). (a) Effect of unequal 

individual contributions,    (   100 X and    0.5). (b) Effect of the overdispersion in 

sequencing depth,   (    50% and    100 X). (c) Effect of the average sequencing depth, 

  (    50% and    0.5). When the ratio is above one, sequencing 20 barcoded diploid 

individuals (ind-seq) is preferable. When the ratio is below one, sequencing pools of diploid 

individuals is preferable. 

FIGURE 2 Effect of the number of independent samples from the same individual on 

         estimated using PicoGreen DNA quantification. 
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FIGURE 3 Empirical estimations of         using PicoGreen DNA quantification. (a) Effect 

of the number of technical and reading replicates on        . (b) Effect of pipetted volume 

and the number of pipetting replicates on        .  
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