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Abstract

Background: Genomic selection accuracy increases with the use of high SNP (single nucleotide polymorphism)
coverage. However, such gains in coverage come at high costs, preventing their prompt operational implementation
by breeders. Low density panels imputed to higher densities offer a cheaper alternative during the first stages of
genomic resources development. Our study is the first to explore the imputation in a tree species: black poplar.
About 1000 pure-breed Populus nigra trees from a breeding population were selected and genotyped with a 12K
custom Infinium Bead-Chip. Forty-three of those individuals corresponding to nodal trees in the pedigree were fully
sequenced (reference), while the remaining majority (target) was imputed from 8K to 1.4 million SNPs using FImpute.
Each SNP and individual was evaluated for imputation errors by leave-one-out cross validation in the training sample
of 43 sequenced trees. Some summary statistics such as Hardy-Weinberg Equilibrium exact test p-value, quality of
sequencing, depth of sequencing per site and per individual, minor allele frequency, marker density ratio or SNP
information redundancy were calculated. Principal component and Boruta analyses were used on all these
parameters to rank the factors affecting the quality of imputation. Additionally, we characterize the impact of the
relatedness between reference population and target population.

Results: During the imputation process, we used 7540 SNPs from the chip to impute 1,438,827 SNPs from sequences.
At the individual level, imputation accuracy was high with a proportion of SNPs correctly imputed between 0.84 and
0.99. The variation in accuracies was mostly due to differences in relatedness between individuals. At a SNP level, the
imputation quality depended on genotyped SNP density and on the original minor allele frequency. The imputation
did not appear to result in an increase of linkage disequilibrium. The genotype densification not only brought a better
distribution of markers all along the genome, but also we did not detect any substantial bias in annotation categories.

Conclusions: This study shows that it is possible to impute low-density marker panels to whole genome sequence
with good accuracy under certain conditions that could be common to many breeding populations.

Keywords: Genotype Imputation, Low density arrays, Whole-Genome Resequencing, Populus nigra

Background
In genome-wide analyses, the accuracy of genomic asso-
ciations and predictions tends to increase with the density
of marker coverage [1, 2]. Although the cost of genotyping
has decreased steadily over the past decade, it still
represents a significant investment for an improvement
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program. High-density genotyping of a large number of
individuals remains unaffordable for non-domesticated
and highly heterozygous species. Low-density panels
imputed tohigherdensities offer analternative to systematic
genotyping or sequencing of the entire population, at least
at the initial stages of compiling the minimum amount
of genomic resources. The idea of genotype imputation
as supplemental genotyping data was described by Bur-
dick et al. [3], using the term “in silico” genotyping. In
this context, imputation refers to the process of predicting
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genotyping data not directly available for an individual.
Imputation uses a reference panel composed of genotyped
individuals with high marker density to predict all missing
markers of another panel genotyped at lower density
coverage [2]. Imputation can be used in at least three
different scenarios: (i) to fill missing data that occurred
due to technical problems, (ii) to correct for genotyping
errors, and (iii) to infer data for non-genotyped SNPs
on a set of individuals [4]. Another more extreme sce-
nario involving imputation is to create all the genotype
information of individuals that are no longer available
from their extant relatives [5]. Imputation software uses
two main strategies: the first is based on pedigree and
Mendelian segregation [6–8], and the second relies on
linkage disequilibrium [9, 10]. Some authors use sequen-
tially or in a given combination both approaches [11].
The first strategy is the one implemented in algorithms
like Lander-Green [12], Elston-Steward [13] or Monte-
Carlo sampling algorithms [14, 15]. The second strategy
is commonly used for samples with low levels of kinship
and unknown ancestors, relying instead on the linkage
disequilibrium between markers within the reference
population. It uses heuristic algorithms as Expectation
Maximization (EM) algorithm, coalescence models and
Markov’s hidden strings (HMM) [16, 17]. Recently, a study
has compared eight machine learning methods to impute
a genotype dataset, but results are of lower quality than
those from Beagle, a reference software in the domain of
imputation [18, 19] which is based on the forecited sec-
ond strategy [20]. The imputation accuracy depends on
several factors. Among them, there are the genotyping
quality, the levels of linkage disequilibrium (LD), the
marker density which in turn influences perceived linkage
disequilibrium, and the relatedness between reference and
imputed populations. Factors affecting imputation accu-
racy have already been studied both with simulated and
empirical data. For instance, Hickey et al. [21] showed
that imputation accuracy increases with marker density.
The reference population constitution is also a deci-
sive factor for the imputation accuracy. The reference
population should be large enough to capture all relevant
haplotypes [6] and recombination events, as well as to
estimate correctly LD. The relatedness between the reference
and the target panel favours imputation quality, with
higher accuracies as relatedness increases between the
two groups [22]. The effects of panel size, LD and relatedness
become more important with decreasing marker den-
sity [6, 23]. Imputation of genotyping data has several
advantages, the first being the reduction of genotyping
costs [24], which can be very important depending on the
species. In addition, imputation of genotyping data also
improves the detection of QTLs and the model’s predic-
tion accuracy developed in association studies or genomic
selection [2]. The imputation of genotyping data could

be used in genetic mapping to enrich genetic maps for a
higher coverage. Finally, imputation could correct to a cer-
tain degree the eventual heterogeneity in marker density
related to constraints in chip design. Such heterogeneity
in marker density across the genome happened to be the
case of the chip used in our study here [25]. Often, impu-
tation involves a difference in densities between reference
and targeted panels of less than 10-fold (i.e. 5K to 50K
[26–28] or around 10-fold 50K to 500K [29, 30]). With
the increasing access to affordable genomic sequence data,
the possibility to use full sequences in the reference panel
for imputation becomes a reality, at least for a limited
number of individuals. Two studies simulated sequences
to find the better strategy between imputation accuracy,
number of sequenced individuals and genome coverage
[31, 32]. Both studies suggest that a good compromise is
sequencing as many individuals as possible but at medium
coverage (x8). To our knowledge, only three studies in
animals have tried to impute successfully from low and
medium densities (13 K and 50-60K) to real sequence
data (350K and 13 millions) [33–35]. These studies show
that inferring whole sequences from low-density marker
panels with good accuracy is possible under certain con-
ditions, notably with high levels of relatedness and persis-
tence of LD between the markers across populations. Our
study is one of the first to explore the benefits of impu-
tation to densify SNP genotyping in a forest tree species,
usually less favored than livestock in genomic resources.
This paper is based on black poplar, specifically on one of
the breeding populations that is used to produce hybrid
poplars. In the context of this breeding effort, imputation
is expected to enrich our knowledge, for the subsequent
step of predicting and selecting candidates, in three dif-
ferent aspects: (1) to capture recombination events within
families to improve subsequent in silico predictions of
segregation; (2) to enriching the genetic map and (3) to
improve genomic evaluation accuracy. The main objec-
tive of this study was to demonstrate to what extent high
quality imputation was feasible from low density arrays. A
complementary objective was to identify the factors that
contributed to the quality of the imputation and its impact
on the linkage disequilibrium and the annotation profile
of covered positions.

Methods
Plant material
For this study, 1039 Populus nigra were made avail-
able from the French breeding population. This sam-
ple was structured into 35 families resulting from 23
parents. Available families resulted from two mating sets.
As shown in the Table 1, the first mating set corresponds
to an almost complete factorial mating design involving 4
female and 4 male parents, and resulting in 413 F1 indi-
viduals structured into 14 full sib families. The second
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Table 1 Number of individuals and pedigree information

Description of black poplar breeding resources used in the study, with mating designs involved and number of individuals per family in the inner cells. Parental and family
cells are coloured by class in the mating regimes: yellow, factorial mating progenies; orange, multiple pair mating progenies; red, factorial mating parents; purple, multiple
pair mating parents; and dark cyan, unrelated individuals. In brackets, some selected cells show the number of sequenced progenies, with the figure in red involving two
progenies that were subsequently used as parental females (underlined codes) for the multiple pair mating

set involved multiple pair mating schemes involving 8
female and 7 male parents, with a number of crosses per
parent ranging from 1 to 5, and resulting in 598 F1 indi-
viduals structured into 21 full sib families. Six individuals
originated from a collection of French wild populations
were also added to the population. All 1039 individuals
in this population were genotyped and 43 of them were
also sequenced. Among the sequenced individuals, there
were 1 grand-parent, 21 parents, 13 progenies and 2
female individuals that were both progenies in the fac-
torial mating design and subsequently parents in the
multiple pair mating set (Table 1). The progenies to
sequence were chosen in such a way that all parents had
at least one sequenced offspring. The six sequenced indi-
viduals originated from wild populations were added to
assess the imputation ability with unrelated individuals.
Detail of genotype list and origins are given in Table S1
[see Additional file 1].

Genotyping and sequencing
We used the sequences of 6 parents previously sequenced
by Genome Analyzer IIx from Illumina [25]. For the
others parents (17), 1 grandparent, 14 progenies and 6
unrelated the DNA extraction was made from leaf sam-
ples in the UMR0588-BioForA collection, by using the
Macherey-Nagel Nucleospin®96 Plant II commercial kit.
Illumina paired-end shotgun indexed libraries were pre-
pared from one μg of DNA per accession, using Illumina
TruSeq®DNA PCR-Free Sample Preparation kit. Briefly,
indexed library preparation was performed with DNA
fragmentation by AFA (Adaptive Focused AcousticsTM)
technology on Covaris focused-ultrasonicator, all enzy-
matic steps and clean up were realized according to

manufacturer’s instructions. Single or dual indexes were
used. Final libraries were quantified by using qPCR using
KAPA Library Quantification Kit and Life Technologies
QuantStudioTM Real-Time PCR system. Fragment size
distribution of libraries was assessed by High Sensitivity
DNA assay either on Agilent 2100 Bioanalyzer or on
Caliper LabChip®GX nucleic acid analyser. Equimolar
pools of multiplexed samples, up to 11, were engaged
in sequencing using 4 lanes. After clusters generation
on CBot, paired-end sequencing 2 × 150 sequencing by
synthesis (SBS) cycles was performed either on a Illu-
mina HiSeq®2000/2500 running in high output mode (one
lane) or on Illumina HiSeq®4000 (three lanes). Reads were
trimmed with Trimmomatic (v. 0.32) [36], and mapped to
the P. trichocarpa version 3.1 genome [37] using BWA-
MEM 0.7.12- with default parameters [17]. Picard Tools
(v. 2.0.1) [38] were used to remove duplicated reads. Local
and Indel realignments were performed using Genome
Analysis Toolkit (GATK v. 3.5) [39, 40]. The variant detec-
tion was performed on all individuals by two variant
callers: (1) all individuals at the same time with Freebayes
(V1.0.0) [41], and (2) by each individual separately with
GATK HaplotypeCaller, to be subsequently assembled
using GenotypeGVCFs (called later gVCF-GATK). We
have used the VCFtools 0.1.15 [42] to filter variants with
no missing data, with a minimum quality score of 30 and
a minimum mean depth of 2. We allowed among selected
SNPs those harboring three alleles, because mapping was
done on another Populus species reference genome, so it
was possible to have two alternative alleles and no reference
allele in the aligned sequences. We finally kept only SNPs
and Indels that were detected by both callers and con-
sistent with Mendelian segregation. To simplify, SNPs
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and Indels were both called SNPs hereafter. All individ-
uals were genotyped using the Populus nigra 12K cus-
tom Infinium Bead-Chip (Illumina, San Diego, CA) [25].
We applied the same quality filters as in Faivre-Rampant
et al. [25]: markers with more than 90% of missing data
were removed and only Mendelian segregation consistent
markers were selected.

Genotype imputation
Weused the FImpute software (v 2.2) [11], as many studies
have already pinpointed its good performance for impu-
tation when compared to many other alternatives [16, 35,
43, 44]. FImpute can use different sizes of rolling windows
with a given overlap to scan the genomes of target and
reference datasets. The pedigree information is used to
increase imputation accuracy. Therefore, FImpute com-
bines both formerly stated strategies for imputation: that
based on pedigree and that on LD. A first round of geno-
type imputation was performed to predict 1% of missing
data still existing on the SNP chip panel. The second
and most substantial imputation scheme was between
the genotypic data from the chip SNP (SNPchip) and the
sequence data (SNPseq). To assess imputation accuracy,
a leave-one-out cross validation scheme was performed
among the 43 sequenced individuals. The SNPseq were
masked for one individual at a time, and this individual
with only SNPchip data was subsequently imputed with
the rest of individuals. To challenge the imputation
scheme, an additional set of 6 unrelated individuals with
sequences were added to the target panel. We estimated
imputation quality (or accuracy) using various statistics.
One was the proportion of alleles correctly imputed by
each leave-one-out individual (across SNPs, one propor-
tion per individual and per chromosome: Propi), and by
positions (across individuals, one proportion per position:
Props) (further explanations in Fig. 1). The proportion of
alleles correctly imputed by SNP might be subjected to
frequency-dependent bias, in the sense that imputation
could be correct more often than not when the imputed
allele is already highly frequent. To overcome this, Calus
et al. [45] have proposed the use of an alternative statis-
tic, the Pearson’s correlation coefficient between true and
imputed individuals (across SNPs, one correlation value
per individual and per chromosome: Cori) and between
true and imputed positions (across individuals, one value
per SNP position: Cors). In our case, this latter correlation
(Cors) was not always available for computation. The rea-
son was that some SNPs had such a low allelic frequency
that monomorphic outcomes happened after imputation,
leading to zero variances. In order to account for this
frequency-dependent outcome, alternatively, we used the
option proposed by Badke et al. (2014) [46] to correct
the error rate by the probability of correct imputation
by chance (cProps: corrected SNP proportion). FImpute

offers an imputation mode based on allelic frequency
(option “random_fill”), which gives us a lower bound for
imputation accuracy by individual (lbPropi: lower bound
individual proportion) and by SNP (lbProps: lower bound
SNP proportion).

Factors affecting SNP imputation
We considered different factors describing the hetero-
geneity between individuals and between markers impu-
tations, and we checked to what extent these factors
affected imputation. The first factors were at the indi-
vidual level: the sequence depth (MEAN_DEPTH); and
the level of relatedness defined according to the following
categories : parent of factorial (Factorial_parents), parent
of multiple pair mating design (MultiplePair_parents),
progeny of factorial (Factorial_progenies), progeny of
multiple pair mating design (MultiplePair_progenies) and
French wild population (Unrelated). At SNP level, the
following factors were considered: sequencing depth
(DEPTH) across individuals; per-site SNP quality from
the SNP calling step (column QUAL in the vcf file,
extracted with vcftools v0.1.13 from the gVCF-GATK
results files); minor allele frequency (FreqOri); the ratio
between SNPchip density and SNPseq density in non-
overlapping 500kb windows (RatioDensity); the p-value
of an exact Hardy-Weinberg Equilibrium test (hweOri)
for each site as defined byWigginton et al. (2005) [47] and
the level of unique information contributed by each SNP
given the level of LD with neighbouring SNPs, and cal-
culated as the weight (Weight) obtained by the LDAK5
software [48]. The variation of the imputation quality vari-
ables (Props, lbProps and cProps) were analysed according
to the different factors by a principal component analysis.
The factor’s relevance to describe the imputation quality
variables were quantified with a Boruta algorithm which
is a wrapper built around the random forest classifica-
tion algorithm implemented in the R (R Core Team 2015)
package Borut [49]. This algorithm created “shad-
owMean”, “shadowMax” and “ShadowMin” attribute val-
ues obtained by the shuffling of the original attributes
across objects. This set of created attributes is used as a
framework of reference. The value of the importance of
the factors tested, must be different from the values of the
attributes created, to be considered as having importance
in explaining the observed variability.

Linkage Disequilibrium
Plink software [50, 51] was used to estimate the linkage
disequilibrium parameter D’ [52] in the SNPchip dataset
and after imputation in the SNPseq dataset. Both sets
were previously phased. The SNPseq dataset was further
filtered based on Props (> 0.9) and cProps (> 0.8) vari-
ables, in order to provide for the LD analysis positions
with few or no errors after imputation.



Pégard et al. BMC Genomics          (2019) 20:302 Page 5 of 16

Fig. 1Metrics for the assessment of imputation quality and accuracy by individuals and by SNPs. The first upper panel depicts an example of a toy
genotyping matrix containing the allelic doses, with markers in columns and individuals in rows. First two individuals correspond to complete
genotypes from sequences; next two to sequences with masked positions to be imputed for quality assessment; and last individual to one
genotype from the SNP array. The lower panel represents the two simplified genotyping matrices respectively with real and imputed genotypes.
Associated boxes contain the different metrics that were used in the study: to the right and across markers (columns), the metrics by individual; at
the bottom and across individuals (rows), it can be found the metrics by marker. The expressions for Prop-like metrics contain the following
variables: gij the observed allelic dosage (0,1,2) of the SNP i in individual j; ĝij the imputed allelic dosage (0,1,2) from FImpute;M the total number of
SNP; Ni the number of individuals with called genotypes for SNP i; p(AA)refi , p(AB)refi , and p(BB)refi are the observed frequencies for genotypes AA,
AB, and BB for SNP i in the reference and p(AA)vali , p(AB)vali , and p(BB)vali are the predicted genotypic frequencies in the testing population for SNP i

Annotation analysis
We were interested in assessing to what extent impu-
tation could change the annotation profile of covered
SNPs, notably given the fact that the process involved a
substantial change in density. Changes in annotation pro-
files from enriched to non-enriched but denser genotypes

could be of relevance when using the resulting genotypes
to fit prediction models for a large spectrum of traits.
To get an annotation profile, a gene annotation analy-
sis was performed. The tool Annovar (v. 2017Jul16) [53]
was used with the command “–geneanno -buildver” in the
P. trichocarpa v3.1 gene set.
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Results
Mapping and genotype calling results
Sequence datasets for every individual were mapped on
the P. trichocarpa reference genome v.3.1. In average,
91.7% of reads were mapped, 76.5% were paired and
only 2.2% were singletons. The genome coverage was
calculated by individual, and it varied between 4X and
52X, with a mean coverage of 13X (Table S1[see Addi-
tional file 1]). A total of 27,475,756 SNPs and Indels were
detected by gVCF-GATK, whereas 26,489,941 SNPs were
detected by Freebayes (Table 2). After scoring the SNPs
on a quality criterion (Phred score > 30), the number of
trimmed positions were twice as many with gVCF-GATK
than with Freebayes (Table 2). Among the remaining posi-
tions, someweremonomorphic within P. nigra individuals
but different from the reference sequence: about 1 mil-
lion for gVCF-GATK and twice as much for Freebayes.
A total of 2,488,736 positions were common between the
two callers at that point of the filtering. Among these posi-
tions, 17% were Indels and 83% SNPs. To simplify, and
given the relatively low frequency of Indels (17% of vari-
ants), SNPs and Indels in the study were both denoted
under the same acronym of “SNPs” hereafter. To have
the best quality in genotype calling, we kept the posi-
tions where the genotype calling was at least 95% similar
between the two callers for all individuals. Mendelian
segregation was checked on available trios, and 142,974
positions were removed for which the progeny were
inconsistent with parents. For the chip, after applying
quality filters, 7540 SNPs were recovered for the popula-
tion under study and were used to impute 1,466,586 SNPs
from sequences along the 19 Chromosomes. In other
words, we imputed 99% of the data.

Imputation quality at the individual level
The Pearson’s correlation between true and imputed indi-
viduals for each chromosome (Cori) was strongly corre-
lated with the individual proportion of SNPs correctly
imputed (Propi) per chromosome (R2 = 0.991, Fig. 2),
with the former varying between 0.5 and 0.96, and the lat-
ter between 0.84 and 0.99. The coefficient of correlation

between Cori and Propi was consistently high across
individual classes (MultiplePair_parents: 0.929, Facto-
rial_progenies: 0.938, MultiplePair_progenies: 0.929 and
Factorial_parents: 0.984), even for unrelated individuals
where it was slightly lower with 0.896 (Fig. 2). Propi versus
Cori relatedness clouds were differently clustered depending
on the class of individuals (Fig. 2). In general, factorial
mating design progenies had higher Propi and Cori values
(respectively from 0.94 to 0.98 and from 0.81 to 0.95)
than those in the Multiple pair mating design progenies
(from 0.93 to 0.96 and from 0.80 to 0.88). Progenies from
either of the two schemes had higher Propi and Cori
values than those in the parental groups (from 0.87 to
0.90 and from 0.57 to 0.65). The parents of the facto-
rial mating design resulted in the most variable ranges
for Propi and Cori with respectively from 0.88 to 0.99
and 0.6 to 0.96, respectively, although that class had
on average higher values than those found in parents
in the multiple pair mating scheme. Finally, the unre-
lated individuals are in the lowest part of Propi and Cori
variation (with respectively from 0.89 to 0.90 and from
0.62 to 0.63). Therewasno separate groupwithin individual’s
categories (Fig. 2) meaning that the individual class rank-
ing was consistent along the chromosomes. The individ-
ual lower bound for imputation accuracy (lbPropi) was
moderately correlated to Propi (Figure S1[see Additional
file 2]). The ranking of individual classes was equivalent
between lbPropi and Propi. However, there appears to be
a higher gain in Propi with respect to lbPropi (i.e., using
pedigree and LD versus frequencies) for the multiple pair-
mating progenies, factorial progenies and factorial parents
than for the multiple pair mating parents and unrelated
individuals. In Fig. 3, Propi distribution is shown per chro-
mosome. This averaged imputation accuracy was roughly
similar for all chromosomes, except for chromosomes 6
and 8 where means were substantially higher (respectively
0.96, and 0.95). No relationship between the sequencing
depth (MEAN_DEPTH) and Propi was found at individual
level whereas a poorly significant correlation seems to
be present between depth (MEAN_DEPTH) and lbPropi
and Cori (Figure S2 [see Additional file 3]). In summary,

Table 2 SNP Filter step

Filtering step Freebayes gVCF-GATK

No filter 26,489,941 27,475,756

vcftools (max allele=3, min allele=2, minQ=30) 5,011,303 10,474,367

Monomorphic within P. nigra individuals 1,246,546 2,504,973

Common positions between the two callers 2,488,736 (375,566)

Homology between two callers more than 95% 1,612,432

Consistent Mendelian Segregation 1,466,586 (208,217)

Number of variants detected in the 43 sequenced individuals using two callers with no filter and after filtering with different parameters to obtain the input dataset used for
imputation. In brackets, the number of Indels out of the total number of variants
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Fig. 2 Comparaison of two imputation accuracy variables. Relationship between the proportion of alleles correctly imputed by each leave-one-out
individual (Propi) and the Pearson’s correlation coefficient between true and imputed individual genotypes (Cori). The different panels correspond
to the different individual classes in the mating regimes, and each point represents the values for one chromosome and one individual. The
correlation value is given in each panel and derives from the fitted regression line

at the individual level, imputation accuracy was high with
a proportion of SNP correctly imputed ranging between
0.84 and 0.99. The variation was mostly due to the
relatedness between individuals and to a lesser extent to
sequencing quality or sequencing depth.

Imputation quality at the SNP level
A strong correlation between Cors and cProps (0.94) sug-
gests that similar information was relayed by these two
variables despite the frequency-based correction. The
Figure S3 [see Additional file 4] shows the variation of the
three different estimates of imputation quality at the SNP
level (Props, lbProps, cProps), as a function of different
classes of minor allele frequency (FreqOri). While for low
FreqOri, Props and lbProps distributions remained simi-
lar, with increasing frequencies their respective distribu-
tions tended to separate from each other. The frequency
dependent correction applied to cProps was strongest at
low frequencies, making cProps much lower on average
than the other two counterparts. With increasing fre-
quency, that correction was weaker with cProps getting

closer to both Props and lbProps. This suggests that, while
the problem of sensibility to frequencies can be easily
overcome, cProps shows imputation qualities that can be
far lower than what is actually observed. The first 5 axes of
the principal component analysis (PCA) considering the
three estimates of imputation quality and six factors that
potentially affect this quality, explained 90% of the vari-
ance (PC1 and PC2, explained respectively 37.8 and 16.5%
of the variation; Fig. 4a). Props showed the highest inde-
pendence with respect to the sequence depth (DEPTH),
the SNP quality (QUAL), cProps, the ratio between
SNPchip density and SNPseq density (RatioDensity) and,
to lesser extent, to the level of unique information con-
tributed by each SNP (Weight). Props was negatively
correlated to the FreqOri and positively correlated to
the p-value of an exact Hardy-Weinberg Equilibrium test
(hweOri) and to lbProps. In Fig. 4b, correlation of each
variable to the PCA dimensions are shown. The first
dimension was negatively correlated to FreqOri (-0.94),
and positively correlated to hweOri (0.78), lbProps (0.92)
and Props (0.87). Sequencing quality parameter QUAL
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Fig. 3 Proportion of individual correctly imputed by chromosomes. Distribution of the proportion of SNPs correctly imputed by chromosomes
(Propi). White diamond symbol stands for the mean

and DEPTH are highly correlated to the second dimen-
sion (respectively 0.68 and 0.8). RatioDensity and cProps
were correlated to the third and fifth dimensions whereas
the Weight variable was only strongly correlated to the
fourth dimension. The Boruta analysis ranked the impor-
tance of the different factors considered to explain the
variation in Props, cProps and lbProps variables (Table 3).
All factors were quantified as being of higher importance
than those of lower bond references in shadow attributes.
RatioDensity resulted in the highest importance among
all factors for Props and cProps with effects respectively
being 1351 and 1182, largely ahead of the rest of factors,
with effects ranging between 40 and 115 for Props, 33
and 132 for cProps. lbProps showed a different ranking of
factors, dominated by FreqOri with the maximum effect
among factors, which is expected given the fact that it
is based on allele frequency. In summary, the quality of
imputation at a SNPs level strongly depended on Ratio-
Density and to a lesser extent on FreqOri. By selecting
SNP sets on Props and cProps simultaneously, we obtained
190,392 SNP with good imputation quality (Props > 0.90),
while their level of polymorphism was not forced towards
low allele frequencies (cProps > 0.80). The SNPs distribu-
tion along the genome after imputation was more homo-
geneous than what was initially available with the SNPchip
(Fig. 5).

Linkage Disequilibrium
The linkage disequilibrium (D’) calculated in SNPchip and
SNPseq sets is represented in Fig. 6a, with density dis-
tributions showing that LD was lower in SNPseq than
in SNPchip. This difference between sequence and chip
sets was consistent over classes of distances across the
genome. Figure 6b represents heat-maps for D’ values
according to physical distances. In general, D’ decreased
with increasing distances, as expected, although this trend
was noticeably clearer for SNPchip than for SNPseq. For
SNPchip, that D’ decay was noticeable at the very shortest
distance lags, with a bottom value for the mean sitting
at 0.25. Some increases were observed at the highest dis-
tances, but this corresponded to very few number of
points. For SNPseq, on the contrary, the weighted mean
was almost invariable over distances with a mean value of
0.2. The very large numbers of short distance pairs with
low D’ had a high impact on the pattern of the weighted
mean. Figure 6c presents the results under an alterna-
tive view in order to explain the differences in patterns
between SNPchip and SNPseq. D’ values are plotted as a
function of distance and product of MAF of involved alle-
les, with the idea of checking to what extent the levels
of D’ was the result of low allelic frequencies in SNPseq.
For the SNPchip set, the highest values of D’ were found
distributed over different distances and levels of MAF
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Fig. 4 Principal Component Analysis of Factors affecting SNP imputation. a Principal Component Analysis factor map of factors calculated at SNP
level: Props: proportion of SNPs correctly imputed; cProps: proportion of SNPs correctly imputed and corrected by the minor allele frequency; lbProps:
lower bound proportion of SNPs correctly imputed based only on allelic frequency; hweOri: p-value of a Hardy-Weinberg Equilibrium test for each
site [47]; Weight: LD weight estimate obtained with the LDAK5 software; FreqOri: original allelic frequency in the sequenced individuals; QUAL:
per-site SNP quality from the calling step; DEPTH: sequencing depth per site summed across all individuals ; RatioDensity: ratio between SNPchip
density and SNPseq density in a 500kb window. b Correlations between parameters calculated at SNP level and dimension of the ACP from Fig. 3a

products, with a concentration of maximum values at very
short distances and relatively low levels of MAF. The pic-
ture is substantially different with the SNPseq, where the
highest values of D’ were found exclusively at a very nar-
row band of low frequencies, suggesting that at least part
of the levels in D’ could be explained by the low polymor-
phisms brought by the sequence. As a consequence, the
imputation did not appear to result in an increase of LD,

but rather the opposite due to the differences in spectra of
frequencies between SNPchip and SNPseq.

Annotation
A total of 93.4% of SNPchip and 99.79% of SNPseq were
annotated (Table 4). Most categories in the annotation
catalog were enriched in the SNPseq compared to the cor-
responding levels of enrichment in the SNPchip. In the
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Table 3 Estimation of importance of different explanatory
factors by Boruta analysis

Factor cProps lbProps Props

(Mean ± SD) (Mean ± SD) (Mean ± SD)

shadowMax 1.44 ± 0.93 1.48 ± 0.70 1.80 ± 1.30

shadowMean -0.05 ± 0.79 -0.22 ± 0.52 -0.01 ± 0.82

shadowMin -2 ± 0.53 -2.22 ± 1.25 -1.57 ± 0.91

hweOri 32.96 ± 1.04 39.84 ± 0.73 40.33 ± 1.99

QUAL 98.95 ± 5.12 67.83 ± 1.70 67.90 ± 1.76

Weight 131.86 ± 3.56 92.78 ± 4.20 101.57 ± 4.23

FreqOri 64.28 ± 2.19 110.92±2.79 115.02 ± 3.28

DEPTH 114.21 ± 5.08 75.51 ± 1.67 114.81 ± 4.81

RatioDensity 1,182.87±39.82 36.68 ± 1.50 1,351.57±43.94

Boruta analyses for the different explanatory factors assumed for imputation quality
variables Props, cProps and lbProps. Values correspond to averaged effects and their
corresponding standard deviations allowing for a ranking of importance of the
factors. The maximum value is bolded. Props: proportion of SNPs correctly imputed;
cProps: proportion of SNPs correctly imputed corrected by the minor allele
frequency; lbProps: lower bound proportion of SNPs correctly imputed based only
on the allelic frequency; hweOri: p-value of a Hardy-Weinberg Equilibrium test for
each site [47] ;Weight: LD weight estimate with the LDAK5 software; FreqOri:
original allelic frequency in the sequenced individuals; QUAL: per-site SNP quality
from the calling step; DEPTH: sequencing depth per site summed across all
individuals ; RatioDensity: ratio between SNPchip density and SNPseq density in a
500kb window. “ShadowMean”, “shadowMax” and “ShadowMin” correspond to
effects obtained by shuffling the original attributes across objects and used as a
reference for deciding which factors are truly important

exonic region, SNPs were categorized depending on dif-
ferent mutation types. With SNPseq new locations, three
newmutation types were represented: frameshift deletion,
frameshift insertion and non-frameshift deletion. In sum-
mary, the genotype densification not only brought a better
distribution of markers all along the genome, but also no
loss in annotation categories.

Discussion
In this study, we have shown that substantial (26-fold)
densification in marker coverage is possible in up to 1000
individuals through imputation from a few sequenced
nodal individuals (43). Simultaneously, we have achieved
imputation qualities higher than 0.84, which is sufficient
for a heterozygous species like poplar but may be insuf-
ficient when working with species involving inbred lines.
This imputation quality is similar to the one obtained on
horses [34] with Impute2 software or in cattle [33], and
higher than the one obtained on chickens [35]. The study
is based on a subset of a breeding population in black
poplar, with a relatively low effective number of contributing
parents, which could explain partly the success of the
imputation. However, this situation is far from exceptional
and could be easily found in many other species going
through breeding activities, where an elite of a few dozens
of parents can contribute substantially to next generation
[54]. Although relatedness between the group bringing

marker density and the group to be imputed is key in the
success of imputation [21, 24, 55], our study demonstrated
also that imputation works with relatively small losses in
quality when inferring unrelated individuals taken from
a diversity collection of the natural range of the species
in France. Moreover, such a substantial 26-fold imputa-
tion did not appear to increase artefactually the levels of
LD. The annotation of imputed positions showed no loss
in annotation categories compared to original low density
coverage. These two results suggest that imputed data can
be of enough quality to be the base of subsequent studies
in genome-wide predictions.
The use of a “leave-one-out” cross validation scheme

allowed us to ascertain the actual quality of the impu-
tation, both by individuals and by SNP positions. The
proportion of alleles correctly imputed by SNP gave the
actual value of the imputation quality, although with the
drawback of an allele frequency bias. Indeed, a selection
based on that proportion by SNP alone could potentially
favor positions with low MAF over the rest, as imputa-
tion is easier when one of the alternative alleles is rare.
The correction we used based on the work of Badke et
al. [46] compensated this bias. This measure is interesting
whenever we wish to compare results between differ-
ent imputation methods or between different software.
However, it offers a less intuitive criterion, not easily con-
nected to the actual values of imputation error. Therefore,
we proposed to combine the actual value of the imputa-
tion quality and the frequency-based corrected measure
to select SNPs that fulfil both criteria with high level
values. Both criteria were given equal importance. The
result in our study led to positions with the highest impu-
tation quality while not necessarily resulting in an excess
of rare alleles in the imputed population.
Many factors can affect imputation quality like LD, den-

sity ratio, minor allele frequency or relatedness between
target and reference populations [56, 57]. Our results
showed that all these factors considered in our study
impacted to various degrees the quality of imputation. It
seems difficult to provide general predictor for the impu-
tation quality based on these or other factors. For instance,
[4] suggest that there is no obvious pre-imputation filter
ensuring a good imputation quality. However, one of the
factors with the highest impact on imputation quality in
our study was the marker density in the neighborhood of
the considered position for imputation. This is a somehow
logical outcome, in the sense that numerous markers in
dense regions would mutually facilitate their imputation
through the extent of LD. These results were consistent
with the fact that the imputation accuracy decrease with
increasing distance between markers [58]. When designing
a low-density chip, it is therefore important to choose
SNPs regularly spaced. These results are consistent with
the results of He et al. [59], which showed that an
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Fig. 5 Comparaison of density marker before and after imputation. SNP density map before imputation (top panel), corresponding to the SNP chip
genotyping, and after imputation from sequence (bottom) in 500 kb windows. SNPs were selected on two different criteria based on the
percentage of alleles correctly imputed:Props (>0.90) and cProps (>0.80). The scale colour represents the density of markers, with dark blue for low
density and yellow for high density

evenly-spaced SNPs combined with an increased minor
allele frequencies SNP panel showed the best results.
Imputation requires some degree of LD in existing

genomes to reconstruct missing positions [21]. Whenever
the reconstruction comprises large chunks of genomes,
like in our case here, one could hypothesize that there
could be a risk of artefactually increasing the frequency
of certain extant haplotypes and, therefore, exacerbate LD
among imputed positions. A similar hypothesis has been
already proposed by Pimentel et al. [27]. However, what
we found appears to be the opposite, with a reduction in
D’ from 0.25 in the chip to less than 0.2 in the sequence,
on average. The imputed sequence led to D’ values in the
low range (close to zero), which could be related to the
fact that sequences harbor high number of rare alleles for
many positions. Some studies [60, 61] showed that the

upper limit of LD between two SNPs is mathematically
determined by their difference in MAF. In case of extreme
differences, alleles cannot match, even at small distances
between SNPs, resulting in low LD. A decrease of LD
between SNPs could be problematic for subsequent studies
based on imputed data, especially at short distances.
Indeed, LD is used to capture the effect of nearby quan-
titative traits loci (QTL), whenever SNPs are not directly
placed on the QTL. This potential loss in capacity to
capture QTL effects in the imputed sequences might be
compensated for by the genotyping densification, which
could extend the reach of markers to unexplored regions
involving new QTLs. In summary, genotype densification
allowed to have a better repartition of the markers along
the genome and in different genomic regions. In our case,
the proportion of SNPs in intergenic regions increased
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Fig. 6 Comparaison of linkage disequilibrium before and after imputation. Distribution of D’ values of linkage disequilibrium for the two SNP sets in
the study: SNPchip (pink) and SNPseq (blue) and over different ranges of physical distances (panel a). Panel b represents the distribution of D’ values
versus distances in a heat-plot with low densities in blue and high densities in yellow, respectively for SNPchip (left) and SNPseq (right). The red line
is the average value of D’ weighted by frequencies for a distance window of 500kb. Panel c represents the distribution of D’ values as a function of
distances between any two positions and the product of the corresponding minor allele frequencies in the pair of loci, with colour indicating the
average value of D’ weighted by frequencies for a distance window of 500kb from low range (blue) to high range (yellow), respectively for SNPchip
(left) and SNPseq (right)

with the imputation, this compensated the bias of our low-
density SNP chip which was enriched in coding regions
[25]. Better marker repartition all along the genome could
be useful to detect causal variants, as suggested by Jansen
et al. [62]. They showed that with the imputation of missing
data, the value of Phred-score genotype quality was
improved. This lead to a better genotyping quality, a bet-
ter causal variant identification in association studies and
a better variant annotation. Sequences in our study have

brought new spectra of allele frequencies, involving a
much higher proportion of rare alleles compared to the
chip data, which resulted from a carefully selected set of
highly polymorphic markers [25]. While low frequencies
could have some interest in diversity studies or kinship
assignment [63], their use in the context of genomic
evaluation or GWAS would be challenging because of
power issues unless the involved rare alleles produce very
large effects and are captured with large sample sizes.
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Table 4 Proportion of annotated SNP in genomic regions and
mutation types

Value% (number)

SNPchip SNPseq

Region variant hit

downstream 2,43 (183) 6,23 (12338)

exonic 36,18 (2728) 14,96 (29607)

intergenic 3,78 (285) 32,28 (63901)

intronic 37,02 (2791) 30 (59377)

splicing 0,04 (3) 0,1 (192)

exonic; splicing 0 (0) 0,001 (3)

upstream 1,8 (136) 5,71 (11307)

UTR3 8 (603) 6,3 (12470)

UTR5 3,55 (268) 3,02 (5968)

UTR5; UTR3 0 (0) 0,01 (20)

upstream; downstream 0,6 (45) 1,18 (2340)

Annotated Positions 93,4 (7042) 99,79 (197523)

Total number of Positions 100 (7540) 100 (197932)

Mutation type

frameshift deletion 0 (0) 0,12 (246)

frameshift insertion 0 (0) 0,06 (118)

Non-frameshift deletion 0 (0) 0,08 (159)

Non-frameshift insertion 0,01 (1) 0,04 (84)

synonymous SNV 19,09 (1439) 6,64 (13133)

Non-synonymous SNV 16,92 (1276) 7,85 (15534)

Stop gain 0,15 (11) 0,15 (299)

Stop loss 0,01 (1) 0,02 (35)

Total number of exonic positions 36,18 (2728) 14,96 (29608)

Annotation results for SNPchip and SNPseq in percentage of counts per annotation
category, and number of corresponding positions in brackets. For region variant hit:
exonic;splicing corresponds to a variant within exon region but close to exon/intron
boundary; UTR5;UTR3 corresponds to a variant positioned where two coding regions
overlapped, one in forward and one in reverse; upstream;downstream corresponds
to a variant positioned in an intergenic region between two neighbouring genes

From an operational point of view, our results showed
that imputation can represent a good strategy to reduce
genotyping costs. By using a few well-chosen sequenced
individuals in the population, very good imputation
results could be obtained and considerably increase the
number of SNPs available. It is therefore possible to cre-
ate a low-density chip to impute at high density via
sequenced individuals. This could minimize differences in
imputation quality along the genome and avoid any over-
representation of certain chromosome regions. This type
of strategy can be used in a breeding improvement pro-
gram on several generations. Yet, it would be required to
add high density genotyping or sequences every genera-
tion [64] in order to keep a high imputation accuracy. Not
doing so could reduce the quality of imputation and result
in accumulating errors over subsequent generations. Our

study is a first step before using gathered genotypes
for genome-wide predictions. The impact of imputation
accuracy on genomic selection accuracy was studied by
several authors. The genotype densification allowed to
increase the genomic evaluation accuracy depending on
the architecture of evaluated traits [65, 66]. Moreover,
genomic selection accuracy increased with better impu-
tation accuracies [26, 28]. The marker effect estimation
could be biased and inbreeding levels could be under-
estimated [27], if the imputation accuracy is too low.

Conclusion
In conclusion, we have demonstrated in this study that
high imputation quality is possible even from low den-
sity marker sets. The relatedness had an important impact
on the imputation quality at the individual level, but it
is possible to impute unrelated individuals with a good
performance. All factors studied here had an impact
on the imputation quality at the SNP level, but there
is no obvious way to use their effects as criteria for a
pre-imputation filter. The genotype densification towards
sequences induced a decrease of linkage disequilibrium,
due to the spectra of low allelic frequencies. The densifi-
cation allowed to correct bias in variant annotation profile
of the SNPchip marker set, with a better distribution in all
genomic region categories.
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