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Abstract: 

Heterogeneity is observed at all levels in living organisms, but its role during the 

development of an individual is not well understood. Heterogeneity has either to be 



limited to ensure robust development or can be an actor of the biological processes 

leading to reproducible development. Here we review the sources of heterogeneity in 

plants, stress the interplay between noise in elementary processes and regulated 

biological mechanisms, and highlight how heterogeneity is integrated at multiple 

scales during plant morphogenesis. 

  

Introduction: 

Heterogeneityg (g=see definition in glossary in Box 1) is an inherent feature of all living 

organisms. It is observed at all organization levels and contributes to the function of 

higher-level structures: diverse molecules interact to form specialized sub-cellular 

structures that together build cells which, in multicellular organisms, can acquire 

different identities and form complex organs. Recently, another type of heterogeneity 

within specific structures, which could at first sight appear homogeneous, has gained 

attention. For instance, at the organ level, seemingly identical lateral root primordia 

can be formed by heterogeneous contributions of founder cells [1•]; at the tissue level, 

Arabidopsis leaf epidermal pavement cells are heterogeneous in size and shape [2]; 

and at the cellular level cortical microtubules (CMT) and cellulose synthase trajectories 

vary between the different sides of epidermal cells of etiolated hypocotyls [3,4]. 

With the expansion of quantitative approaches, the number of processes that now 

appear as involving heterogeneity is rapidly increasing. This raises two major 

questions: how is heterogeneity generated, and what are its biological consequences? 

In this review, we discuss some recent insights gained from reports of heterogeneity 

at different scales and its integrationg between different functional levels within a plant. 

  

Subcellular processes are sources of heterogeneity. 



Gene expression is by nature a highly stochasticg process [5]. At the whole plant level, 

gene expression shows noiseg levels that are under genetic control, but the origin 

(intrinsicg or extrinsic noiseg) could not be identified [6]. At the individual cell level, gene 

expression fluctuates over time in leaf cells, mostly as a consequence of extrinsic 

noise [7•] (Figure 1), as reported for prokaryotes and other eukaryotes [8]. At the 

system level, additional levels of noise may arise from the gene regulatory network 

(GRN) topology. For instance, the noise in the expression of a gene coding for a 

transcription factor affects the expression of its downstream targets and when TFs 

target TF genes, noise propagates within the GRN [9]. One way to reduce this 

propagation relies on redundant regulations by multiple TFs that provide robustness 

to the transcriptional output of a gene [10,11]. 

  

Noise in gene expression can be used to generate heterogeneity in plants. For 

instance, a link between noise and plasticity in gene expression has been observed in 

Arabidopsis [12]. Noisiness of gene expression is used to drive differentiation during 

sepal development [13••]. Expression of the ATML1 TF in epidermal sepal cells shows 

a high level of noise. When ATML1 level exceeds a threshold in receptive cells in the 

G2 phase, it triggers endoreduplication and hence giant cell formation. This generates 

a loose pattern within the epidermis where the average proportion of giant cells, but 

not their position, is determined. This resembles the formation of retinal mosaics in 

Drosophila [14] or the selection of odorant receptors in mammals [15]. Relying on 

noise in gene expression to control cell fate when a precise pattern is not absolutely 

required may be more cost efficient than complex deterministic networks. 

  



Stochasticity can also drive heterogeneity in other cellular components such as the 

cell wall. At the molecular level, while overall occurrence of the different monomers in 

lignin polymers is genetically and developmentally controlled, their precise 

polymerization pattern in the cell wall appears stochastic, leading to a high diversity of 

structures [16,17]. At a larger scale, cell walls are also heterogeneous, as a result of 

biologically regulated processes. In the epidermis of dark-grown Arabidopsis 

hypocotyls, specific loosening of the longitudinal anticlinal cell walls triggers 

anisotropic cell expansion. It is only in the latter step that CMT arrays and associated 

cellulose deposition switch to a preferentially transverse orientation to consolidate 

anisotropic growth [18]. The formation of lobes in Arabidopsis leaf epidermal pavement 

cells involves heterogeneity not only along but also across the cell wall [19••]. In both 

cases, spatial heterogeneity in the mechanical properties of the cell wall was attributed 

to heterogeneous distribution of pectins with different chemical properties, which 

suggests that pectins offer a more versatile way of tuning cell wall mechanical 

properties than other components such as cellulose microfibrils. These examples 

illustrate how chemical heterogeneity leads to mechanical heterogeneity, which in turn 

drives growth anisotropy. 

  

Heterogeneity is also observed in the cell membrane system at multiple scales. Within 

the plasma membrane, the importance of polar distribution of proteins for patterning 

processes and physiology has been well demonstrated [20,21]. At the scale of the 

entire membrane system, rare phospholipids, the phosphatidylinositol-phosphates 

(PIPs), are heterogeneously distributed, with the amount of phosphatidylinositol 4-

phosphate (PI4P) increasing from the Golgi apparatus to the endosomal 

compartments to reach a maximum at the plasma membrane [22-24]. The local 



accumulation of this anionic lipid in the inner layer of the plasma membrane provides 

negative membrane surface charges, which establish a specific electrostatic identity 

and direct the plasma membrane localization of proteins such as PINOID or BRI1 

KINASE INHIBITOR1 involved in hormone signaling [23,25••]. In animal cells, 

interaction between cationic residues of membrane protein and PIPs promotes the 

formation of nanodomains within the membrane [26,27], a mechanism also occurring 

in plants as the localization of the REMORIN proteins into nanodomains requires PI4P 

[28••]. This example illustrates the interaction between stochastic physical 

mechanisms and regulation by biological processes in the generation of heterogeneity 

at the cellular level. 

  

Cell growth and division are heterogeneous processes 

Heterogeneity in cellular patterns progressively appears during the formation of most 

organs: for instance, in both the developing embryo or in the lateral root primordium, 

growth and division patterns are initially stereotypical but become later more variable 

while preserving a stereotypical organ shape and size [1,29,30]. This suggests that 

fundamental cellular processes such as division and growth generate heterogeneity in 

the cellular patterns during development. In the shoot apical meristem (SAM), in which 

cell size is rather uniform, cell division timing and cell growth are coordinated at the 

individual cell level by a size-dependent accumulation of cyclin-dependent kinase 

activity that controls cell cycle progression [31,32••]. Cell division can be described 

according to a complex rule intermediate between critical size and critical size 

increment models [33••]. In  addition, precision in the orientation of the division plane 

is controlled by a particular CMT structure, the preprophase band [34••]. Despite these 

regulatory systems, cell size just after division is variable due to unequal division [32••]. 



Cell division is an important source of heterogeneity, not only because daughter cells 

can have unequal sizes but also because of the unequal partitioning of molecules that 

may increase noise in biological processes such as gene expression [35]. Following 

an asymmetrical division, the smallest daughter cell grows at a faster rate than the 

largest one, thus partially compensating for the original difference in size [33]. A similar 

observation was made at a larger scale in the sepal, in which smaller epidermal cell 

lineages grow faster to catch up with larger cell lineages resulting in a homogenization 

of cell size [36•]. However, at later stages, differences in clone sizes are further 

amplified by growth. This indicates that mechanisms that integrate cell growth and cell 

division are acting at the multicellular or organ levels and that they are subjected to 

developmental regulations. However, heterogeneity in cellular processes can 

paradoxically contribute to robustnessg in development. Indeed, in developing sepals, 

the variability in cell growth is spatio-temporally smoothed out and this variability is 

required for the production of organs with reproducible size and shape [37••]. 

  

Mechanical stress as a contributor to cell integration 

At any scale, heterogeneous growth generates heterogeneous mechanical stresses. 

At a small scale, in the SAM, mechanical stress can feedback on growth by enhancing 

heterogeneity between neighboring cells [38]. In developing sepals, mechanical stress 

generated by the fast growing trichomes leads to a mechanical shielding by the 

neighboring cells, thus buffering growth heterogeneity and reinforcing organ shape 

robustness [39•]. At the organ scale, mechanical stress provides a shape sensing 

mechanism contributing to the growth arrest at the sepal tip [40]. In addition to feeding 

back on cell growth, maximal tensile stress affects the orientation of division planes 

[41] or cell polarity [42], thus pointing to a possible coordination of different cellular 



processes by mechanical signals and to the existence of multiple morphogenetic loops 

operating in parallel. 

In many of these processes, the dynamic reorientation of CMT upon stress is the main 

mechanism associated with the multiscale integration of mechanical signals into 

morphogenesis, although microtubule-independent stress responses have also been 

reported [42]. However, how mechanical stresses are translated into CMT dynamics 

is still unknown. Mechanical stress has been proposed to contribute to the 

accumulation of PIP in the boundary around organ primordia in the shoot apical 

meristem, which in turn may impact CMT and signaling, thus possibly forming a 

multiscale feedback between the organ, tissue and cellular levels [43•]. Mechanical 

stress could feed into morphogenesis by other pathways. Cell walls and plasma 

membrane may constitute both sensors and the source of signals. For instance, wall 

associated kinases and mechanosensitive ion channels are involved in the 

mechanotransduction pathway [44]. One emerging actor of the mechanotransduction 

pathway acting at the PM is DEFECTIVE KERNEL 1 (DEK1), a transmembrane 

protein exhibiting similarity to animal calpains, a class of Ca2+-dependent cysteine 

proteases. The transmembrane domain of DEK1 is required for mechanosensitive 

Ca²+ influx, which in turn promotes the autocatalytic cleavage of DEK1, releasing the 

C-terminal cytosolic calpain-like domain [45••]. Because this domain is sufficient to 

complement embryo lethality of dek1 mutants [46], it suggests that it may act as an 

integrator of mechanical signals, responding to Ca2+. Mechanical stresses have also 

other effects on the PM, inducing dynamic reorientation of polarly distributed PM 

associated proteins, like for instance PIN-FORMED1 [47] which may involve Ca2+ 

modulation of the PINOID kinase [48-50]. Finally, mechanical signals contribute also 



to robust gene expression patterns [51]. In summary, mechanical stress emerges as 

a signal patterning and coordinating growth at multiple scales. 

  

Communication between cells organizes heterogeneity 

Cell-to-cell communication is essential for multicellular organisms and can have 

opposite effects on cellular heterogeneity. Developmentally regulated symplastic cell-

to-cell movement of informative molecules such as proteins, hormones or small RNAs 

through plasmodesmata contributes to the establishment and maintenance of 

heterogeneous cell identities or growth patterns [52-54]. One characteristic of such 

movement is that it can generate gradients of molecules that contribute to 

heterogeneity at the organ level. For instance, in the SAM, movement of the 

WUSCHEL protein out of the organizing centre provides cues for the spatial separation 

between domains of distinct cell fates [55,56•]. Movement of small RNAs produced 

from the epidermis on either side of the developing leaf establishes clear-cut 

expression patterns of their targets and hence position a robust developmental 

boundary in the leaf [57,58,59•]. Based on modeling, it was suggested that diffusing 

signals emanating from the SAM epidermis could provide the link between SAM 

geometry and stem cell niche homeostasis [60]. While these examples illustrate how 

cell-to-cell communication reinforce heterogeneity, intercellular movement of proteins 

can also coordinate growth between different cell layers in the leaf [61]. Because the 

topology of the mobile signal sources within the organ shapes the gradients, cell-to-

cell communication may constitute a feedback loop between organ and tissue 

heterogeneity. Thus, short range mobile signals contribute to organize the 

heterogeneity at the organ/tissue scale by enabling the formation of distinct domains 

or by reducing heterogeneity. 



  

Conclusion and perspectives 

During the last years, research on heterogeneity in plants has widely expanded. 

However, while heterogeneity at the cellular level (mainly cell growth and cell division 

in relation with the associated mechanical stress) is starting to be characterised, 

heterogeneity at lower scales is far less studied. In particular, the level and roles of 

heterogeneity in gene expression as a result of noise in gene transcription and 

translation are still poorly characterised compared to what is known in other systems 

[8,62,63]. 

An emerging conclusion from these studies is that heterogeneity is not only a 

biologically-generated process but can be a biological readout of noise in elementary 

reactions. Understanding how the biological context in turn affects the level of noise 

and what are the constraints it imposes on the translation of noise into a biological 

response are challenges for the future. These studies also underline the importance 

of the integration across different scales, with multiple mechanisms allowing either to 

exploit or on the contrary to buffer heterogeneity from one scale to the other. In this 

respect it is important to stress that such integration does not only occur from small to 

large scales but also conversely from organ to the tissue or cell level. Such an 

integrative view requires a systemic vision of heterogeneity in order to understand its 

contribution to morphogenesis. By allowing the objective assessment of noise and 

cellular heterogeneity together with the prediction of mechanical stresses and growth 

patterns, image analysis and computational modelling have been instrumental in many 

studies reported here. The recent advent of deep learning in image enhancement, 

restoration, segmentation and classification tasks [64] will strengthen and widen the 

importance of digital image analysis in quantitative cell biology. However, dealing with 



heterogeneity also introduces new image analysis problems, in particular when it 

comes to identify principles of organization from noisy spatial image data. Methods 

based on image normalization and spatial statistics are emerging to address such 

problems [65,66]. Similarly, it can be anticipated that stochastic modeling approaches 

will be promoted in the coming years, as deterministic models have shown their limits 

when addressing noise and heterogeneity in various processes such as cell division 

[67].  or phyllotaxis [68]. 

An additional challenge for the future will be to shift towards multiscale models 

integrating the various dimensions of noise and heterogeneity to better decipher the 

processes involved in the building of robust organ shapes. 
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Box 1: Glossary : 

Heterogeneity is a property of a system that refers to its composite nature or to the 

variability of the elements that compose this system. 



Integration refers to the processes/mechanisms whereby the individual 

characteristics and behaviors of cells are summed, leading to global growth at the 

tissue or organ scale. 

Noise refers to the random variations in a biological process. For instance, gene 

expression level can fluctuate over time in a single cell (intrinsic noise), or vary 

between genetically identical cells growing in an homogenous environment (extrinsic 

noise). Noise can be measured by the coefficient of variation, the dimensionless ratio 

of the standard deviation over the mean. 

Intrinsic noise is directly related to the stochasticity of the molecular interactions 

driving a biological process and occurs without variations in the number of molecules. 

It differentially affects biological processes of the same kind.  

Extrinsic noise results from variations in the amount or activity of molecules that drive 

a biological process. Such variations can be observed between individual cells and 

affect similarly all the biological processes of the same kind occurring in a cell.  

Robustness is an inherent property of a system that provides invariable output in 

response to input variations or heterogeneity. 

Stochasticity refers to a random biological process that can not be accurately 

predicted as it is governed by probabilistic laws. Stochasticity is observed in chemical 

reactions involving multiple partners present at low numbers leading to infrequent 

interactions. 

  

  

Figure 1: Heterogeneity and its integration over multiple scales in plant 

morphogenesis. 



Heterogeneity is found at all levels of the organism, from the cellular to the organ level. 

At each level, the heterogeneity can be spatial and/or temporal. At the cellular level, 

gene expression fluctuates over time or can vary from cell-to-cell (1); plasma 

membrane proteins are polarly distributed (2); distinct phosphatidylinositol-

phosphates (PIPs) are found in the membrane system (3) and microtubules (MT) 

orientation (4) and cell wall composition and structure (5) are variable. At the tissue 

level, neighboring cells have distinct growth rates and directions (6); cell division is 

unequal (7) and the concentration of mobile signals varies between cells (8). At the 

organ level, main directions of mechanical stress vary within the organ (9). This 

heterogeneity originates either from noise (triangles) or from biologically regulated 

process (discs). Heterogeneity at a low level impacts the functioning of the higher level 

(white arrows): for instance, noise-driven heterogeneity between different cells can 

impact tissue formation. Conversely, the higher level feeds back on the heterogeneity 

at the lower level (grey arrows): for instance local mechanical stress pattern generated 

at the tissue level by growth heterogeneity feeds back at the cellular level by impacting 

MT dynamics. 

 

 






