N. Pabón-mora and A. Litt, Comparative anatomical and developmental analysis of dry and fleshy fruits of Solanaceae, Am. J. Bot, vol.98, pp.1415-1436, 2011.

G. B. Seymour, L. Østergaard, N. H. Chapman, S. Knapp, and C. Martin, Fruit development and ripening, Annu. Rev. Plant Biol, vol.64, pp.219-241, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02521654

G. Gillaspy, H. Ben-david, and W. Gruissem, Fruits: A developmental perspective, Plant Cell, vol.5, p.1439, 1993.

M. Lemaire-chamley, J. Petit, V. Garcia, D. Just, P. Baldet et al., Changes in transcriptional profiles are associated with early fruit tissue specialization in tomato, Plant Physiol, vol.139, pp.750-769, 2005.

C. Cheniclet, W. Y. Rong, M. Causse, N. Frangne, L. Bolling et al., Cell expansion and endoreduplication show a large genetic variability in pericarp and contribute strongly to tomato fruit growth, Plant Physiol, vol.139, 1984.

G. R. Rodríguez, S. Muños, C. Anderson, S. Sim, A. Michel et al., Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity, Plant Physiol, vol.156, pp.275-285, 2011.

M. A. Stevens, A. A. Kader, and M. Albright-holton, Intercultivar variation in composition of locular and pericarp portions of fresh market tomatoes, J. Am. Soc. Hortic. Sci, vol.102, pp.689-692, 1977.

T. Lin, G. Zhu, J. Zhang, X. Xu, Q. Yu et al., Genomic analyses provide insights into the history of tomato breeding, Nat. Genet, vol.46, p.1220, 2014.

S. D. Tanksley, The genetic, developmental, and molecular bases of fruit size and shape variation in tomato, Plant Cell, vol.16, pp.181-189, 2004.

L. Zhang, D. M. Barrett, and M. J. Mccarthy, Characterization of the red layer and pericarp of processing tomato using magnetic resonance imaging, J. Food Sci, vol.78, pp.50-55, 2013.

J. Petit, C. Bres, J. Mauxion, B. Bakan, and C. Rothan, Breeding for cuticle-associated traits in crop species: Traits, targets, and strategies, J. Exp. Bot, vol.68, pp.5369-5387, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02624115

K. Ando, K. M. Carr, M. Colle, B. N. Mansfeld, and R. Grumet, Exocarp properties and transcriptomic analysis of cucumber (Cucumis sativus) fruit expressing age-related resistance to Phytophthora capsici, PLoS ONE, vol.10, p.142133, 2015.

S. Mintz-oron, T. Mandel, I. Rogachev, L. Feldberg, O. Lotan et al., Gene expression and metabolism in tomato fruit surface tissues, Plant Physiol, vol.147, pp.823-851, 2008.

M. Alkio, U. Jonas, M. Declercq, S. Van-nocker, and M. Knoche, Transcriptional dynamics of the developing sweet cherry (Prunus avium L.) fruit: Sequencing, annotation and expression profiling of exocarp-associated genes, Hort. Res, vol.1, p.11, 2014.

C. J. Baxter, F. Carrari, A. Bauke, S. Overy, S. A. Hill et al., Fruit carbohydrate metabolism in an introgression line of tomato with increased fruit soluble solids, Plant Cell Physiol, vol.46, pp.425-437, 2005.

O. Eriksson, Evolution of angiosperm seed disperser mutualisms: The timing of origins and their consequences for coevolutionary interactions between angiosperms and frugivores, Biol. Rev, vol.91, pp.168-186, 2016.

V. Brukhin, M. Hernould, N. Gonzalez, C. Chevalier, and A. Mouras, Flower development schedule in tomato Lycopersicon esculentum cv. sweet cherry, Sex. Plant Reprod, vol.15, pp.311-320, 2003.

T. Berry and J. D. Bewley, A role for the surrounding fruit tissues in preventing the germination of tomato (Lycopersicon esculentum) seeds: A consideration of the osmotic environment and abscisic acid, Plant Physiol, vol.100, pp.951-957, 1992.

F. Mounet, A. Moing, V. Garcia, J. Petit, M. Maucourt et al., Gene and metabolite regulatory network analysis of early developing fruit tissues highlights new candidate genes for the control of tomato fruit composition and development, Plant Physiol, vol.149, pp.1505-1528, 2009.

A. J. Matas, T. H. Yeats, G. J. Buda, Y. Zheng, S. Chatterjee et al., Tissue-and Cell-Type Specific Transcriptome Profiling of Expanding Tomato Fruit Provides Insights into Metabolic and Regulatory Specialization and Cuticle Formation, Plant Cell, vol.23, pp.3893-3910, 2011.

J. Giovannoni, C. Nguyen, B. Ampofo, S. Zhong, and Z. Fei, The epigenome and transcriptional dynamics of fruit ripening, Annu. Rev. Plant Biol, vol.68, pp.61-84, 2017.

B. Van-de-poel, N. Vandenzavel, C. Smet, T. Nicolay, I. Bulens et al., Tissue specific analysis reveals a differential organization and regulation of both ethylene biosynthesis and E8 during climacteric ripening of tomato, BMC Plant Biol, p.14, 2014.

Y. Shinozaki, P. Nicolas, N. Fernandez-pozo, Q. Ma, D. J. Evanich et al., High-resolution spatiotemporal transcriptome mapping of tomato fruit development and ripening, Nat. Commun, vol.9, p.364, 2018.

N. Alsmairat, P. Engelgau, and R. Beaudry, Changes in Free Amino Acid Content in the Flesh and Peel of 'Cavendish' Banana Fruit as Related to Branched-chain Ester Production, Ripening, and Senescence, J. Am. Soc. Hortic. Sci, vol.143, pp.370-380, 2018.

A. Petkovska, V. Gjamovski, J. P. Stanoeva, and M. Stefova, Characterization of the Polyphenolic Profiles of Peel, Flesh and Leaves of Malus domestica Cultivars Using UHPLC-DAD-HESI-MSn, Nat. Prod. Commun, vol.12, pp.35-42, 2017.

Y. H. Shen, F. Y. Yang, B. G. Lu, W. W. Zhao, T. Jiang et al., Exploring the differential mechanisms of carotenoid biosynthesis in the yellow peel and red flesh of papaya, BMC Genomics, p.20, 2019.

C. L. Moretti, S. A. Sargent, D. J. Huber, A. G. Calbo, and R. Puschmann, Chemical composition and physical properties of pericarp, locule, and placental tissues of tomatoes with internal bruising, J. Am. Soc. Hortic. Sci, vol.123, pp.656-660, 1998.

A. A. Schaffer and M. Petreikov, Sucrose-to-starch metabolism in tomato fruit undergoing transient starch accumulation, Plant Physiol, vol.113, pp.739-746, 1997.

C. A. Torres, N. M. Davies, J. A. Yañez, and P. K. Andrews, Disposition of selected flavonoids in fruit tissues of various tomato (Lycopersicon esculentum Mill.) genotypes, J. Agric. Food Chem, vol.53, pp.9536-9543, 2005.

S. Moco, E. Capanoglu, Y. Tikunov, R. J. Bino, D. Boyacioglu et al., Tissue specialization at the metabolite level is perceived during the development of tomato fruit, J. Exp. Bot, vol.58, pp.4131-4146, 2007.

F. Carrari, C. Baxter, B. Usadel, E. Urbanczyk-wochniak, M. Zanor et al., Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior, Plant Physiol, vol.142, pp.1380-1396, 2006.

M. Hadjipieri, E. C. Georgiadou, A. Marin, H. M. Diaz-mula, V. Goulas et al., Metabolic and transcriptional elucidation of the carotenoid biosynthesis pathway in peel and flesh tissue of loquat fruit during on-tree development, BMC Plant Biol, p.17, 2017.

M. Suzuki, R. Nakabayashi, Y. Ogata, N. Sakurai, T. Tokimatsu et al., Multiomics in Grape Berry Skin Revealed Specific Induction of the Stilbene Synthetic Pathway by Ultraviolet-C Irradiation, Plant Physiol, vol.168, pp.47-59, 2015.

R. E. Schouten, E. J. Woltering, and L. Tijskens, Sugar and acid interconversion in tomato fruits based on biopsy sampling of locule gel and pericarp tissue, Postharvest Biol. Technol, vol.111, pp.83-92, 2016.

G. Tamasi, A. Pardini, C. Bonechi, A. Donati, F. Pessina et al., Characterization of nutraceutical components in tomato pulp, skin and locular gel, Eur. Food Res. Technol, 2019.

R. A. Jones and S. J. Scott, Improvement of tomato flavor by genetically increasing sugar and acid contents, Euphytica, vol.32, pp.845-855, 1983.

A. A. Schaffer, D. Miron, M. Petreikov, M. Fogelman, M. Spiegelman et al., Modification of carbohydrate content in developing tomato fruit, HortScience, vol.34, pp.1024-1027, 1999.

E. A. Baldwin, J. W. Scott, C. K. Shewmaker, and W. Schuch, Flavor trivia and tomato aroma: Biochemistry and possible mechanisms for control of important aroma components, HortScience, vol.35, pp.1013-1021, 2000.

M. Takayama and H. Ezura, How and why does tomato accumulate a large amount of GABA in the fruit? Front, Plant Sci, p.6, 2015.

F. Mounet, M. Lemaire-chamley, M. Maucourt, C. Cabasson, J. Giraudel et al., Quantitative metabolic profiles of tomato flesh and seeds during fruit development: Complementary analysis with ANN and PCA, Metabolomics, vol.3, pp.273-288, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00138461

D. Holland, O. Larkov, I. Bar-ya'akov, E. Bar, A. Zax et al., Developmental and varietal differences in volatile ester formation and acetyl-CoA: Alcohol Acetyl Transferase activities in apple (Malus domestica Borkh.) fruit, J. Agric. Food Chem, vol.53, pp.7198-7203, 2005.

E. Zamski, O. Shoham, D. Palevitch, and A. Levy, Ultrastructure of capsaicinoid-secreting cells in pungent and nonpungent red pepper (Capsicum annuum L.) cultivars, Bot. Gaz, vol.148, pp.1-6, 1987.

P. M. Toivonen and D. A. Brummell, Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables, Postharvest Biol. Technol, vol.48, pp.1-14, 2008.

E. Grimm and M. Knoche, Sweet cherry skin has a less negative osmotic potential than the flesh, J. Amer. Soc. Hortic. Sci, vol.140, pp.472-479, 2015.

M. Brahem, C. M. Renard, B. Gouble, S. Bureau, and C. Le-bourvellec, Characterization of tissue specific differences in cell wall polysaccharides of ripe and overripe pear fruit, Carbohydr. Polym, vol.156, pp.152-164, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02624798

F. Guillon, A. Moïse, B. Quemener, B. Bouchet, M. Devaux et al., Remodeling of pectin and hemicelluloses in tomato pericarp during fruit growth, Plant Sci, vol.257, pp.48-62, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01607405

A. Takizawa, H. Hyodo, K. Wada, T. Ishii, S. Satoh et al., Regulatory specialization of xyloglucan (XG) and glucuronoarabinoxylan (GAX) in pericarp cell walls during fruit ripening in tomato (Solanum lycopersicum), PLoS ONE, vol.9, p.89871, 2014.

P. Segado, E. Domínguez, and A. Heredia, Ultrastructure of the Epidermal Cell Wall and Cuticle of Tomato Fruit (Solanum lycopersicum L.) during Development, Plant Physiol, vol.170, pp.935-946, 2016.

B. Cong and S. D. Tanksley, FW2.2 and cell cycle control in developing tomato fruit: A possible example of gene co-option in the evolution of a novel organ, Plant Mol. Biol, vol.62, pp.867-880, 2006.

B. Cong, L. S. Barrero, and S. D. Tanksley, Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication, Nat. Genet, vol.40, p.800, 2008.

S. Muños, N. Ranc, E. Botton, A. Bérard, S. Rolland et al., Increase in tomato locule number is controlled by two Single-Nucleotide Polymorphisms located near WUSCHEL, Plant Physiol, vol.156, pp.2244-2254, 2011.

L. Sun, G. R. Rodriguez, J. P. Clevenger, E. Illa-berenguer, J. Lin et al., Candidate gene selection and detailed morphological evaluations of fs8.1, a quantitative trait locus controlling tomato fruit shape, J. Exp. Bot, vol.66, pp.6471-6482, 2015.

S. Wu, H. Xiao, A. Cabrera, T. Meulia, and E. Van-der-knaap, SUN regulates vegetative and reproductive organ shape by changing cell division patterns, Plant Physiol, vol.157, pp.1175-1186, 2011.

E. Van-der-knaap, C. Anderson, and G. Rodriguez, Diversity within cultivated tomato, Genetics

B. E. Liedl, J. A. Labate, J. R. Stommel, A. Slade, and C. Kole, , pp.74-91, 2013.

N. H. Chapman, J. Bonnet, L. Grivet, J. Lynn, N. Graham et al., High-resolution mapping of a fruit firmness-related quantitative trait locus in tomato reveals epistatic interactions associated with a complex combinatorial locus, Plant Physiol, vol.159, pp.1644-1657, 2012.

C. S. Gasser, K. Robinson-beers, and . Development, Plant Cell, vol.5, pp.1231-1239, 1993.

H. W. Hilhorst, S. P. Groot, and R. J. Bino, The tomato seed as a model system to study seed development and germination, Acta Bot. Neerl, vol.47, pp.169-183, 1998.

L. Yu, J. Fan, C. Yan, and C. Xu, Starch Deficiency Enhances Lipid Biosynthesis and Turnover in Leaves, Plant Physiol, vol.178, pp.118-129, 2018.

J. Almeida, R. Asís, V. N. Molineri, I. Sestari, B. S. Lira et al., Fruits from ripening impaired, chlorophyll degraded and jasmonate insensitive tomato mutants have altered tocopherol content and composition, Phytochemistry, vol.111, pp.72-83, 2015.

J. A. Miret and S. Munné-bosch, Redox signaling and stress tolerance in plants: A focus on vitamin E, Ann. N. Y. Acad. Sci, vol.1340, pp.29-38, 2015.

B. Llorente, L. D'andrea, and M. Rodríguez-concepción, Evolutionary Recycling of Light Signaling Components in Fleshy Fruits: New Insights on the Role of Pigments to Monitor Ripening, Front. Plant Sci, p.7, 2016.

K. Luengwilai and D. M. Beckles, Structural investigations and morphology of tomato fruit starch, J. Agric. Food Chem, vol.57, pp.282-291, 2009.

F. Wang, A. G. Smith, and M. L. Brenner, Temporal and spatial expression pattern of sucrose synthase during tomato fruit-development, Plant Physiol, vol.104, pp.535-540, 1994.

R. J. Pattison, F. Csukasi, Y. Zheng, Z. Fei, E. Van-der-knaap et al., Comprehensive tissue-specific transcriptome analysis reveals distinct regulatory programs during early tomato fruit development, Plant Physiol, vol.168, pp.1684-1701, 2015.

Y. C. Cheng, T. T. Wang, J. H. Chen, and T. T. Lin, Spatial-temporal analyses of lycopene and sugar contents in tomatoes during ripening using chemical shift imaging, Postharvest Biol. Technol, vol.62, pp.17-25, 2011.

S. Taira, S. Shimma, I. Osaka, D. Kaneko, Y. Ichiyanagi et al., Mass spectrometry imaging of the capsaicin localization in the capsicum fruits, Int. J. Biotechnol, vol.1, pp.61-65, 2012.

A. C. Crecelius, D. Hölscher, T. Hoffmann, B. Schneider, T. C. Fischer et al., Spatial and Temporal Localization of Flavonoid Metabolites in Strawberry Fruit (Fragaria × ananassa), J. Agric. Food Chem, vol.65, pp.3559-3568, 2017.

R. Garrett, C. M. Rezende, and D. R. Ifa, Revealing the spatial distribution of chlorogenic acids and sucrose across coffee bean endosperm by desorption electrospray ionization-mass spectrometry imaging, Lwt-Food Sci. Technol, vol.65, pp.711-717, 2016.

P. D. Harrington, N. E. Vieira, J. Espinoza, J. K. Nien, R. Romero et al., Analysis of varianceprincipal component analysis: A soft tool for proteomic discovery, Anal. Chim. Acta, vol.544, pp.118-127, 2005.

E. Howe, K. Holton, S. Nair, D. Schlauch, R. Sinha et al., Mev: Multiexperiment viewer, In Biomedical Informatics for Cancer Research

M. Ochs, J. Casagrande, and R. Davuluri, , pp.267-277, 2010.

P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang et al., Cytoscape: A software environment for integrated models of biomolecular interaction networks, Genome Res, vol.13, pp.2498-2504, 2003.