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UMR ASTRE, Montpellier, France, 4 INRA, UMR ASTRE, Montpellier, France, 5 PAPPSO, Micalis Institute,
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Abstract

Release of extracellular vesicles (EV) by Gram-negative and positive bacteria is being fre-

quently reported. EV are nano-sized, membrane-derived, non-self-replicating, spherical

structures shed into the extracellular environment that could play a role in bacteria-host

interactions. Evidence of EV production in bacteria belonging to the class Mollicutes, which

are wall-less, is mainly restricted to the genus Acholeplasma and is scanty for the Myco-

plasma genus that comprises major human and animal pathogens. Here EV release by six

Mycoplasma (sub)species of clinical importance was investigated. EV were obtained under

nutritional stress conditions, purified by ultracentrifugation and observed by electron micros-

copy. The membrane proteins of EV from three different species were further identified by

mass spectrometry as a preliminary approach to determining their potential role in host-

pathogen interactions. EV were shown to be released by all six (sub)species although their

quantities and sizes (30–220 nm) were very variable. EV purification was complicated by

the minute size of viable mycoplasmal cells. The proteins of EV-membranes from three

(sub)species included major components of host-pathogen interactions, suggesting that EV

could contribute to make the host-pathogen interplay more complex. The process behind

EV release has yet to be deciphered, although several observations demonstrated their

active release from the plasma membrane of living cells. This work shed new light on old

concepts of “elementary bodies” and “not-cell bound antigens”.

Introduction

Extracellular vesicles (EV) are nano-sized, membrane-derived, non-self-replicating, spherical

structures shed into the extracellular environment by both eukaryotic and prokaryotic cells
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[1]. Most prokaryotic EV studied since the earliest observations in the 1960s [2] are Gram-neg-

ative outer membrane vesicles [3]. Their composition, biogenesis and role in bacterial viru-

lence and cross-talk with eukaryotic cells have been deciphered in various bacterial models [4].

In contrast, EV from Gram-positive bacteria have been poorly characterized up to now even

though they were first observed by electron microscopy in a Bacillus culture as early as 1990

[5]. The first characterization of EV released by a Gram-positive bacteria came from the semi-

nal study of Staphylococcus aureus in 2009 [6] and, since then, EV have been described in sev-

eral Gram-positive genera, such as Bacillus, Streptomyces, Listeria, Clostridium and

Streptococcus [7–11]. In the absence of an outer membrane, Gram-positive EV are formed

from the cytoplasmic membrane. Hence the thick peptidoglycan cell wall is certainly a physical

barrier that could hinder their release and explain the low yield of EV production from Gram-

positive bacteria in vitro [12].

Within the Gram-positive phylum, bacteria belonging to the class Mollicutes hold a special

place as they are wall-less, minute-sized cells limited only by a cytoplasmic membrane. They

evolved from a common Gram-positive ancestor with a low G+C content and are phylogeneti-

cally close to Clostridium spp. [13]. The genetic relatedness with the EV-producing Clostridium
genus [7] and the lack of a cell wall physical barrier are two reasons why we could expect EV

production from Mollicutes. This was indeed demonstrated by Chernov and collaborators in

2011 using Acholeplasma (A.) laidlawii as a model [14]. A. laidlawii is a filament-shaped molli-

cute (0.5 μm wide, 2.0 μm long [15]), widespread in nature. The EV observed by electron

microscopy from a culture grown under starvation conditions were 70 to 120 nm in length

[14] and contained DNA, RNA as well as several proteins some of which could be involved in

Acholeplasma-plant interactions [14, 16]. The same group also observed vesicles from Myco-
plasma (M.) gallisepticum by atomic force microscopy but did not characterize them further

[14].

Although they belong to the same Mollicutes class, bacteria from the genus Mycoplasma dif-

fer from those of the genus Acholeplasma. They are spherical, 0.3 to 1.0 μm in diameter [15]

and carry a smaller genome (580–1350 kpb for mycoplasmas versus 1500–1650 kpb for achole-

plasmas). Furthermore, unlike acholeplasmas, their membrane is rich in cholesterol that has to

be provided by their growth environment as they are not able to synthesize it. Finally, whereas

Acholeplasma species are most often regarded as opportunists, Mycoplasma species include

several important pathogens for humans and animals. Hence, their capacity to produce EV

might be of interest in terms of host-pathogen interactions.

The aim in the present work was to investigate EV release by several Mycoplasma species. A

nutritional stress was applied to stimulate EV production and the general method recom-

mended for EV purification was used and validated on the A. laidlawii model. Six Mycoplasma
(sub)species, including pathogens of both human and animal origin, were shown to produce

EV under nutritional stress. In vitro tests showed that EV are produced by living mycoplasma

cells and are neither the result of dead cell lysis nor of aberrant cell division process. Proteomic

analyses further revealed that EV-membranes contained proteins potentially involved in host-

pathogen interactions.

Material and methods

Strains and culture conditions

The Acholeplasma and Mycoplasma species and strains used in this study are listed in Table 1.

Of note for M. mycoides subsp. mycoides strain Afadé, only the TR-variant was used because i)

it has no polysaccharide capsule, which is expected to facilitate EV release and ii) it expresses

constitutively the glucose permease (MSC_0860) recognized by the 3f3 monoclonal antibody,

Mycoplasma extracellular vesicles
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which is used as a marker (see hereafter) [17]. They were propagated at 37˚C under 5% CO2 in

complete mycoplasma medium (PPLO) composed of a base (mycoplasma broth base 1.4% (w/

v), tryptose 1.0% (w/v), yeast extract 0.3% (w/v), glucose 0.1% (w/v)), adjusted to pH 7.6, with

addition of 30% supplement (horse serum 48% (v/v), pig serum 16% (v/v), fresh yeast extract

32% (v/v), cysteine 0.1% (w/v), NAD 0.1% (w/v), thallium acetate 0.3% (w/v)). For EV produc-

tion the PPLO broth was modified (m-PPLO) by reducing the supplement fraction to 10% and

adding 20% of 1X MEM α nucleoside (ThermoFisher) to the final medium to ensure substan-

tial serum depletion (from 19% to 6%) without modifying the osmotic pressure. The supple-

ment used for m-PPLO preparation was previously ultracentrifuged at 100 000g for 15h at 8˚C

in order to deplete potential exogenous eukaryotic extracellular vesicles. The PPLO and m-

PPLO media were supplemented with amoxicillin 1g/l. Viable cell concentrations (cfu/ml)

were determined by plating serial dilutions of liquid cultures onto PPLO agar plates. Each

count was done in triplicate.

M. mycoides subsp. mycoides strain Afadé variant TR was further used as a model to investi-

gate the link between cell viability and EV production. Firstly, mycoplasma cells from a 24h-

culture in m-PPLO medium (109 cfu/ml) were harvested (12000 g, 20 min, 18˚C), resuspended

in PBS and one half of the cells were incubated at 60˚C for 1 hour while the other was incu-

bated at room temperature for 1h. Cells from both batches were inoculated in m-PPLO

medium and further incubated for 72h at 37˚C before vesicles extraction and cell counts. In

Table 1. List and main characteristics of strains used for EV preparation. Follow-up and quality control of EV production.

Phylogenetic

groups

Species/

subspecies

Strains Main hosts Clinical signs CFU/ml in m-PPLOa EV preparation

0h 24h 48h or 96h Densityb Cell

contaminationc

Phytoplasma,

Acholeplasma

A. laidlawii PG8T Vertebrate and

invertebrate

none 2.1

+/-0.6x109
1.0

+/-0.8x109
(96h) 3.5

+/-2.4x107
+ 56/1.8x1010

Spiroplasma M. mycoides
subsp. mycoides

Afadéd Cattle Contagious bovine

pleuropneumonia

9.8

+/-1.7x108
3.2

+/-0.8x109
(96h) 4.9

+/-4.3x107
++ 0/2.5x1010

M. mycoides
subsp. capri

PG3T Goat Contagious agalactia 8.4

+/-0.4x108
4.8

+/-0.9x109
(48h) 3.4

+/-0.0x108

(96h) 9.5

+/-2.2x104

+/- 1224/3.4x1010

M. capricolum
subsp.

capricolum

L15937 Goat Contagious agalactia 1.6

+/-0.2x109
2.3

+/-0.4x108
(48h) 8.6

+/-0.3x106

(96h) 1.1

+/-0.6x105

+ 0/8.6x108

Hominis M. agalactiae L14628 Alpine ibex Pneumonia 3.9

+/-0.2x108
3.5

+/-0.8x109
(96h) 5.6

+/-0.3x108
+ UC/5.6x1010

5632 Goat Contagious agalactia 1.5

+/-0.2x109
2.6

+/-0.4x108
(96h) 2.2

+/-0.0x108
+ 624/1.1x1011

M. fermentans PG18T Human Found associated with

various diseases and clinical

syndromes

2.1

+/-0.3x108
4.4

+/-0.6x108
(96h) 2.0

+/-0.0x106
+++ 0/2.0x108

M. bovis L15762 Cattle Bovine respiratory complex

disease

9.3

+/-1.5x108
2.0

+/-0.5x109
(96h) 1.9

+/-0.1x106
+ 1068/1.9x108

a Data correspond to mean +/- standard deviation of 3 cell counts, except for M. mycoides subsp. mycoides for which data correspond to mean +/- standard deviation of

the three batches i.e. 9 cell counts.
b EV density in electron micrographs was estimated using the following scale: +/-, counts <1 EV/ 5μm2; +, 1–10 EV/ 5μm2; ++, 10–100 EV/ 5μm2; +++ >100 EV/ 5μm2.
c Total number of CFU in EV extract / number of CFU at 48h or 96h (CFU/ml x volume of m-PPLO medium used for EV preparation)
d the non-capsulated variant TR was used in this study (see Material and methods)

UC, uncountable; T, type strain.

https://doi.org/10.1371/journal.pone.0208160.t001
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the second experiment, a 24h-culture (108 cfu/ml) was divided into two batches. One of the

batches was supplemented with 200μg gentamicin/ml (a concentration known to be mycoplas-

macidal [18]). A further 72h incubation at 37˚C was performed before vesicles purification

(see herafeter). The relative concentration of vesicles was estimated by electron microscopy

and/or 3f3 immunobinding [19].

Isolation of extracellular vesicles

Acholeplasma and Mycoplasma strains were first cultivated in PPLO broth for 48h at 37˚C, 5%

CO2. Cells were harvested by centrifugation (12000g, 30min, 20˚C), suspended in m-PPLO

broth and further incubated at 37˚C for 4 days, except for M. mycoides subsp. capri and M.

capricolum subsp. capricolum, which were incubated for 2 days. Cells were removed by centri-

fugation at 14000g for 1h at 4˚C and the supernatants were sterilized by filtering through

0.22 μm PVDF membranes. The filtrates were then concentrated 4-fold with Vivacell 70

MWCO 100 kDa (Sartorius). EV were collected after ultracentrifugation at 100 000g for 90

min at 8˚C, then washed and suspended in 100 μl sterile PBS (10 mM phosphate, 150 mM

NaCl, pH 7.8). All EV preparations were stored at -80˚C and all further manipulations were

carried out at 4˚C. The absence of viable mycoplasma cells in EV preparations was ascertained

by plating 25 μl (i.e. ¼) of the EV preparation onto PPLO agar plates.

Transmission electron microscopy (TEM) observation

The 200-mesh copper grids coated with Formvar-carbon were glow-discharged, and 5-μL

samples were directly loaded onto the grids for two minutes before absorbing the liquid excess.

The samples were then negatively stained by floating for 30 seconds on a drop of 1.0% (w/v)

sodium silicotungstate. After air drying, images were acquired using a Philips CM120 TEM

operated at 80 kV. EV diameter was determined using ImageJ software [20]. The mean EV

density per (sub)species was estimated from the number of vesicles observed in ten 5 μm2

squares.

EV membrane proteomics

Since EV-protein quantification was biased by the presence of proteinaceous contaminants

that co-purify with EV despite PBS washing (as observed in electron micrographs, see for

example S2 Fig), EV-membrane proteins were extracted from 50μl of each EV preparation

batch using Triton X-114 phase partitioning [21]. Proteins in the detergent phase were precipi-

tated with methanol and chloroform, resuspended in Laemmli buffer and boiled for 5 min.

Samples were electrophoresed on a miniprotean Any kd TGX gel (Bio-Rad) at 150 V for 5

min. The gels were stained with blue-safe staining from Bio-Rad according to the supplier’s

instructions. Gel bands were excised and washed with DTT and iodoacetamide. In-gel tryptic

digestion was performed overnight with 100 ng of trypsin (sequencing grade from Promega)

in bicarbonate buffer 6h at 37˚C. Peptides were extracted with 5% formic acid in water/aceto-

nitrile (v/v), dried and suspended in 25μl of 0.1% formic acid (v/v) and 2% acetonitrile (v/v).

LC MS/MS analyses were performed using an Ultimate 3000 RSLC system (Dionex) connected

to a LTQ orbitrap mass spectrophotometer (ThermoFisher) by a nanoelectrospray ion source.

All MS/MS spectra were searched against Uniprot databases (Mycoplasma (M.) mycoides
subsp. mycoides PG1T (Uniprot proteome identifier UP000001016, version 2013/10/11, 978

entries), M. agalactiae PG2T (Uniprot proteome identifier UP000007065, 11/04/2017, 726

entries) and M. fermentans PG18T (Uniprot proteome identifier UP000006810, 13/05/2017,

1091 entries) by the X!TandemPipeline (open source software developed by PAPPSO, version

3.4.3 [22]). The identified proteins were filtered using E-values <10−4 for proteins and <0.01

Mycoplasma extracellular vesicles
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for peptides with a minimum of 2 peptides. A protein abundance index (PAI) was calculated

for each protein in each sample using a relative quantification method, based on spectral

counts. PAI, which reflects the relative abundance of the different proteins in each sample, is

defined as the number of fragmentation spectra assigned with a significant score divided by

the number of observable peptides per protein [23]. Membrane proteins, i.e. lipoproteins and

transmembrane proteins were identified using Uniprot annotations and TMHMM2.0 predic-

tion [24]. Other proteins were identified as either cytoplasmic or membrane-bound in refer-

ence to functional data but in the absence of characteristic structural features.

Results & discussion

Validation of our in-house experimental procedure for EV production

The nutritional stress applied to mycoplasma cultures involved growth in m-PPLO medium,

which was partially-depleted in animal serum and fresh yeast extract to reduce the quantities

of cholesterol, lipids, peptides, vitamins and nucleotides available for cell division. A. laidlawii
strain PG8T was used as a control to validate our capacity to induce EV formation and perform

purification. Cells were first cultivated in complete mycoplasma medium (PPLO) until the end

of the log phase and then transferred to m-PPLO at a concentration of 108–109 cfu/ml for fur-

ther incubation (Table 1). The titer of viable Acholeplasma cells remained steady for at least

24h and dropped to 107 cfu/ml at 96h (Table 1). EV were purified from the 96h-supernatant

by ultracentrifugation and observed by TEM. The sizes ranged from 50 to 150 nm, with a few

elements >150nm (Fig 1), consistent with the observations by Chernov and collaborators [14],

and an estimated density of 5 EV/ 5μm2 field. The same experimental conditions were then

tested on M. mycoides subsp. mycoides (Mmm) strain Afadé used as a representative of the

Mycoplasma genus. Three different EV batches were prepared to assess the reproducibility of

the technique. The viability of Mmm strain Afadé in m-PPLO was similar to that of A. laidlawii
strain PG8T over time (Table 1). EV were observed for each production batch, with similar

sizes ranging from 60 nm to 170 nm (with a few elements >170nm; Fig 1), and a density of

around 30 EV/ 5 μm2 field (Table 1). Hence, our in-house experimental procedure confirmed

the capacity of A. laidlawii PG8T to produce EV and demonstrated for the first time and in a

reproducible manner the production of EV by Mmm strain Afadé.

Because the diameter of the largest EV (from 170 to 220 nm in Fig 1) was very close to that

of viable mycoplasma cells (from 300 to 1000 nm [15]) that could get smaller in nutritional

stress conditions [25], the presence of viable cells in our EV preparations was checked by plat-

ing a quarter of each preparation on PPLO agar medium. No viable cell was detected in any

production batch of Mmm, indicating that the largest EV are not small viable cells that could

have been co-purified with EV, whereas 14 cells of A. laidlawii were found which corre-

sponded to 56 cells in the whole batch (Table 1). Although this cell contamination was very

limited (56 cells out of 1.8x1010 cfu in the whole culture after 96h incubation), it might affect

the characterization of EV composition, notably regarding DNA/RNA content that relies on

PCR amplifications. In consequence, we chose i) not to use a 0.1 μm filtering step that could

potentially minimize cell contamination but might also retain some of the largest EV and ii) to

systematically ascertain the quality of our EV preparation batches by performing a sterility

control.

Microscopic observations of a Mmm Afadé culture in m-PPLO medium before EV purifica-

tion showed a huge dispersion of spherical elements, including cells, and a clear overlapping

area corresponding to EV (S1 Fig). Our EV isolation process resulted in a neat enrichment of

the 60–170 nm EV and a depletion of the largest EV (170–220 nm, 3% in the EV preparation

versus 13% in the Mmm culture; S1 Fig). Early microscopic observations showed membrane-

Mycoplasma extracellular vesicles
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surrounded vesicles (100–200 nm) named “elementary bodies” for several Mycoplasma species

[26]. Such observations were confirmed by Robertson et al. on an aging culture of M. hominis
in which small cell-like bodies (100–250 nm) associated in 0.22 μm-nonfilterable aggregates

were evidenced [27]. Once dispersed by pronase treatment and transferred to favorable growth

conditions these small cells turned out to be of spherical shape and viable, although poorly

[27]. They were named at that time “elementary bodies”. Our EV isolation process involved a

0.22 μm filtration step and a viability control ensuring the depletion of such elementary bodies

which suggests that the 3% largest structure in our EV preparation are really large EV and not

elementary bodies resulting from aberrant cell divisions in unfavorable growth conditions.

Universality of EV production by Mycoplasma spp.

Our validated protocol was used to test the capacity of 5 other Mycoplasma (sub)species,

belonging to two different phylogenetic groups, to produce EV (Table 1). To take into consid-

eration the different loss of titer between fast growing, acidifying species (M. mycoides subsp.

capri and M. capricolum subsp. capricolum) and others, EV were isolated from all species from

supernatants obtained after either 48h or 96h (see Table 1). Fig 2 shows the spherical shape of

EV isolated from different mycoplasma (sub)species. The mean respective diameters varied

both between species and within species, as illustrated for M. agalactiae (Fig 3). The smallest

vesicles were observed for M. agalactiae strain L14628 and M. bovis strain L15762. M. mycoides
subsp. mycoides Afadé produced the largest EV. Similarly, the EV production yield, estimated

by counting the mean number of EV per microscopic field varied considerably between spe-

cies, M. fermentans strain PG18T and M. mycoides subsp. mycoides strain Afadé being the most

productive under our experimental conditions (Table 1). Four out of seven EV preparations

contained small amounts of viable cells (Table 1). This precluded any characterization of

Fig 1. Electron micrographs (A, C) and size distributions (B, D) of negatively-stained EV purified from

Acholeplasma laidlawii PG8T (A, B) and Mycoplasma mycoides subsp. mycoides Afadé (C, D). EV diameters were

estimated using Image J on n = 198 vesicles from A. laidlawii PG8T and n = 122, 129 and 149 vesicles from M.

mycoides subsp. mycoides Afadé, corresponding to three production batches.

https://doi.org/10.1371/journal.pone.0208160.g001
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DNA/RNA content based on PCR techniques and further emphasized the difficulty of separat-

ing EV from minute sized cells characteristic of the Mycoplasma genus.

Our m-PPLO medium inoculated with a high density of cells became suboptimal after 24h

and viability started to decrease (loss of 1 to 3 log, Table 1). This raises the question of whether

the observed EV might result from spontaneously reassembling membrane fragments of dead

cells, i.e. could result from a degenerative process instead of being actively produced by viable

cells. Two elements are in favor of an active EV production by viable cells. Firstly, the level of

EV production is not related to cellular mortality in m-PPLO overtime but instead depends on

species and strains: for instance, M. fermentans and M. bovis showed similar viable cell counts

at 24h and 96h in m-PPLO although M. fermentans produced much more EV than M. bovis.
Secondly, proteolipid vesicles artificially reconstituted from M. fermentans membranes were

described as 1 μm-spheres [28], which is far larger than the EV observed here. This point was

experimentally addressed by studying the EV production by heat- or gentamicin-killed Mmm
strain Afadé cells. Mmm viability could be dramatically reduced by a 1h incubation at 60˚C

[29] or by treatment with 200 μg /ml gentamicin (i.e. 4-fold the MIC [30]). Indeed no viable

cells were detected after heat treatment and a loss of 5 log was observed after 72h incubation

with 200 μg/ml of gentamicin. EV production was quantified by immunodetection of the

Mmm glucose permease (MSC_0860), a protein present in the membrane of Mmm EV (S1

Table) and specifically detected with high sensitivity by the 3f3 monoclonal antibody [19]. A

correlation was indeed established between EV density estimated on electron micrographs and

by the 3f3 detection by dot blotting (S2A Fig). Both heat and gentamicin treatment greatly

reduced EV production (S2B Fig). This demonstrates that EV production relies on the pres-

ence of viable cells. Fig 4 further shows some putative vesicles budding from the cell surface of

Mmm Afadé cells grown for 24h in m-PPLO medium. The size ratio between the cell and the

vesicle is not characteristic of a binary fission and hence precludes the hypothesis of aberrant

cell division.

Whatever the exact mechanism leading to EV release, it results in a multiplication of myco-

plasma “forms/particles” that interact with the host cells. The protein content of EV-mem-

branes was further analyzed to investigate its potential role in mycoplasma-host interactions.

Fig 2. Electron micrographs of negatively-stained EV purified from A. laidlaiwii PG8T (A), M. mycoides subsp.

mycoides Afadé (B), M. mycoides subsp. capri PG3T (C), M. capricolum subsp. capricolum L15937 (D), M.

agalactiae 5632 (E), M. agalactiae L14628 (F), M. bovis L15762 (G) and M. fermentans PG18T (H). Examples of EV

are indicated by black arrowheads.

https://doi.org/10.1371/journal.pone.0208160.g002
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Identification of virulence factors among the EV membrane associated

proteins

The three EV preparations from Mycoplasma (sub)species showing none or negligible viable

cell contamination (Table 1), i.e. M. mycoides subsp. mycoides Afadé, M. agalactiae 5632 and

M. fermentans PG18T, were chosen to perform proteomic analyses on Triton X-114 enriched

Fig 3. EV diameters from different (sub)species, as observed in electron micrographs (Tukey representation). Al,

A. laidlaiwii PG8T; Mmm, M. mycoides subsp. mycoides Afadé; Mmc, M. mycoides subspp. capri PG3T; Mcc, M.

capricolum subsp. capricolum L15937; Ma, M. agalactiae; Mb, M. bovis L15762; and Mf, M. fermentans PG18T. The

number (n) of EV observed is indicated for each (sub)species. For Mmm, this “n” results from 3 batches of EV

production.

https://doi.org/10.1371/journal.pone.0208160.g003

Fig 4. Transmission electron micrographs (A, B) of M. mycoides subsp. mycoides (strain Afadé) cells showing

vesicle-like structures budding from the surface of the mycoplasma cells. A zoom of micrograph B is shown in the

right panel. Diameters were estimated using imageJ.

https://doi.org/10.1371/journal.pone.0208160.g004
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fractions. In these fractions 88, 58 and 258 proteins were identified, respectively, of which

54%, 88% and 54% were membrane-bound or membrane proteins (S1 Table). However, in

our hands, the protein concentration in each Triton extract was not equivalent for the 3 species

and hence the relative abundance of each protein was hardly comparable between species (S1

Table). A semi-quantitative scale of the PAI was established to compare which proteins were

most abundant in each preparation (PAI�1.0 = ++++; [0.5–1.0 [= +++; [0.1–0.5 [= ++ and a

spectral count<0.1 = + (S1 Table)).

In order to demonstrate that the produced vesicles could play a role in the pathogenesis

process, we highlighted all EV-membrane associated proteins which could be involved in the

mycoplasma-host interactions (Table 2).

Lipoproteins, which are known to be potent stimulators of macrophage activity associated

with pro-inflammatory cytokines release [31], represented a non-negligible fraction of EV-

proteins, ranging from 10 to 38%. As EV are able to disseminate a long distance from the infec-

tion site [32], the presence of lipoproteins in EV could contribute to the inflammatory process

associated with mycoplasmoses. We further attempted to identify the EV-associated lipopro-

teins within each species that could play a role in interaction with the host (immune modula-

tion, host colonization, interaction with host extracellular matrix. . .) (Table 2). A few of these

lipoproteins were present in EV membrane fractions of all 3 species, including the p37 lipopro-

tein, which was shown to be oncogenic in M. fermentans [33]. Its action might be augmented

as a result of dissemination through EV. Similarly the OppA lipoprotein that can induce apo-

ptosis [34] is found in abundant proportions in both M. agalactiae and M. fermentans EV. Sev-

eral other lipoproteins were identified, that are known to be major antigens of the different

species, such as LppB and homologues [35]. These lipoproteins also exhibit several immuno-

modulatory properties, e.g. the production of IFNγ by Mmm LppA [36]. Variable surface pro-

teins of M. agalactiae (Vpmas), which are involved in high frequency phase variation and

hence immune escape, were also recovered from EV [37]. These Vpmas have recently been

characterized as major adhesins [38]. M. agalactiae EV also carry a lipoprotein nuclease

MAG5040 which has been proposed to allow neutrophil extracellular trap escape [39]. Hence

several mycoplasma lipoproteins found in EV have functions related to modulation of the host

immune response and to host colonization.

A similar pattern was detected for other membrane-bound proteins that are not lipopro-

teins. This was the case of the Elongation factor Thermo unstable (Ef-Tu) which was one of

the most abundant proteins in each EV preparation. Interestingly, Ef-Tu was also found to be

one of the most abundant proteins in Staphylococcus aureus EV [6]. This moonlighting protein

was shown to interact with components of the host extracellular matrix [40, 41]. Its presence

in each of the 3 batches of EV could argue in favor of EV release being a non-stochastic process

although it could also reflect the fact that Ef-Tu is one of the most abundant bacterial proteins

[41]. Similarly, the chaperone Hsp70 (DnaK) was found in the 3 EV-proteomes and was one of

the most abundant proteins in Mmm strain Afadé and M. fermentans PG18T EV, based on

spectral counts (Table 2 and S1 Table). Together with Ef-Tu, Hsp70 has been associated with

antibody production, and cytokine secretion in M. ovipneumoniae [42]. Finally, Mmm Afadé

and M. fermentans PG18T EV contained several enzymes of general metabolism such as lactate

dehydrogenase, pyruvate dehydrogenase E1 enzyme, glyceraldehyde dehydrogenase, pyruvate

kinase, phosphoglycerate kinase and transketolase, also known to interact with components of

the host extracellular matrix [40]. The EV produced by Mmm Afadé were also enriched in the

glucose permease MSC_0860, which had a practical interest as it was used as a marker for EV

semi-quantification (see here before).

Mycoplasma proteins transported by vesicular structures had already been observed by

electron microscopy as early as 1964 [43]. The authors described globular elements measuring
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Table 2. List of EV membrane proteins potentially involved in mycoplasma-host interactions.

Proteins M. mycoides subsp.

mycoides strain Afadé

M. agalactiae
strain 5632

M. fermentans
strain PG18T

Putative roles

Uniprot n˚ PAI Uniprot n

˚

PAI Uniprot n

˚

PAI

Lipoproteins Lipoprotein p37 A0A0F2BJ67 +++ A5IY58 ++ C4XFE4 +++

+

Oncogenic

Lipoprotein LppB and homologues A0A126SRI9 +++

+

A5IZ93 +++ - - Major antigen

A5IY11 ++

A5IY23 ++

Lipoprotein p48 / MALP-404 - - F5HGV8 +++

+

Q9RGX5 +++

+

Immune modulation

Lipoprotein p80 and homologues - - A5IYU2 +++

+

C4XER1 +++

+

Major antigen

Oligopeptide ABC transporter

oppA

Nd Nd A5IXN9 +++ C4XEL2 +++

+

Apoptotic

Lipoprotein nuclease MAG5040 - - A5IYU3 ++ C4XER2 +++

+

Major antigen, Host colonization

Lipoprotein acid phosphatase - - A5IYN5 +++ C4XF87 ++ Host colonization

Lipoprotein p29 - - - - Q49159 +++

+

Major antigen, adhesion

Variable surface lipoprotein Y

(VpmaY)

- - F5HDB1 +++ - - Major antigen, interaction with host

extracellular matrix

Variable surface lipoprotein A

(vpmaX)

- - F5HIG3 ++ - - Major antigen, interaction with host

extracellular matrix

Variable surface lipoprotein U

(VpmaU)

- - F5HEE7 ++ - - Major antigen, interaction with host

extracellular matrix

Predicted lipoprotein MAG1050 - - A5IXP4 ++ - - Host colonization

Lipoprotein p40 - - F5HEF4 ++ - - Interaction with host extracellular matrix

Lipoprotein LppA p72 A0A109WHL4 ++ - - - - Major antigen, immune modulation

Non-

lipoproteins

Elongation factor TU A0A0F2BJ16 +++

+

A5IYA9 +++

+

C4XEI5 +++

+

Interaction with host extracellular matrix,

immune modulation

Chaperone protein DnaK (Hsp70) A0A0F2BNC8 +++

+

A5IXT5 + C4XE63 +++

+

Immune modulation

Glyceraldehyde-3-phosphate

dehydrogenase

A0A126SR57 +++ Nd Nd C4XF61 +++

+

Interaction with host extracellular matrix

Pyruvate kinase A0A0X8KSH0 +++ Nd Nd C4XEC6 +++

+

Interaction with host extracellular matrix

Lactate dehydrogenase A0A0F2BK13 +++ Nd Nd C4XEL0 +++ Interaction with host extracellular matrix

Phosphoglycerate mutase A0A126SQS4 ++ Nd Nd C4XEM3 +++

+

Interaction with host extracellular matrix

Transketolase A0A0F2BGX7 + Nd Nd C4XFT7 ++ Interaction with host extracellular matrix

PTS glucose permease ptsG A0A0X8KVY6 +++

+

- - - - Major antigen, immune-modulation

Pyruvate dehydrogenase E1

subunit α
A0A0F2BLA7 +++ - - Nd Nd Interaction with host extracellular matrix

Pyruvate dehydrogenase E1

subunit β
A0A0F2BL90 ++ - - Nd Nd Interaction with host extracellular matrix

Hexose phosphate transport

protein uhpT

Nd Nd A5IYT6 ++ - - Host colonization

Uniprot n˚: uniprot accession number. PAI: protein abundance index (++++:�1.0; +++: [0.5–1.0[; ++: [0.1–0.5[; +: <0.1). Nd, proteins not detected in the proteome;

“-“,no homologous proteins were found in this (sub)species. Proteins retrieved in EV from the three species are in bold.

https://doi.org/10.1371/journal.pone.0208160.t002
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10 to 100 nm and carrying the then called “not-cell bound antigens”. Our analysis of EV mem-

brane proteins confirmed that EV could be such carrier of antigens and could correspond to

the globular structures described by Eng and Froholm [43]. Further identification of the com-

plete cargo (soluble proteins including other antigens and DNA/RNA) has yet to be achieved

but will require further improvement of the EV purification process, with a 100% efficient

elimination of cell contaminations and protein aggregates. The use of gradient-based purifica-

tion method might be a promising way [44].

Conclusions

Fifty years ago microscopic observations led to the conclusion that mycoplasma replicating

cells had a minimal diameter of 300 nm. Vesicular structures such as “globular elements” (10–

100 nm) and “elementary bodies” (100–250 nm) were also observed, the latter being consid-

ered the results of aberrant cell division or reassembling of membrane fragments. The concept

of extracellular vesicles actively secreted by bacteria was just starting to emerge at that time

and mainly for Gram negative. Here, we showed that EV can be released by several Myco-
plasma species, from different phylogenetic clades, and are produced by living cells in a bud-

ding-way compatible with the canonical definition of bacterial EV. The sizes of mycoplasma

EV vary considerably (from 30 to 220 nm) and setting a size cut-off between small viable cells

and vesicles is difficult. Nonetheless the vesicles purified in this study are different from the

elementary bodies described by Robertson as the latter are removed by 0.22 μm filtration [27].

The recurring presence of homologous proteins in EV-membranes preparations from 3 Myco-
plasma species, further contributes to characterize EV release as an active process that could

constitute a new “secretion” pathway and hence account for some of the proteins recovered in

mycoplasma secretomes. For instance, the secretome from M. hyopneumoniae has several pro-

teins in common with the EV-proteome described here [45]. Although it has to be formally

demonstrated in the host context, the release of EV could considerably multiply mycoplasma

interaction with the host cells. Mycoplasma EV as a potential component of the interactome

will require further attention for a better understanding of mycoplasma pathogenicity and also

for vaccine development.

Supporting information

S1 Fig. Comparison of size distribution of EV (n = 322, three production batches) purified

from M. mycoides subsp. mycoides Afadé (black bars) and cells (n = 124) from a stationary

phase culture of M. mycoides subsp. mycoides Afadé (white bars). EV and cells were

observed by TEM after negative staining and diameter was estimated using ImageJ.

(TIF)

S2 Fig. A. Validation of 3f3 dot blotting for EV semi-quantification. EV were extracted

from 6h, 48h and 96h cultures of M. mycoides subsp. mycoides strain Afadé in m-PPLO

medium. Three production batches were done for each time point. EV are indicated by black

arrowheads on electron micrographs. Their density was estimated by counting the number of

EV per 5 μm2 fields (scale: +/-, counts <1 EV/ 5μm2; +, 1–10 EV/ 5μm2; ++, 10–100 EV/

5μm2). Dot blotting with 3f3 was performed on 2μl EV extract for each time point and each

batch. The intensity of dot blotting correlates with the EV density in electron micrographs. B.

Requirement of Mycoplasma viable cells for EV production. M. mycoides subsp. mycoides
strain Afadé cultivated in m-PPLO medium (108–109 cfu/ml) was submitted to heat (1h at

60˚C, no more viable cells) or chemical (200 μg/ml gentamicin, viability was reduced to 102

and 107 cfu/ml with or without gentamicin, respectively) inactivation before EV purification
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(for details see the Materials and methods section). EV (indicated by black arrowheads) den-

sity was estimated by counting on electron micrographs and/or by 3f3 dot-blotting (see panel

A). When mycoplasma cells were killed no EV were produced.

(TIF)

S1 Table. Proteins identified from the Triton X-114 fractions of EV. Proteins are classified

according to their PAI.

(DOCX)
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