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Core tip: Our results indicate that plecanatide and dolca-
natide, guanylate cyclase-C receptor agonists designed 
to replicate the activity of the human intestinal peptide 
uroguanylin, maintain intestinal barrier function and 
exhibit potent anti-nociceptive activity in animal models 
of visceral hypersensitivity, suggesting a novel mechanism, 
beyond the well described secretory function, for these 
agonists in the treatment of functional constipation 
disorders and inflammatory bowel disease. 
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INTRODUCTION
Chronic idiopathic constipation (CIC) and irritable 
bowel syndrome with constipation (IBS-C), affecting 
approximately 20% of the United States population[1,2], 
are characterized by abnormalities in motility and 
visceral hypersensitivity with overlapping symptoms 
such as abdominal pain and discomfort, bloating, 
incomplete bowel movements, straining, or hard and 
lumpy stools[3,4]. 

Therapeutic targets for CIC and IBS-C have focused 
primarily on promotion of gastrointestinal (GI) fluid 
secretion through activation of chloride channels such 
as chloride channel type 2 and the cystic fibrosis 
transmembrane conductance regulator (CFTR)[5]. 
Additionally, inhibition of sodium-hydrogen exchanger 3 
is being explored for treating IBS-C[6]. Drugs approved 
by the United States. Food and Drug Administration 
(FDA) for treating IBS-C include Amitiza® (lubiprostone) 
for adult women and Linzess® (linaclotide)[7,8] for 
adults. Lubiprostone, a bicyclic fatty acid metabolite 
of prostaglandin E1, specifically stimulates chloride 
channel type 2 causing an efflux of chloride into the 
lumen of the GI tract, which promotes fluid secretion, 
facilitating bowel movement[9]. Linaclotide, an analog 
of the heat-stable enterotoxin of Escherichia coli 
(E. coli), binds and activates guanylate cyclase-C 
(GC-C) to stimulate production of cyclic guanosine 
monophosphate (cGMP), which enhances secretion 
of electrolytes and fluid into the GI lumen to promote 
bowel movement and ameliorate abdominal pain[10]. 
Plecanatide (Trulance®) is an FDA-approved drug for 
treatment of adults with CIC[11,12] and the drug was 
recently approved for treatment of adults with IBS-C.

Recent studies suggest that the immune system is 

Abstract
AIM
To investigate the effects of plecanatide and dolcanatide 
on maintenance of paracellular permeability, integrity 
of tight junctions and on suppression of visceral 
hypersensitivity. 

METHODS
Transport of fluorescein isothiocyanate (FITC)-dextran 
was measured to assess permeability across cell 
monolayers and rat colon tissues. Effects of plecanatide 
and dolcanatide on the integrity of tight junctions in 
Caco-2 and T84 monolayers and on the expression 
and localization of occludin and zonula occludens-1 
(ZO-1) were examined by immunofluorescence micro-
scopy. Anti-nociceptive activity of these agonists was 
evaluated in trinitrobenzene sulfonic acid (TNBS)-
induced inflammatory as well as in non-inflammatory 
partial restraint stress (PRS) rat models. Statistical 
significance between the treatment groups in the 
permeability studies were evaluated using unpaired 
t -tests.

RESULTS
Treatment of T84 and Caco-2 monolayers with lipopoly-
saccharide (LPS) rapidly increased permeability, which 
was effectively suppressed when monolayers were 
also treated with plecanatide or dolcanatide. Similarly, 
when T84 and Caco-2 monolayers were treated with 
LPS, cell surface localization of tight junction proteins 
occludin and ZO-1 was severely disrupted. When cell 
monolayers were treated with LPS in the presence of 
plecanatide or dolcanatide, occludin and ZO-1 were 
localized at the cell surface of adjoining cells, similar 
to that observed for vehicle treated cells. Treatment 
of cell monolayers with plecanatide or dolcanatide 
without LPS did not alter permeability, integrity of tight 
junctions and cell surface localization of either of the 
tight junction proteins. In rat visceral hypersensitivity 
models, both agonists suppressed the TNBS-induced 
increase in abdominal contractions in response to 
colorectal distension without affecting the colonic 
wall elasticity, and both agonists also reduced colonic 
hypersensitivity in the PRS model. 

CONCLUSION
Our results suggest that activation of GC-C signaling 
might be involved in maintenance of barrier function, 
possibly through regulating normal localization of 
tight junction proteins. Consistent with these findings, 
plecanatide and dolcanatide showed potent anti-
nociceptive activity in rat visceral hypersensitivity 
models. These results imply that activation of GC-C 
signaling may be an attractive therapeutic approach to 
treat functional constipation disorders and inflammatory 
gastrointestinal conditions. 
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dysregulated in irritable bowel syndrome (IBS), leading 
to increased total counts of innate immune cells, 
including mast cells, monocytes and macrophages in 
IBS patients[13-15]. Mast cell mediators and cytokines, 
including tumor necrosis factor alpha (TNF-α), inter-
leukin-6 (IL-6) and IL-1α, modulate colorectal afferent 
excitability and disrupt intestinal barrier function. The 
paracellular permeability of the intestinal epithelial 
barrier is regulated by a tight junction (TJ) protein 
complex composed of transmembrane proteins such 
as occludin, claudin and zonula occludens (ZO), which 
bind to the actin cytoskeleton[16]. Alterations in the 
structure and/or function of the TJ protein complexes 
are associated with epithelial barrier disruption and 
increased permeability of the mucosa, allowing entry 
of inflammatory mediators to promote low-grade 
inflammation and visceral hypersensitivity[16-19]. Studies 
have correlated down-regulation of TJ proteins with the 
severity of visceral hypersensitivity in IBS[19,20]. 

There is considerable overlap in clinical symptoms 
between IBS and inflammatory bowel disease (IBD)[21-23]. 
Pro-inflammatory cytokines, such as TNF-α and 
interferon-γ released during GI inflammation, activate 
myosin light chain kinase (MLCK) responsible for 
phosphorylation of the myosin Ⅱ regulatory light chain, 
resulting in contraction of actomyosin and dysfunction 
of the intestinal barrier[20]. Activation of GC-C signaling 
protects intestinal barrier function by regulating MLCK 
activity. In this regard, loss of GC-C signaling in GC-C-/- 
mice leads to a dysfunctional intestinal barrier and 
increased paracellular permeability[24]. Coincidently, 
the loss in expression of uroguanylin, the endogenous 
agonist of GC-C receptors, is also associated with 
colon cancer[25] and IBD[26,27]. Thus, activation of GC-C 
signaling is an attractive strategy for the treatment of GI 
disorders and inflammatory diseases.

Plecanatide is structurally identical to uroguanylin, 
differing only in the substitution of Asp with Glu at the 
3-position at the N-terminus for greater binding affinity. 
Dolcanatide is similar to plecanatide in structure except 
that L-Asn1 and L-Leu16 are replaced by D-Asn1 and 
D-Leu16 at the N- and C-termini, respectively, which is 
thought to provide enhanced biostability. In this study, 
we provide the first evidence that plecanatide and 
dolcanatide, both analogs of uroguanylin, suppress 
lipopolysaccharide (LPS)-mediated increase in per-
meability in epithelial cell models and reduce visceral 
hypersensitivity in trinitrobenzene sulfonic acid (TNBS) 
and partial restraint stress (PRS) animal models.

MATERIALS AND METHODS
Ethical approval
Animal care and handling procedures for ex vivo 
studies performed in the United States were as per 
the approved protocol by the Institutional Animal Care 
and Use Committee of Lampire Biologicals (Pipersville, 
PA, United States). Animal handling procedures for in 
vivo studies conducted in France were approved by 

the Institutional Animal Care and Use Local Committee 
(Toulouse, France). The investigators affirm that all 
appropriate measures were taken to minimize pain or 
discomfort of the animals used in this study.

Test peptides, chemicals and reagents
Plecanatide (CAS: 467426-54-6) and dolcanatide (CAS: 
1092457-65-2) were synthesized by AmbioPharm, 
Inc. (Augusta, SC, United States). For all in vitro 
experiments with cell lines and colon tissues, optimal 
concentrations derived from dose response curves were 
used.

Fluorescein isothiocyanate (FITC)-dextran (ap-
proximate molecular weight, 4 kD) and E. coli LPS were 
purchased from Sigma (St Louis, MO, United States). 
Trypsin, GlutaMax, and Pen Strep were procured 
from Life Technologies (Grand Island, NY, United 
States). Rabbit anti-occludin antibody, rabbit anti-
ZO-1 antibody, DAPI (4’, 6’-diamidino-2-phenylindole, 
dihydrochloride), and Alexa Fluor 488 conjugated goat 
anti-rabbit secondary antibodies were from Thermo 
Fisher Scientific (Waltham, MA, United States). Ussing 
chamber and its accessories were purchased from 
Physiologic Instruments (San Diego, CA, United States). 
All other chemicals and reagents were obtained from 
Sigma-Aldrich Corp. (St Louis, MO, United States) or 
Fisher Scientific (Pittsburgh, PA, United States).

Measurement of epithelial cell paracellular permeability
Human colon carcinoma cell lines T84 and Caco-2, 
obtained from ATCC (Manassas, VA, United States), 
were cultured by procedures as previously described[25]. 
Paracellular permeability was determined by cal-
culating the flux of FITC-dextran across epithelial cell 
monolayers. T84 (1.5 × 105) and Caco-2 (8 × 103) 

cells were cultured on 12 mm Transwell® permeable 
polyester membrane inserts (pore size, 0.4 µm) until 
the transepithelial resistance reached > 1000 Ω cm2 for 
T84 cells or > 400 Ω.cm2 for Caco-2. Cell monolayers 
were treated overnight with 100 µg/mL LPS in the 
presence or absence of 1 µmol/L plecanatide or 1 µmol/L 
dolcanatide. Subsequently, the media was aspirated 
and 1 mg/mL FITC-dextran dissolved in Krebs Ringer 
buffer solution was added to the apical chamber and 
cells were incubated for an additional one h at 37 ℃. 
Fluorescence in 100 µL of basolateral buffer solution was 
measured in a Tecan M-1000 plate reader. The excitation 
and emission wavelengths for FITC were 494 nm and 
518 nm respectively. Data represent mean relative 
fluorescence ± standard error of the mean from at least 
two biological replicates, each analyzed in triplicate.

Measurement of permeability across colon tissues from 
rats
Adult Sprague Dawley male and female rats [Crl:
CD(SD)], aged seven to eight wk, weighing 170-210 
g were purchased from Charles River Laboratories 
(Shrewsbury, MA, United States) and allowed to 
acclimate for a minimum of one wk. Animals were 
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(50%) with food and water ad libitum. The evening 
prior to the procedure, food and water were removed 
from the cages. Rats were sedated with acepromazine 
(0.5 mg/kg i.p.) and ketamine (100 mg/kg i.m.) 
(Imalgène; Rhône Mérieux, Toulouse, France). Pairs of 
nichrome wire electrodes (60 cm in length and 80 µM in 
diameter) were implanted bilaterally in the abdominal 
external oblique musculature, just superior to the 
inguinal ligament, 2 cm laterally from the midline. The 
free ends of electrodes were exteriorized on the back 
of the neck and protected by a plastic tube attached 
to the skin. Baseline electromyographic recordings 
began eight to nine days after surgical implantation 
of electrodes. Electrical activity of abdominal striated 
muscle was recorded with an electroencephalograph 
(Mini Ⅷ, Alvar, Paris, France) using a short time 
constant (0.03 s) to remove low frequency signals (< 3 
Hz) and to selectively record spike bursts corresponding 
to abdominal contractions.

Colorectal distention
The colorectal distension (CRD) procedure was based 
on methods previously described[28]. During the 
acclimation sessions, rats were placed in plastic tunnels 
where they could move but not escape. Prior to the 
CRD procedure, a balloon (latex condom) was inserted 
into the rectum of conscious rats until the base of the 
balloon was at the anus (4 cm insertion). The tube was 
fixed at the base of the tail and animals were allowed 
to recover for 30 min. The balloon was then connected 
to a barostat and inflated progressively from 0-60 
mmHg in 15 mmHg steps. Each step of inflation lasted 
five min. Responses to applied CRD pressure levels 
were measured with electromyographic recordings 
during the five-min interval and data are expressed as 
contractions/five min. Colonic volume adaptation to 
increasing pressures (compliance) was also measured 
using a potentiometric recorder (Linseis, Germany).

TNBS-induced visceral hypersensitivity in rats
The effect of plecanatide or dolcanatide on CRD was 
evaluated in a basal condition prior to TNBS exposure, 
as well as after treatment with TNBS in rats (n = 8/
dose group). Plecanatide or dolcanatide were formulated 
in PBS to deliver via oral gavage doses of 0.01 or 0.05 
mg/kg in 1.5 mL. Following the basal test, after a 12 h 
fasting period, rats were treated with 0.3 mL of TNBS 
(80 mg/kg in 50% ethanol), intrarectally through a 
silicone rubber catheter introduced to a depth of 6 
cm into the anus under light anesthesia as previously 
described[29]. Following administration of TNBS, the 
animals were routinely evaluated for changes in 
physical appearance or behavior. Four days after the 
TNBS treatment, the oral administration of plecanatide 
or dolcanatide and the CRD testing was repeated.

Partial restraint stress-induced colorectal 
hypersensitivity
PRS was performed as described by Williams et al[30]. 

maintained on a 12 h light-dark cycle and were fasted 
overnight with free access to water prior to tissue 
harvest. The next morning the animals were euthanized 
by CO2 inhalation. Following a midline abdominal 
incision, the entire colon segment was removed for 
permeability studies. 

Freshly harvested tissue from proximal to mid-colon 
(approximately 2 cm pieces) were randomly selected 
and transferred to RPMI media in 24-well tissue culture 
plates containing vehicle, 10 µmol/L plecanatide or 10 
µmol/L dolcanatide in the presence or absence of 100 
µg/mL LPS. The plates were placed in a humidified 
incubator (5% CO2) at 37 ℃. The next day, each tissue 
piece was mounted on an Ussing chamber slider (0.5 
cm2). Apical and basolateral chambers were bathed 
in Krebs Ringer buffer solution and gassed with 95% 
O2 and 5% CO2. The temperature was maintained 
at 37 ℃ with a water-jacketed system. To measure 
permeability, 2 mg/mL of FITC-dextran dissolved in 
Krebs Ringer buffer solution (pH 7.4) was added to 
the apical chamber. Fluorescence was measured every 
15 min (for two h) in samples (100 µL of buffer) from 
the basolateral chamber using a Tecan M-1000 plate 
reader. The excitation and emission wavelengths used 
were 494 nm and 518 nm respectively. Data values 
represent mean relative fluorescence ± standard error 
of the mean recorded 75 min after the addition of FITC-
dextran from multiple independent treatments.

Immunofluorescence microscopy
T84 and Caco-2 monolayers in 24-well plates were 
treated overnight with 100 µg/mL of LPS in the presence 
or absence of 1 µmol/L plecanatide or 1 µmol/L 
dolcanatide. Following the treatment, cells were washed 
three times with chilled phosphate buffer saline (PBS), 
fixed with 4% formaldehyde in PBS for 15 min, blocked 
and permeabilized in PBS containing 3% bovine serum 
albumin (BSA) and 0.3% Triton X-100 at room tempe-
rature for 30 min. Subsequently, monolayers were 
incubated with PBS containing 0.1% Tween-20, 2% 
BSA, rabbit anti-occludin (1:150) or rabbit anti-ZO-1 
(1:25) antibodies and incubated overnight at 4 ℃ 
followed by three washes in chilled PBS and incubation 
for one h at room temperature in Alexa Fluor 488 
labeled secondary antibody (1:500) and counterstained 
with DAPI. Occludin and ZO-1 were visualized with an 
Olympus IX81 microscope and images were obtained 
using SlideBook 5.0 software. Two independent 
experiments were conducted and approxiamately 30 
fields examined for each treatment. Images were 
acquired at 40 × resolution.

Surgical procedures in rats used in the visceral 
hypersensitivity studies
Wistar male rats (n = 8/dosage group) weighing 220 
-250 g (Janvier SA, Le Genest St Isle, France) were 
used in the visceral hypersensitivity experiments. Rats 
were housed individually in a temperature controlled 
(approxiamately 25 ℃) room with relative humidity 
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Rats were lightly anesthetized with ethyl-ether and 
foreshoulders, upper forelimbs and thoracic trunk were 
wrapped in a confining harness of paper tape to restrict, 
but not prevent, body movements. Rats (n = 8/dose 
group) were then placed in their home cage for two h. 
For the control condition, rats were anesthetized but not 
wrapped. Subsequently the rats were administered 1.5 
mL of vehicle (phosphate-buffered saline), plecanatide 
or dolcanatide formulated to deliver doses of 0.01 and 
0.05 mg/kg by oral gavage 30 min before the end 
of the PRS session. Thirty min following the stress 
procedure, rats underwent the CRD testing.

Statistical analysis 
GraphPad Prism (Version 6.05) was used to calculate 
descriptive statistics and inferential tests. Differences 
between the treatment groups in the permeability 
studies were evaluated using unpaired t-tests. Two-way 
analyses of variance were used to evaluate differences 
between the vehicle control and the plecanatide or 
dolcanatide dose groups followed by comparisons at 

each pressure level using Dunnett’s or Sidak’s multiple 
comparison tests.

RESULTS
Plecanatide and dolcanatide suppressed LPS-induced 
paracellular permeability
Treatment with LPS reportedly can disrupt the TJ com-
plex by down-regulating junctional protein expression. 
Additionally, LPS is known to augment mucosal hyper-
sensitivity through secretion of inflammatory cytokines 
and other mediators[31]. Treatment with LPS (100 
µg/mL) resulted in a statistically significant increase 
in paracellular permeability of FITC-dextran across 
Caco-2 (Figure 1A and B) and T84 (Figure 1C and D) 
cell monolayers. Importantly, the LPS-induced increase 
in the permeability of FITC-dextran was completely 
suppressed in both cell monolayers treated with 
plecanatide (Figure 1A and C) or dolcanatide (Figure 
1B and D). No appreciable effect on paracellular 
permeability was observed when monolayers were 
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Figure 1  Effect of plecanatide and dolcanatide on lipopolysaccharide-induced increase in permeability of 4 kDa fluorescein isothiocyanate-dextran across 
Caco-2 and T84 cell monolayers. Caco-2 (A and B) and T84 (C and D) cells cultured on snap well inserts were treated with vehicle or 1 µmol/L of plecanatide (A and 
C) or dolcanatide (B and D) in the presence or absence of 100 µg/mL of LPS for 16 h. Subsequently, 1 mg/mL of FITC-dextran was added to the apical compartment. 
Paracellular permeability was determined by measuring the amount of FITC-dextran present in the basal compartment. Data represent mean ± SEM analyzed in 
triplicates. D: Dolcanatide; FITC: Fluorescein isothiocyanate; LPS: Lipopolysaccharide; P: Plecanatide; RFU: Relative fluorescence units; SEM: Standard error of the 
mean; V: Vehicle.
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treated with either GC-C agonist alone. 
Next, we examined the effects of plecanatide 

or dolcanatide on the LPS-mediated increase in per-
meability across freshly harvested rat colon tissues. 
Consistent with the results presented in Figure 1, LPS 
treatment resulted in a statistically significant increase 
in the paracellular permeability of FITC-dextran across 
rat colon tissues, which was effectively suppressed by 
treatment with plecanatide or dolcanatide (Figure 2). 
These results indicate that activation of GC-C signaling 
may be suppressing the deleterious permeability 
effects of caused by LPS treatment. 

Plecanatide and dolcanatide maintain TJ integrity 
Since LPS treatment consistently increased paracellular 
permeability in both cell lines and colonic tissue, we 
decided to examine the effects of LPS on the expression 
and localization of TJ proteins in these epithelial cell 
monolayers by immunofluorescence microscopy. 
Treatment with LPS severely disrupted localization of 
occludin and ZO-1 proteins at TJs in Caco-2 (Figures 3A 
and 4A) and T84 cells (Figures 3B and 4B), respectively. 
Importantly, when cell monolayers were treated with 
LPS in the presence of plecanatide or dolcanatide, 
expression of occludin and ZO-1 were normalized and 
localized at the cell surface of adjoining cells, similar to 
that observed for vehicle treated cells (Figures 3 and 4). 
Notably, treatment of cell monolayers with plecanatide 
or dolcanatide without LPS did not alter expression and 
localization of either of the TJ proteins. These results 
indicate that treatment with plecanatide or dolcanatide 
suppress LPS-mediated disruption in expression/
localization of TJs in Caco-2 and T84 monolayers.

Basal colorectal sensitivity in rats 
Initially, we conducted several pilot experiments to 
optimize experimental conditions and dose range of 
plecanatide and dolcanatide for evaluation. Under basal 
conditions, with no CRD pressure in vehicle treated 
rats, abdominal contractions occurred at approximately 
4.1 contractions/5 min. As expected, increasing 

CRD pressure (0-60 mmHg) led to a linear increase 
in the number of abdominal contractions reaching 
approximately 6-fold higher than without any pressure. 
Oral treatment with plecanatide or dolcanatide without 
CRD pressure did not alter the rate of abdominal 
contractions (data not shown). 

Effect of plecanatide and dolcanatide in TNBS-induced 
rectal allodynia in rats
Consistent with our prior experience in this model, 
the number of abdominal contractions, as an index 
of inflammation-induced visceral pain, four days after 
TNBS treatment (Figure 5), gradually increased in 
a pressure-dependent manner as compared to the 
number of abdominal contractions under basal con-
ditions without TNBS treatment[32]. As expected, TNBS 
treatment resulted in increased abdominal contractions 
even in the absence of distending pressure. Oral 
treatment with plecanatide or dolcanatide at the lower 
doses (0.01 and 0.05 mg/kg) considerably attenuated 
(P ≤ 0.001) the TNBS-induced increase in the number 
of abdominal contractions with increasing distending 
pressures up to 60 mmHg (Figure 5B and C). However, 
higher doses (> 0.1 mg/kg) had no significant effect on 
reduction in abdominal contractions at any pressure of 
distention (data not shown). 

Effect of plecanatide and dolcanatide on stress-induced 
colorectal hypersensitivity 
To investigate the anti-nociceptive effect of plecanatide 
or dolcanatide under non-inflammatory conditions, we 
utilized a wrap restraint model of stress-induced visceral 
hypersensitivity in Wistar rats, a strain with high stress 
responsiveness (Figure 6A). In vehicle treated rats, 
the number of abdominal contractions increased after 
the PRS session with increasing CRD pressures up to 
60 mmHg. Oral treatment with plecanatide (Figure 
6B and C) or dolcanatide (Figure 6D and E) resulted 
in a significant reduction in the rate of PRS-induced 
abdominal contractions with increasing CRD pressures. 
Both GC-C agonists exhibited no effect on colorectal 
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Figure 2  Effect of plecanatide (A) and dolcanatide (B) on lipopolysaccharide-induced increased permeability of 4 kD fluorescein isothiocyanate-dextran 
across rat colon tissues. Rat colon tissues (2 cm pieces) were incubated overnight with vehicle, 10 µM plecanatide or dolcanatide in the presence or absence of 
100 µg/mL LPS. Data represent mean fluorescence ± SEM recorded 75 min after the addition of FITC-dextran. D: Dolcanatide; FITC: Fluorescein isothiocyanate; 
LPS: Lipopolysaccharide; P: Plecanatide; RFU: Relative fluorescence units; SEM: Standard error of the mean.
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A

LPS                                                  LPS + Plecanatide                                               LPS + Dolcanatide

Vehicle                                                   Plecanatide                                                Dolcanatide

B

LPS                                                  LPS + Plecanatide                                              LPS + Dolcanatide

Vehicle                                                   Plecanatide                                                Dolcanatide

Figure 3  Effect of plecanatide and dolcanatide on localization of occludin in epithelial cells. Caco-2 (A) and T84 (B) cell monolayers were treated with 1 
µmol/L plecanatide or dolcanatide in the presence or absence of 100 µg/mL of LPS for 16 h followed by immunofluorescence imaging for occludin. Representative 
microscopic fields demonstrate disruption of occludin localization by LPS. Co-treatment of LPS with plecanatide or dolcanatide preserved occludin localization around 
the cell membrane, as was observed for vehicle treated cells. Images taken at 40 × resolution. Blue fluorescence corresponds to DAPI stained nucleus. DAPI: 4’, 
6’-diamidino-2-phenylindole; LPS: lipopolysaccharide.
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A Vehicle                                                   Plecanatide                                                 Dolcanatide

LPS                                                  LPS + Plecanatide                                                LPS + Dolcanatide

B

LPS                                                  LPS + Plecanatide                                               LPS + Dolcanatide

Vehicle                                                   Plecanatide                                                 Dolcanatide

Figure 4  Effect of plecanatide and dolcanatide on localization of ZO-1 in epithelial cells Caco-2 (A) and T84 (B) cell monolayers were treated with 1 µmol/L 
plecanatide or dolcanatide in the presence of 100 µg/mL of LPS for 16 h followed by immunofluorescence imaging for ZO-1. Representative microscopic 
fields depicted above demonstrate disruption of ZO-1 localization by LPS. In Caco-2 cells, LPS treatment appears to cause accumulation of ZO-1 in the cytoplasm. 
Co-treatment of LPS with plecanatide or dolcanatide preserved ZO-1 localization around the cell membrane as observed for vehicle treated cells. Images taken at 40
× resolution. Blue fluorescence corresponds to DAPI stained nucleus. DAPI: 4’, 6’-Diamidino-2-phenylindole; LPS: Lipopolysaccharide; ZO-1: Zonula occludens-1.
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volume at the doses tested (data not shown).

DISCUSSION
The role of GC-C signaling in the regulation of ion and 
fluid homeostasis in the GI tract is well established[33,34] 
and affirmed clinically with the approval of plecanatide 
for the treatment of adults with CIC in the United 
States. However, recent advances have expanded our 
understanding of the involvement of GC-C signaling 
cascade in additional physiological activities such as in 
the maintenance of intestinal barrier function[33,35] and 
in the protection against GI inflammation and colorectal 
carcinogenesis[25,26,34]. Dysregulation of GC-C signaling 
either due to familial mutations in GC-C gene or loss 
of its endogenous ligands has further underscored the 
pathophysiological importance of GC-C signaling in GI 
indications[36]. In this study, we present in vitro and in 
vivo data with plecanatide and dolcanatide, two GC-C 
agonists, to demonstrate the physiological role GC-C 
signaling plays in the maintenance of intestinal barrier 
function and in suppression of visceral hypersensitivity 
in inflammatory and non-inflammatory rat models.

Dysregulation of the intestinal epithelial barrier 
function, known to be associated with several gut 
disorders, can be elicited by a number of agents, 

including luminal bacterial antigens eliciting activation of 
immune system and pro-inflammatory cytokines[20,37,38]. 
Our results demonstrate that LPS treatment con-
siderably increased paracellular permeability in cell 
monolayers (Caco-2 and T84) and in rat colon tissues. 
The concentrations of plecanatide and dolcanatide 
used in these experiments were based on the dose-
response curves established with these cell lines and 
rat tissues as reported earlier[25,39-41]. These deleterious 
effects of LPS were completely suppressed by treatment 
with plecanatide or dolcanatide. The fluorescence 
microscopy data with monolayers of Caco-2 and T84 
indicate that LPS treatment also severely disrupted the 
localization of TJ proteins such as occludin and ZO-1. 
Importantly, treatment with either agonist effectively 
suppressed LPS-mediated disruption in localization 
of occludin and ZO-1 at the TJ surrounding the cells. 
These data are consistent with the recent findings that 
GC-C signaling plays a critical role in the maintenance 
of intestinal barrier function[24,35]. As expected from 
analogs of uroguanylin, plecanatide and dolcanatide are 
likely to exert their pharmacological activities through 
activation of GC-C signaling in the GI tract. In this 
context, we recently reported that oral treatment with 
plecanatide or dolcanatide ameliorated GI inflammation 
through activation of GC-C signaling in the distal 

Figure 5  Design and results of the TNBS-induced visceral hypersensitivity models. A: Schematic depicting the sequence of test sessions and treatments to 
evaluate visceral hypersensitivity induced by TNBS rat models. Effects of oral administration of plecanatide or dolcanatide as compared with vehicle on the increase 
in abdominal contractions to colorectal distention (CRD) during testing conducted four days after intrarectal administration of TNBS. Doses of 0.01 and 0.05 mg/kg of 
plecanatide (B) or dolcanatide (C) reduced the rate of muscular contractions toward levels observed in the vehicle group prior to TNBS administration. Data are the 
mean ± SEM (n = 8 rats/group). aP < 0.05, bP < 0.01 as compared to the values for the post-trinitrobenzene sulfonic acid vehicle group. SEM: Standard error of the 
mean; TNBS: Trinitrobenzene sulfonic acid.
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large intestine[39]. Subsequently, we reported that oral 
treatment with plecanatide delayed the onset of inflam-
mation-driven colitis to colorectal carcinogenesis in 
ApcMin/+-FCCC mice[40]. The emerging paradigm suggests 
that normal function of GC-C signaling may include host 
defense by limiting systemic dissemination of luminal 
antigens through maintenance of mucosal barrier 

function.
Results presented in this study further demonstrate 

that oral treatment with plecanatide or dolcanatide 
reduced TNBS- and PRS-induced visceral hypersensitivity, 
as assessed by reductions in CRD-induced abdominal 
contractions in rats. However, treatment with either of 
the GC-C agonists did not alter the colonic compliance 

Figure 6  Design and results of the partial restraint stress-induced visceral hypersensitivity models. A: Schematic depicting the sequence of test sessions 
and treatments to evaluate visceral hypersensitivity induced by PRS in rat models. Effects of oral administration of plecanatide, dolcanatide or vehicle on the increase 
in abdominal contractions to CRD when tested 30 min after a two h period of partial restraint. Doses of 0.01 and 0.05 mg/kg of plecanatide (B and C) or dolcanatide 
(D and E) 30 min before completion of the restraint session reduced the rate of muscular contractions toward the levels observed in a previous test session without 
exposure to partial restraint. Data are the mean ± SEM (n = 8 rats/group). aP < 0.05, bP < 0.01 as compared to the values for PRS + vehicle control. CRD: Colorectal 
distention; PRS: Partial restraint stress; SEM: Standard error of the mean.
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produced by either of the methods to induce visceral 
hypersensitivity. Only the lower doses (0.01 and 0.05 
mg/kg) showed the most significant inhibition of visceral 
hypersensitivity in both models and that higher doses 
(> 0.5 mg/kg) of either GC-C agonist were not effective 
in these models. These results are consistent with the 
results obtained with orally administered linaclotide, also 
a GC-C agonist, in the same rat models showing that 
only the lower doses of linaclotide (0.01 to 0.3 mg/kg) 
were effective in the TNBS model, whereas the higher 
doses (3 and 30 mg/kg) were completely ineffective[32]. 
Although the precise explanation for the discrepancy in 
dose response remains to be determined, it is possible 
that the loss of anti-hyperalgesic effect at higher doses 
is associated with the loss of pharmacological specificity 
of the treatment. It is known that high levels of cGMP 
also down-regulate cAMP-specific phosphodiesterases 
resulting in increased levels of cAMP and activation 
of cAMP-dependent signaling pathways[42,43]. In this 
context, elevated levels of cAMP are known to be 
associated with hyperalgesia. We have also observed a 
similar bell-shaped response in animal models of colitis, 
inflammation-driven colorectal carcinogenesis, and 
polyp formation in ApcMin/+ mice[39,40]. 

Although the molecular mechanisms by which ple-
canatide or dolcanatide reduce visceral hypersensitivity 
still remain to be fully elucidated, these drug candidates 
seem to mimic the physiological function of uroguanylin 
in activating GC-C, resulting in increased fluid secretion 
to promote bowel movement. Consistent with this 
notion, we reported earlier that oral treatment with 
plecanatide promotes normal bowel movement in adult 
patients with CIC[11,12]. Based on the data presented 
herein, it is conceivable that activation of GC-C signaling 
and the initiation of downstream events may ameliorate 
the low-grade inflammation and thereby suppress 
activation of visceral nociceptive sensory pathways 
in the gut. The unique combination of regulation of 
ion/fluid secretion and anti-inflammatory activities 
of plecanatide makes this drug suitable to treat CIC 
and IBS-C. Oral treatment with plecanatide also 
demonstrated efficacy and a well-tolerated safety profile 
in two phase Ⅲ clinical trials in patients with CIC[11,12]. 
Notably, the efficacy of plecanatide in reducing visceral 
hypersensitivity in animal models is consistent with 
the reduction in abdominal pain observed in two large 
phase Ⅲ IBS-C clinical studies[44]. Thus, GC-C agonists 
are emerging as promising drug candidates for the 
treatment of functional GI disorders and IBD[8,11,12,44].

ARTICLE HIGHLIGHTS
Research background
Activation of guanylate cyclase-C (GC-C) signaling is an emerging therapeutic 
target for the treatment of gastrointestinal disorders and inflammatory diseases. 
Loss of GC-C signaling may disrupt intestinal water and ion secretion, resulting 
in chronic idiopathic constipation or irritable bowel syndrome with constipation 
(IBS-C). In addition, reduced GC-C signaling may also disrupt intestinal 
barrier function due to increased paracellular permeability, allowing entry 
of inflammatory mediators to promote low-grade inflammation and visceral 
hypersensitivity associated with abdominal pain in IBS-C patients. 

Research motivation
Plecanatide and dolcanatide are analogs of human uroguanylin, the 
endogenous agonist of GC-C receptors, and are targeted at the treatment 
of functional constipation disorders and inflammatory bowel disease (IBD), 
respectively; therefore we sought to further characterize the mechanisms of 
these peptides using in vitro and in vivo models of these diseases. 

Research objectives
To discern the role of plecanatide and dolcanatide in the maintenance of 
mucosal membrane integrity and in the reduction of visceral hypersensitivity in 
inflammatory and non-inflammatory animal models. 

Research methods
Maintenance of epithelial cell integrity by plecanatide or dolcanatide in response 
to chemical challenge by lipopolysaccharide (LPS) was assessed using cell 
lines, as well as tissue harvested from rat intestines. Paracellular permeability 
was determined by calculating the flux of fluorescein isothiocyanate (FITC)-
dextran using immunofluorescence microscopy. Electromyographic recordings 
were used to assess suppression of visceral hypersensitivity by plecanatide or 
dolcanatide in rat models of inflammatory and non-inflammatory visceral pain.  

Research results
Plecanatide or dolcanatide effectively suppressed LPS-induced paracellular 
permeability. Oral treatment with plecanatide or dolcanatide considerably 
attenuated visceral hypersensitivity in inflammatory and non-inflammatory 
models of visceral pain. 

Research conclusions
The data presented suggest further mechanisms, in addition to their better 
known secretory effects, whereby plecanatide or dolcanatide treatment, 
through activation of the GC-C receptor, may protect the epithelial barrier from 
increased paracellular permeability and provide anti-nociceptive activity, which 
may ultimately benefit patients with functional constipation disorders and IBD. 

Research perspectives
Plecanatide is a secretagogue approved in the US for the treatment of adults 
with chronic idiopathic constipation or IBS-C. Dolcanatide is under evaluation 
for the treatment of opioid-induced constipation and ulcerative colitis. This 
study provides preclinical evidence that plecanatide and dolcanatide may act to 
preserve the integrity of the intestinal epithelium and to provide anti-nociceptive 
activity, supporting ongoing investigations of these peptides in functional 
constipation disorders and IBD.
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