P. Berbel, D. Navarro, and G. C. Roman, An evo-devo approach to thyroid hormones in cerebral and cerebellar cortical development: etiological implications for autism, Front Endocrinol, vol.5, p.146, 2014.

S. Refetoff, J. H. Bassett, P. Beck-peccoz, J. Bernal, G. Brent et al., Classification and proposed nomenclature for inherited defects of thyroid hormone action, cell transport, and metabolism, J Clin Endocrinol Metab, vol.99, pp.768-70, 2014.

M. D. Miller, K. M. Crofton, D. C. Rice, and R. T. Zoeller, Thyroid-disrupting chemicals: interpreting upstream biomarkers of adverse outcomes, Environ Health Perspect, vol.117, pp.1033-1074, 2009.

G. M. De-escobar, S. Ares, P. Berbel, M. J. Obregon, and F. E. Del-rey, The changing role of maternal thyroid hormone in fetal brain development, Semin Perinatol, vol.32, pp.380-386, 2008.

M. J. Obregon, R. M. Calvo, D. Rey, F. E. De-escobar, and G. M. , Ontogenesis of thyroid function and interactions with maternal function, Endocr Dev, vol.10, pp.86-98, 2007.

J. Bernal and F. Pekonen, Ontogenesis of the nuclear 3,5,3?-triiodothyronine receptor in the human fetal brain, Endocrinology, vol.114, pp.677-686, 1984.

J. Patel, K. Landers, H. Li, R. H. Mortimer, and K. Richard, Thyroid hormones and fetal neurological development, J Endocrinol, vol.209, pp.1-8, 2011.

M. H. Kester, R. Martinez-de-mena, M. J. Obregon, D. Marinkovic, A. Howatson et al., Iodothyronine levels in the human developing brain: major regulatory roles of iodothyronine deiodinases in different areas, J Clin Endocrinol Metab, vol.89, pp.3117-3145, 2004.

P. Santisteban and J. Bernal, Thyroid development and effect on the nervous system, Rev Endocr Metab Disord, vol.6, pp.217-245, 2005.

T. Korevaar, M. Medici, T. J. Visser, and R. P. Peeters, Thyroid disease in pregnancy: new insights in diagnosis and clinical management, Nat Rev Endocrinol, vol.13, pp.610-632, 2017.

N. K. Moog, S. Entringer, C. Heim, P. D. Wadhwa, N. Kathmann et al., Influence of maternal thyroid hormones during gestation on fetal brain development, Neuroscience, vol.342, pp.68-100, 2017.

J. Henrichs, J. J. Bongers-schokking, J. J. Schenk, A. Ghassabian, H. G. Schmidt et al., Maternal thyroid function during early pregnancy and cognitive functioning in early childhood: the generation R study, J Clin Endocrinol Metab, vol.95, pp.4227-4261, 2010.

J. Chevrier, K. G. Harley, K. Kogut, N. Holland, C. Johnson et al., Maternal thyroid function during the second half of pregnancy and child neurodevelopment at 6, 12, 24, and 60 months of age, J Thyroid Res, 2011.

W. Y. Craig, W. C. Allan, E. M. Kloza, A. J. Pulkkinen, S. Waisbren et al., Mid-gestational maternal free thyroxine concentration and offspring neurocognitive development at age two years, J Clin Endocrinol Metab, vol.97, pp.22-30, 2012.

S. L. Andersen, P. Laurberg, C. S. Wu, and J. Olsen, Attention deficit hyperactivity disorder and autism spectrum disorder in children born to mothers with thyroid dysfunction: a Danish nationwide cohort study, BJOG, vol.121, pp.1365-74, 2014.

T. I. Korevaar, R. Muetzel, M. Medici, L. Chaker, V. W. Jaddoe et al., Association of maternal thyroid function during early pregnancy with offspring IQ and brain morphology in childhood: a population-based prospective cohort study, Lancet Diabetes Endocrinol, vol.4, issue.15, pp.327-334, 2016.

S. Barez-lopez, M. J. Obregon, J. Bernal, and A. Guadano-ferraz, Thyroid hormone economy in the perinatal mouse brain: implications for cerebral cortex development, Cereb Cortex, vol.28, pp.1783-93, 2018.

J. H. Goodman and M. E. Gilbert, Modest thyroid hormone insufficiency during development induces a cellular malformation in the corpus callosum: a model of cortical dysplasia, Endocrinology, vol.148, pp.2593-2600, 2007.

K. L. Howdeshell, A model of the development of the brain as a construct of the thyroid system, Environ Health Perspect, vol.110, pp.337-385, 2002.

G. Morreale-de-escobar, M. J. Obregon, E. Del-rey, and F. , Role of thyroid hormone during early brain development, Eur J Endocrinol, vol.151, pp.25-37, 2004.

P. R. Huttenlocher and A. S. Dabholkar, Regional differences in synaptogenesis in human cerebral cortex, J Comp Neurol, vol.387, pp.167-78, 1997.

N. Hadj-sahraoui, I. Seugnet, M. T. Ghorbel, and B. Demeneix, Hypothyroidism prolongs mitotic activity in the post-natal mouse brain, Neurosci Lett, vol.280, pp.79-82, 2000.

I. Amano, Y. Takatsuru, M. A. Khairinisa, M. Kokubo, A. Haijima et al., Effects of mild perinatal hypothyroidism on cognitive function of adult male offspring, Endocrinology, vol.159, pp.1910-1931, 2018.

B. Mellstrom, J. R. Naranjo, A. Santos, A. M. Gonzalez, and J. Bernal, Independent expression of the alpha and beta c-erbA genes in developing rat brain, Mol Endocrinol, vol.5, pp.1339-50, 1991.

D. J. Bradley, W. S. Young, . Iii, and C. Weinberger, Differential expression of alpha and beta thyroid hormone receptor genes in rat brain and pituitary, Proc Natl Acad Sci U S A, vol.86, pp.7250-7254, 1989.

C. Moran and K. Chatterjee, Resistance to thyroid hormone alpha-emerging definition of a disorder of thyroid hormone action, J Clin Endocrinol Metab, vol.101, pp.2636-2645, 2016.

R. E. Weiss and S. Refetoff, Resistance to thyroid hormone, Rev Endocr Metab Disord, vol.1, pp.97-108, 2000.

F. Flamant, A. L. Poguet, M. Plateroti, O. Chassande, K. Gauthier et al., Congenital hypothyroid Pax8(-/-) mutant mice can be rescued by inactivating the TRalpha gene, Mol Endocrinol, vol.16, pp.24-32, 2002.

B. Morte, J. Manzano, T. Scanlan, B. Vennstrom, and J. Bernal, Deletion of the thyroid hormone receptor alpha 1 prevents the structural alterations of the cerebellum induced by hypothyroidism, Proc Natl Acad Sci U S A, vol.99, pp.3985-3994, 2002.

F. Flamant, K. Gauthier, and S. Richard, Genetic investigation of thyroid hormone receptor function in the developing and adult brain, Curr Top Dev Biol, vol.125, pp.303-338, 2017.

N. Billon, Y. Tokumoto, D. Forrest, and M. Raff, Role of thyroid hormone receptors in timing oligodendrocyte differentiation, Dev Biol, vol.235, pp.110-130, 2001.

J. R. Martinez-galan, E. Del-rey, F. , M. De-escobar, G. Santacana et al., Hypothyroidism alters the development of radial glial cells in the term fetal and postnatal neocortex of the rat, Brain Res Dev Brain Res, vol.153, pp.109-123, 2004.

R. Martinez, C. Eller, N. B. Viana, and F. C. Gomes, Thyroid hormone induces cerebellar neuronal migration and Bergmann glia differentiation through epidermal growth factor/mitogen-activated protein kinase pathway, Eur J Neurosci, vol.33, pp.26-35, 2011.

J. Manzano, M. Cuadrado, B. Morte, and J. Bernal, Influence of thyroid hormone and thyroid hormone receptors in the generation of cerebellar gammaaminobutyric acid-ergic interneurons from precursor cells, Endocrinology, vol.148, pp.5746-51, 2007.

E. Cuevas, E. Auso, M. Telefont, G. Morreale-de-escobar, C. Sotelo et al., Transient maternal hypothyroxinemia at onset of corticogenesis alters tangential migration of medial ganglionic eminence-derived neurons, Eur J Neurosci, vol.22, pp.541-51, 2005.

M. E. Gilbert, L. Sui, M. J. Walker, W. Anderson, S. Thomas et al., Thyroid hormone insufficiency during brain development reduces parvalbumin immunoreactivity and inhibitory function in the hippocampus, Endocrinology, vol.148, pp.92-102, 2007.

T. Fauquier, F. Chatonnet, F. Picou, S. Richard, N. Fossat et al., Purkinje cells and Bergmann glia are primary targets of the TRalpha1 thyroid hormone receptor during mouse cerebellum postnatal development, Development, vol.141, pp.166-75, 2014.

D. Lindholm, S. Hamner, and U. Zirrgiebel, Neurotrophins and cerebellar development, Perspect Dev Neurobiol, vol.5, pp.83-94, 1997.

F. Picou, T. Fauquier, F. Chatonnet, S. Richard, and F. Flamant, Deciphering direct and indirect influence of thyroid hormone with mouse genetics, Mol Endocrinol, vol.28, pp.429-470, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02164763

F. Chatonnet, F. Flamant, and B. Morte, A temporary compendium of thyroid hormone target genes in brain, Biochim Biophys Acta, vol.1849, pp.122-131, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02164764

R. J. Denver, L. Ouellet, D. Furling, A. Kobayashi, Y. Fujii-kuriyama et al., Basic transcription element-binding protein (BTEB) is a thyroid hormoneregulated gene in the developing central nervous system. Evidence for a role in neurite outgrowth, J Biol Chem, vol.274, pp.23128-23162, 1999.

C. C. Thompson, Thyroid hormone-responsive genes in developing cerebellum include a novel synaptotagmin and a hairless homolog, J Neurosci, vol.16, pp.7832-7872, 1996.

S. Barez-lopez and A. Guadano-ferraz, Thyroid hormone availability and action during brain development in rodents, Front Cell Neurosci, vol.11, p.240, 2017.

C. Grijota-martinez, E. Samarut, T. S. Scanlan, B. Morte, and J. Bernal, In vivo activity of the thyroid hormone receptor beta-and alpha-selective agonists GC-24 and CO23 on rat liver, heart, and brain, Endocrinology, vol.152, pp.1136-1178, 2011.

E. Auso, R. Lavado-autric, E. Cuevas, D. Rey, F. E. et al., A moderate and transient deficiency of maternal thyroid function at the beginning of fetal neocorticogenesis alters neuronal migration, Endocrinology, vol.145, pp.4037-4084, 2004.

R. Lavado-autric, E. Auso, J. V. Garcia-velasco, A. Mdel, C. et al., Early maternal hypothyroxinemia alters histogenesis and cerebral cortex cytoarchitecture of the progeny, J Clin Invest, vol.111, pp.1073-82, 2003.

C. H. Emerson, G. Bambini, A. S. Castro, M. I. Roti, E. Braverman et al., The effect of thyroid dysfunction and fasting on placenta inner ring deiodinase activity in the rat, Endocrinology, vol.122, pp.809-825, 1988.

A. C. Bianco, D. Salvatore, B. Gereben, M. J. Berry, and P. R. Larsen, Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases, Endocr Rev, vol.23, pp.38-89, 2002.

R. M. Calvo, E. Jauniaux, B. Gulbis, A. M. Gervy, C. Contempre et al., Fetal tissues are exposed to biologically relevant free thyroxine concentrations during early phases of development, J Clin Endocrinol Metab, vol.87, pp.1768-77, 2002.

L. Quignodon, C. Legrand, N. Allioli, A. Guadano-ferraz, J. Bernal et al., Thyroid hormone signaling is highly heterogeneous during pre-and postnatal brain development, J Mol Endocrinol, vol.33, pp.467-76, 2004.

C. Grijota-martinez, D. Diez, G. Morreale-de-escobar, J. Bernal, and B. Morte, Lack of action of exogenously administered T3 on the fetal rat brain despite expression of the monocarboxylate transporter, Endocrinology, vol.8, pp.1713-1734, 2011.

C. Nucera, P. Muzzi, C. Tiveron, A. Farsetti, L. Regina et al., Maternal thyroid hormones are transcriptionally active during embryo-foetal development: results from a novel transgenic mouse model, J Cell Mol Med, vol.14, pp.2417-2452, 2010.

P. Mohacsik, F. Erdelyi, M. Baranyi, B. Botz, G. Szabo et al., A transgenic mouse model for detection of tissue-specific thyroid hormone action, Endocrinology, vol.159, pp.1159-71, 2018.

G. Pinna, O. Brodel, T. Visser, A. Jeitner, H. Grau et al., Concentrations of seven iodothyronine metabolites in brain regions and the liver of the adult rat, Endocrinology, vol.143, pp.1789-800, 2002.

A. Guadano-ferraz, M. J. Obregon, D. L. St-germain, and J. Bernal, The type 2 iodothyronine deiodinase is expressed primarily in glial cells in the neonatal rat brain, Proc Natl Acad Sci U S A, vol.94, pp.10391-10397, 1997.

V. A. Galton, M. J. Schneider, A. S. Clark, and D. L. St-germain, Life without thyroxine to 3,5,3'-triiodothyronine conversion: studies in mice devoid of the 5'-deiodinases, Endocrinology, vol.150, pp.2957-63, 2009.

V. A. Galton, E. T. Wood, E. A. St-germain, C. A. Withrow, G. Aldrich et al., Thyroid hormone homeostasis and action in the type 2 deiodinasedeficient rodent brain during development, Endocrinology, vol.148, pp.3080-3088, 2007.

B. Morte, A. Ceballos, D. Diez, C. Grijota-martinez, A. M. Dumitrescu et al., Thyroid hormone-regulated mouse cerebral cortex genes are differentially dependent on the source of the hormone: a study in monocarboxylate transporter-8-and deiodinase-2-deficient mice, Endocrinology, vol.151, pp.2381-2388, 2010.

A. Hernandez, L. Quignodon, M. E. Martinez, F. Flamant, and D. L. St-germain, Type 3 deiodinase deficiency causes spatial and temporal alterations in brain T3 signaling that are dissociated from serum thyroid hormone levels, Endocrinology, vol.151, pp.5550-5558, 2010.

K. Landers and K. Richard, Traversing barriers -how thyroid hormones pass placental, blood-brain and blood-cerebrospinal fluid barriers, Mol Cell Endocrinol, vol.458, pp.22-30, 2017.

W. M. Van-der-deure, R. P. Peeters, and T. J. Visser, Molecular aspects of thyroid hormone transporters, including MCT8, MCT10, and OATPs, and the effects of genetic variation in these transporters, J Mol Endocrinol, vol.44, pp.1-11, 2010.

W. E. Visser, E. C. Friesema, and T. J. Visser, Minireview: thyroid hormone transporters: the knowns and the unknowns, Mol Endocrinol, vol.25, pp.1-14, 2011.

K. L. Ferguson, J. L. Vanderluit, J. M. Hebert, W. C. Mcintosh, E. Tibbo et al., Telencephalon-specific Rb knockouts reveal enhanced neurogenesis, survival and abnormal cortical development, EMBO J, vol.21, pp.3337-3383, 2002.

C. Zevenbergen, M. E. Meima, E. C. Lima-de-souza, R. P. Peeters, A. Kinne et al., Transport of iodothyronines by human L-type amino acid transporters, Endocrinology, vol.156, pp.4345-55, 2015.

D. C. Tarlungeanu, E. Deliu, C. P. Dotter, M. Kara, P. C. Janiesch et al., Impaired amino acid transport at the blood brain barrier is a cause of autism spectrum disorder, Cell, vol.167, pp.1481-94, 2016.

E. C. Friesema, S. Ganguly, A. Abdalla, M. Fox, J. E. Halestrap et al., Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter, J Biol Chem, vol.278, pp.40128-40163, 2003.

D. Braun, A. Kinne, A. U. Brauer, R. Sapin, M. O. Klein et al., Developmental and cell type-specific expression of thyroid hormone transporters in the mouse brain and in primary brain cells, Glia, vol.59, pp.463-71, 2011.

J. Muller, S. Mayerl, T. J. Visser, V. M. Darras, A. Boelen et al., Tissue-specific alterations in thyroid hormone homeostasis in combined Mct10 and Mct8 deficiency, Endocrinology, vol.155, pp.315-340, 2014.

C. E. Schwartz, M. M. May, N. J. Carpenter, R. C. Rogers, J. Martin et al., Allan-Herndon-Dudley syndrome and the monocarboxylate transporter 8 (MCT8) gene, Am J Hum Genet, vol.77, pp.41-53, 2005.

A. M. Dumitrescu, X. H. Liao, R. E. Weiss, K. Millen, and S. Refetoff, Tissue-specific thyroid hormone deprivation and excess in monocarboxylate transporter (mct) 8-deficient mice, Endocrinology, vol.147, pp.4036-4079, 2006.

M. Trajkovic, T. J. Visser, J. Mittag, S. Horn, J. Lukas et al., Abnormal thyroid hormone metabolism in mice lacking the monocarboxylate transporter 8, J Clin Invest, vol.117, pp.627-662, 2007.

B. Nunez, R. Martinez-de-mena, M. J. Obregon, M. Font-llitjos, V. Nunes et al., Cerebral cortex hyperthyroidism of newborn mct8-deficient mice transiently suppressed by lat2 inactivation, PLoS One, vol.9, p.96915, 2014.

H. Iwayama, X. H. Liao, L. Braun, S. Barez-lopez, K. B. Weiss et al., Adeno associated virus 9-based gene therapy delivers a functional monocarboxylate transporter 8, improving thyroid hormone availability to the brain of Mct8-deficient mice, Thyroid, vol.26, issue.9, pp.1311-1320, 2016.

J. Bernal, A. Guadano-ferraz, and B. Morte, Thyroid hormone transportersfunctions and clinical implications, Nat Rev Endocrinol, vol.11, p.690, 2015.

S. Mayerl, J. Muller, R. Bauer, S. Richert, C. M. Kassmann et al., Transporters MCT8 and OATP1C1 maintain murine brain thyroid hormone homeostasis, J Clin Invest, vol.124, pp.1987-99, 2014.

S. Suzuki, N. Suzuki, J. Mori, A. Oshima, S. Usami et al., Microcrystallin as an intracellular 3,5,3'-triiodothyronine holder in vivo, Mol Endocrinol, vol.21, pp.885-94, 2007.

M. J. Schneider, S. N. Fiering, S. E. Pallud, A. F. Parlow, D. L. St-germain et al., Targeted disruption of the type 2 selenodeiodinase gene (DIO2) results in a phenotype of pituitary resistance to T4, Mol Endocrinol, vol.15, pp.2137-2185, 2001.

T. L. Fonseca, J. P. Werneck-de-castro, M. Castillo, B. M. Bocco, G. W. Fernandes et al., Tissue-specific inactivation of type 2 deiodinase reveals multi-level control of fatty acid oxidation by thyroid hormone in the mouse, Diabetes, vol.63, pp.1594-604, 2014.

A. Hernandez, S. Fiering, E. Martinez, V. A. Galton, and D. St-germain, The gene locus encoding iodothyronine deiodinase type 3 (dio3) is imprinted in the fetus and expresses antisense transcripts, Endocrinology, vol.143, pp.4483-4489, 2002.

A. Hernandez, B. Morte, M. M. Belinchon, A. Ceballos, and J. Bernal, Critical role of types 2 and 3 deiodinases in the negative regulation of gene expression by T3 in the mouse cerebral cortex, Endocrinology, vol.153, pp.2919-2947, 2012.

D. Braun, E. K. Wirth, F. Wohlgemuth, N. Reix, M. O. Klein et al., but normal thyroid hormone levels and signalling, in mice lacking the amino acid and thyroid hormone transporter Slc7a8, Biochem J, vol.439, pp.249-55, 2011.

L. Mariotta, T. Ramadan, D. Singer, A. Guetg, B. Herzog et al., T-type amino acid transporter TAT1 (Slc16a10) is essential for extracellular aromatic amino acid homeostasis control, J Physiol, vol.590, pp.6413-6437, 2012.

S. Mayerl, T. J. Visser, V. M. Darras, S. Horn, and H. Heuer, Impact of Oatp1c1 deficiency on thyroid hormone metabolism and action in the mouse brain, Endocrinology, vol.153, pp.1528-1565, 2012.

B. V. Alvarez, D. M. Kieller, A. L. Quon, M. Robertson, and J. R. Casey, Cardiac hypertrophy in anion exchanger 1-null mutant mice with severe hemolytic anemia

, Am J Physiol Heart Circ Physiol, vol.292, pp.1301-1313, 2006.

L. Gong, N. Aranibar, Y. H. Han, Y. Zhang, L. Lecureux et al., Characterization of organic anion-transporting polypeptide (Oatp) 1a1 and 1a4 null mice reveals altered transport function and urinary metabolomic profiles, Toxicol Sci, vol.122, pp.587-97, 2011.

V. Episkopou, S. Maeda, S. Nishiguchi, K. Shimada, G. A. Gaitanaris et al., Disruption of the transthyretin gene results in mice with depressed levels of plasma retinol and thyroid hormone, Proc Natl Acad Sci U S A, vol.90, pp.2375-2384, 1993.

J. A. Palha, V. Episkopou, S. Maeda, K. Shimada, M. E. Gottesman et al., Thyroid hormone metabolism in a transthyretin-null mouse strain, J Biol Chem, vol.269, pp.33135-33144, 1994.

X. H. Liao, D. Cosmo, C. Dumitrescu, A. M. Hernandez, A. Van-sande et al., Distinct roles of deiodinases on the phenotype of Mct8 defect: a comparison of eight different mouse genotypes, Endocrinology, vol.152, pp.1180-91, 2011.

J. P. Stohn, M. E. Martinez, K. Matoin, B. Morte, J. Bernal et al., MCT8 deficiency in male mice mitigates the phenotypic abnormalities associated with the absence of a functional type 3 deiodinase, Endocrinology, vol.157, pp.3266-77, 2016.

A. Ceballos, M. M. Belinchon, E. Sanchez-mendoza, C. Grijota-martinez, A. M. Dumitrescu et al., Importance of monocarboxylate transporter 8 for the blood-brain barrier-dependent availability of 3,5,3'-triiodo-L-thyronine, Endocrinology, vol.150, pp.2491-2497, 2009.

B. Morte and J. Bernal, Thyroid hormone action: astrocyte-neuron communication, Front Endocrinol, vol.5, p.82, 2014.

E. C. Friesema, J. Jansen, J. W. Jachtenberg, W. E. Visser, M. H. Kester et al., Effective cellular uptake and efflux of thyroid hormone by human monocarboxylate transporter 10, Mol Endocrinol, vol.22, pp.1357-69, 2008.

J. A. Palha, R. Fernandes, G. M. De-escobar, V. Episkopou, M. Gottesman et al., Transthyretin regulates thyroid hormone levels in the choroid plexus, but not in the brain parenchyma: study in a transthyretin-null mouse model, Endocrinology, vol.141, pp.3267-72, 2000.

A. Hallen, A. J. Cooper, J. F. Jamie, P. A. Haynes, and R. D. Willows, Mammalian forebrain ketimine reductase identified as mu-crystallin; potential regulation by thyroid hormones, J Neurochem, vol.118, pp.379-87, 2011.

A. Hallen, A. J. Cooper, J. F. Jamie, and P. Karuso, Insights into enzyme catalysis and thyroid hormone regulation of cerebral ketimine reductase/mucrystallin under physiological conditions, Neurochem Res, vol.40, pp.1252-66, 2015.

B. Morte, D. Diez, E. Auso, M. M. Belinchon, P. Gil-ibanez et al., Thyroid hormone regulation of gene expression in the developing rat fetal cerebral cortex: prominent role of the Ca 2+ /calmodulin-dependent protein kinase IV pathway, Endocrinology, vol.151, pp.810-830, 2010.

J. E. Royland, J. S. Parker, and M. E. Gilbert, A genomic analysis of subclinical hypothyroidism in hippocampus and neocortex of the developing rat brain, J Neuroendocrinol, vol.20, pp.1319-1357, 2008.

H. Dong, S. H. You, A. Williams, M. G. Wade, C. L. Yauk et al., Transient maternal hypothyroxinemia potentiates the transcriptional response to exogenous thyroid hormone in the fetal cerebral cortex before the onset of fetal thyroid function: a messenger and microRNA profiling study, Cereb Cortex, vol.25, pp.1735-1780, 2014.

P. Gil-ibanez, J. Bernal, and B. Morte, Thyroid hormone regulation of gene expression in primary cerebrocortical cells: role of thyroid hormone receptor subtypes and interactions with retinoic acid and glucocorticoids, PLoS One, vol.9, p.91692, 2014.

P. Gil-ibanez, F. Garcia-garcia, J. Dopazo, J. Bernal, and B. Morte, Global transcriptome analysis of primary cerebrocortical cells: identification of genes regulated by triiodothyronine in specific cell types, Cereb Cortex, vol.27, pp.706-723, 2017.

F. Picou, T. Fauquier, F. Chatonnet, and F. Flamant, A bimodal influence of thyroid hormone on cerebellum oligodendrocyte differentiation, Mol Endocrinol, vol.26, pp.608-626, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02164757

L. Calza, D. Forrest, B. Vennstrom, and T. Hokfelt, Expression of peptides and other neurochemical markers in hypothalamus and olfactory bulb of mice devoid of all known thyroid hormone receptors, Neuroscience, vol.101, pp.1001-1013, 2000.

A. Hernandez, M. E. Martinez, S. Fiering, V. A. Galton, and D. St-germain, Type 3 deiodinase is critical for the maturation and function of the thyroid axis, J Clin Invest, vol.116, pp.476-84, 2006.

M. Alonso, C. Goodwin, X. Liao, D. Page, S. Refetoff et al., Effects of maternal levels of thyroid hormone (TH) on the hypothalamus-pituitary-thyroid set point: studies in TH receptor beta knockout mice, Endocrinology, vol.148, pp.5305-5317, 2007.

P. Srichomkwun, J. Anselmo, X. H. Liao, G. S. Hones, L. C. Moeller et al., Fetal exposure to high maternal thyroid hormone levels causes central resistance to thyroid hormone in adult humans and mice, J Clin Endocrinol Metab, vol.102, pp.3234-3274, 2017.

W. B. Deng, X. H. Liang, J. L. Liu, and Z. M. Yang, Regulation and function of deiodinases during decidualization in female mice, Endocrinology, vol.155, pp.2704-2721, 2014.

J. Patel, K. Landers, H. Li, R. H. Mortimer, and K. Richard, Delivery of maternal thyroid hormones to the fetus, Trends Endocrinol Metab, vol.22, pp.164-70, 2011.

E. Y. Lee, C. Y. Chang, N. Hu, Y. C. Wang, C. C. Lai et al., Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis, Nature, vol.359, pp.288-94, 1992.

K. L. Ferguson, K. A. Mcclellan, J. L. Vanderluit, W. C. Mcintosh, C. Schuurmans et al., A cell-autonomous requirement for the cell cycle regulatory protein, Rb, in neuronal migration, EMBO J, vol.24, pp.4381-91, 2005.

J. W. Ritchie and P. M. Taylor, Role of the system L permease LAT1 in amino acid and iodothyronine transport in placenta, Biochem J, vol.356, pp.719-744, 2001.

E. Vasilopoulou, L. S. Loubiere, H. Heuer, M. Trajkovic-arsic, V. M. Darras et al., Monocarboxylate transporter 8 modulates the viability and invasive capacity of human placental cells and fetoplacental growth in mice, PLoS One, vol.8, p.65402, 2013.

P. Rakic, Evolution of the neocortex: a perspective from developmental biology, Nat Rev Neurosci, vol.10, pp.724-759, 2009.