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ABSTRACT: The objectives of this work are to address the prebiotic effects of chicory (Cichorium intybus) together with its
possible role in appetite control. We compared nine chicory genotypes in order to determine if variations in the content of
metabolites in the roasted roots would lead to modifications in release of satiety hormones and in composition of gut microbiota.
To this aim, a 5-week dietary-intervention study was achieved using mice fed with distinct chicory-based preparations. A 16S
rRNA gene-based metagenetic analysis of fecal microbiota was performed. In vitro gastrointestinal digestions were performed in
order to study the effect of chicory intestinal digests on gut hormone regulation in enteroendocrine cells. Firmicutes/
Bacteroidetes ratio and gut bacterial groups, such as Alloprevotella, Blautia, Alistipes, and Oscillibacter, were found to be modulated
by chicory. On the other hand, CCK and GLP-1 satiety hormones were demonstrated to be significantly increased by chicory in
vitro.

KEYWORDS: Cichorium intybus, prebiotics, metabolomics, metagenetics, satiety hormones

■ INTRODUCTION

The chicory root represents the main industrial source of
inulin1 and is also used as a food ingredient in the form of flour
or roasted products. It goes into our food under various forms
entailing an implicit consumption of inulin. Inulin-type
prebiotics include fructooligosaccharides (FOS), oligofructose,
and inulin.2 They escape digestion in the digestive superior
tract and arrive in the colon, where they constitute the ideal
fermentative substrate for resident bacteria. These ingredients
are legally classified as food or food ingredients and are
included in the daily diet.3 Inulin is especially consumed and
has received a notice from the European Food Safety Authority
concerning positive health effects. Inulin is incorporated into
numerous foodstuffs such as yogurts and cheeses,4 cakes,5 and
dough.6 Added to coffee, inulin showed an effect on satiety by
mitigation of the sensation of hunger.7 By reinforcing the gut
microbiota, inulin participates in the increase of resistance to
infections as observed for the anti-inflammatory effects on
asthmatic patients.8 Similarly, by stimulating the growth of
lactobacilli, inulin is able to activate T cells and NK cells as well
as the phagocytes.9 Functional food refers to food containing
ingredients that aid specific bodily functions in addition to
being nutritious,10 and so inulin is currently used as functional
food, particularly in a variety of dairy products, to enhance the
intensification of the beneficial intestinal bacteria.11

A prebiotic is defined as a substrate that is selectively utilized
by host microorganisms conferring to this host a health
benefit.12 This new definition expands the concept of prebiotics
to include noncarbohydrate substances, applications to body

sites other than the gastrointestinal tract, and diverse categories
other than food. The community of microorganisms that makes
up the gut microbiota has been the object of many studies. The
analysis of genetic material recovered directly from environ-
mental samples by metagenomic approaches reproduces the
profile of microbial biodiversity in the initial sample. Sequence
analysis of the 16S rRNA gene has been widely used to identify
bacterial species from the digestive tract, and next-generation
sequencing techniques that have emerged during the past
decade have facilitated the rapid analysis of these samples.13

This technique facilitates the monitoring of different
modifications of the gut microbiota under different treatments
or diets.
Concerning the food-intake regulation, it is known that the

short-term regulation implicates multiple actors including the
brain and the intestine, which coordinate with nervous and
endocrine signals. Intestinal hormones, secreted by enter-
oendocrine cells (EECs) scattered along the gastrointestinal
tract, are primordial signals implicated in this regulation. Thus,
in response to nutrient sensing at their apical side, EECs secrete
a wide range of gut hormones acting as peripheral signals
transmitted to the brain to regulate appetite, energy
expenditure, and insulin secretion.14,15 Among the many
hormones produced by the gut, cholecystokinin (CCK) and
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glucagon-like peptide 1 (GLP-1) are well-studied anorexigenic
hormones. However, released GLP-1 is quickly inactivated by
the dipeptidyl peptidase IV (DPP-IV). Consequently, DPP-IV
represents a good target for type 2 diabetes mellitus (T2DM)
management, and the search for natural DPP-IV inhibitors
seems today to be a promising approach.16,17

The chicory root contains other major compounds as
chlorogenic acids and sesquiterpene lactones,18 which may be
of further interest. The potential synergies between inulin and
these different specialized metabolites are not yet described.
Consequently, we interrogated many different chicory
genotypes for their metabolites composition by a proton
nuclear magnetic resonance spectroscopy (1H NMR) and
liquid chromatography-UV (LC-UV) for absolute quantifica-
tion. Chicory roasted roots from different genotypes were next
used to feed mice. Gut microbiota variations were then
analyzed by NGS sequencing of 16S rRNA gene and
metagenetic analysis in order to be associated with roots
metabolites composition. In addition, the effects of roasted
chicory on intestinal hormone modulation were investigated in
vitro with the combination of simulated gastrointestinal
digestion, secretion study using the STC-1 enteroendocrine
cell line, and a dipeptidyl peptidase-IV (DPP-IV) inhibition
assay.

■ MATERIALS AND METHODS
Chicory Metabolomics. Nine industrial chicory (Cichorium

intybus) genotypes selected from a 48 genotype diversity field trial,
conducted by Florimond-Desprez Veuve et Fils SAS (Cappelle-en-
Pev́el̀e, France) in year 2011 and located in Coutiches (France), were
used to produce fresh chicory roots. Roots were dried and roasted by
Leroux SAS (Orchies, France). Samples (roasted products) were
freeze-dried (48 h), ground (Waring 7011G blender with glass
container, Waring), and sieved to 355 μm. Extraction of metabolites
was performed by the decoction procedure. Warm water (100 mL, 85
°C) was added to a 150 mL glass tube containing 3 g of powder. The
mixture was incubated for 20 min at 80 °C under weak agitation. The
solution was filtered through a coffee filter, filtrates were centrifuged at
30 000g for 10 min at 4 °C, and the supernatants were store at −80 °C
until feeding. The concentration of the decoctions was normalized on
the basis of dry matter to 15.5 ± 0.5 mg/mL. 1H NMR absolute
quantification was carried out according to Moing et al.19 by the
ERETIC method using calibration curves of C1H-(α+β) glucose.20

For chlorogenic acids and sesquiterpene lactones determination, LC-
UV analyses were performed according to Willeman et al.18 All
experiments were conducted in triplicate. Statistical analysis was
performed using R 2.15.1 for Windows with FactoMineR and agricolae
libraries to perform principal component analysis (PCA) and analysis
of variance (ANOVA), respectively. Normality and homogeneity of
the variance were checked by Shapiro−Wilk’s test and Bartlett’s test,
respectively, followed by Tukey’s test to assess significant differences

between means of groups. Differences were considered significant for a
p-value of <0.05.

In Vitro Simulated Gastrointestinal Digestion. In vitro
simulated gastrointestinal digestion (SGID) was performed as
previously described,21 with some modifications. The first three
steps of digestion were simulated (mouth, stomach, and duodenum),
and three fluids were prepared to mimic the physiological conditions
of each step. The composition of each fluid is described in Table 1,
and the pH of the solutions was adjusted to physiologically relevant
values using NaOH (5 M) and HCl (5 M) solutions. The whole
digestion process was performed in a 200 mL reactor controlled at 37
°C under constant stirring with a magnetic stirrer over 240 min. Two g
of chicory roasted roots (dry weight) was added to the reactor and
solubilized in 16 mL of salivary fluids at pH 6.8 (125 g·L−1 dry matter)
containing amylase at an enzyme/substrate (E/S) ratio of 1:430 (w/
w). Sampling of 4 mL was performed at the end of the salivary step.
Twenty-four mL of gastric fluids containing pepsin at an (E/S) ratio of
1:40 (w/w) were added after saliva sampling, and the pH solution was
adjusted (2.5−3.0). After 2 h, sampling of 16 mL was performed at the
end of the gastric step (41.67 g·L−1 dry matter). Thirty-six mL of
intestinal fluids (24 mL of duodenal juice and 12 mL of bile juice)
containing pancreatin at an E/S ratio of 1:50 (w/w) and 4 mL of 1 M
NaHCO3 were then added to the batch, and the pH solution was
adjusted to 7. Intestinal digestion was carried out again over 2 h, and
sampling of 60 mL was performed at the end of the intestinal step.
Final digest concentration reaches 13.89 g·L−1 dry matter. Once
heated at 95 °C for 10 min to ensure enzyme denaturation, all samples
were centrifuged at 13 400g for 10 min at room temperature.
Supernatants were collected and frozen for further analysis.

CCK and GLP-1 Secretion Study. The murine enteroendocrine
STC-1 cell line was a gift gratefully received from Dr. C. Roche
Grangette (INSERM U865, Lyon, France). The STC-1 cells were
grown at 37 °C, 5% CO2 atmosphere, in Dulbecco’s modified Eagle’s
medium (DMEM, 4.5 g·L−1 glucose) supplemented with 10% fetal
bovine serum (FBS), 100 U·mL−1 penicillin, 100 μg·mL−1

streptomycin, and 2 mM glutamine. STC-1 cells were seeded to
reach 60−80% confluence. Cells were washed twice with fresh media
(without FBS) and incubated with 3 different concentrations (0.2, 0.5,
and 1% (w/v)) of chicory roasted roots compared to their in vitro
simulated gastrointestinal digestion (SGID) products diluted in
incubation buffer (4.5 mM KCl, 1.2 mM CaCl2, 1.2 mM MgCl2,
140 mM NaCl, and 20 mM Hepes-Tris, pH 7.4) for 2 h at 37 °C in 5%
CO2 atmosphere. Cell supernatants were collected on ice and
centrifuged (2 000g for 7 min). The supernatants were frozen and
stored at −20 °C for further hormone-concentration determinations.
Secreted CCK and active GLP-1 concentrations (pM) in culture
media of STC-1 cells were assayed using commercial RIA kits (Active
Glucagon-Like Peptide RIA kit from EMD Millipore from Merck
KGaA, Darmstadt, Germany, and Gastrin kit from CisBio, France).

DPP-IV Inhibition Assay. The DPP-IV inhibitory activity of the
native chicory roasted roots compared to their SGID products was
assayed according to the method described by Lacroix and Li-Chan22

with some modifications. Briefly, 25 μL of chicory samples and their
corresponding SGID products at concentrations ranging from 0.87 to
13.89 mg/mL (dry matter) were preincubated with 75 μL of Tris/HCl

Table 1. Chemical Composition, Protease Concentration, and pH Used for the Different Steps of the In Vitro Simulated
Gastrointestinal Digestion

saliva gastric juice duodenal juice bile juice

chemical composition KCl (12 mM) KCl (11 mM) KCl (7.6 mM) KCl (5 mM)
KSCN (2 mM) NaH2PO4 (2.2 mM) KH2PO4 (0.6 mM) NaCl (90 mM)
NaH2PO4 (7.4 mM) NH4Cl (5.7 mM) NaCl (120 mM) NaHCO3 (69 mM)
Na2SO4 (4 mM) NaCl (47 mM) NaHCO3 (40 mM) HCl (1.5 mM)
NaCl (5 mM) HCl (6.5 mM) HCl (1.8 mM) CO(NH2)2 (4 mM)
NaHCO3 (20 mM) CaCl2 (2.7 mM) MgCl2 (0.5 mM)
CO(NH2)2 (3.3 mM) CO(NH2)2 (1.4 mM) CO(NH2)2 (1.7 mM)

enzymes amylase 1/430 (w/w) pepsin 1/40 (w/w) pancreatin 1/50 (w/w)
pH 6.8 ± 0.2 1.3 ± 0.2 8.1 ± 0.2 8.2 ± 0.2
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buffer (100 mM, pH 8.0) and 25 μL of DPP-IV (25 μL at 0.018 U·
mL−1) at 37 °C for 5 min in a 96-well plate. For control purposes, the
sample was replaced with Tris/HCl buffer (100 mM, pH 8.0). The
reaction was initiated by the addition of 50 μL of Gly-Pro-p-
nitroanilide (1 mM). All the samples and reagents were diluted in
Tris/HCl buffer. The plate was incubated at 37 °C for 30 min, and the
absorbance of the released p-nitroaniline at 405 nm at 2 min intervals
was read using a microplate reader (ELx808, Biotek, U.S.A.). The
concentration of the sample required to cause 50% inhibition of the
DPP-IV activity (IC50) was determined by plotting the % DPP-IV
inhibition as a function of sample final concentration natural
logarithmic.
Animal Experiments. Six-week-old female BALB/c BYj were used

to evaluate the prebiotic effects of chicory in agreement with the
directive 2010/63/EEC for the protection of animals used for scientific
experiments and according to the law 2012-10 (2012) and 2013-118
(2013). The protocol was approved by the Ethics Committee for the
experiment on animals (APAFIS 6539). The mice were randomly
divided into groups (n = 5/group) and housed in a controlled
environment (with a temperature of 22 °C, a 12 h/12 h light/dark
cycle and ad libitum access to standardized food and water). Mice were
fed with an aqueous decoction concoction (produced as described
before) of the roasted powders from two selected genotypes (G12 and
G35). This solution corresponded to 7 mg of chicory roasted roots/
mouse/day, which was considered to be the human equivalent weight/
body mass for a moderated alimentary dose. The mice gavages
consisted in a daily force-feeding of 500 μL of stemming solution
decoctions of roasted roots besides the standardized diet. Controls will
undergo an equivalent force-feeding with water. Five mice by

condition were used for 30 days followed by a week of resilience.
Feces were individually harvested just prior to the starting of the
treatment (D0), after 30 days of treatment (D30), and next to the
washout period (D36). Samples were immediately frozen and
preserved at −80 °C.

16S rRNA Gene Library Construction and Sequencing.
Genomic DNA extraction from each fecal sample was performed
with the QIAamp DNA Stool Mini Kit (kit QA) according to
manufacturer’s instructions. Quality and quantity of DNA extracted
from fecal sample were determined using Agilent 2100 Bioanalyzer
system (Agilent). Polymerase chain reaction (PCR) amplification of
the V1−V3 region of the 16S rDNA and library preparation were
performed with the following primers (with Illumina overhand
adapters): forward (5′-GAGAGTTTGATYMTGGCTCAG-3′) and
reverse (5′-ACCGCGGCTGCTGGCAC-3′). Each PCR product was
purified with the Agencourt AMPure XP beads kit (Beckman Coulter,
Pasadena, U.S.A.) and submitted to a second PCR round for indexing,
using the Nextera XT index primers 1 and 2. After purification, PCR
products were quantified using the Quant-IT PicoGreen (Thermo-
Fisher Scientific, Waltham, U.S.A.) and diluted to 10 ng μL−1. A final
quantification, by qPCR, of each sample in the library was performed
using the KAPA SYBR FAST qPCR kit (KapaBiosystems, Wilmington,
U.S.A.) before normalization, pooling, and sequencing on a MiSeq
sequencer using v3 reagents (ILLUMINA, U.S.A.). Positive control
using DNA from 20 defined bacterial species and a negative control
(from the PCR step) were included in the sequencing run. Sequence
read processing was used as previously described using, respectively,
MOTHUR software package v1.3523 and UCHIME algorithm24 for
alignment and clustering and chimera detection. Clustering distance of

Figure 1. Chicory metabolites content. Principal component analysis (PCA) with individuals factor map (A) and variables factor map (B) of the LC-
UV and 1H NMR metabolite profile differentiating roasted chicory root product of nine genotypes. Plots are based on the two first components,
both explaining 53.85% of total variance. (C) Average levels of major metabolites detected in the two selected genotypes G12 and G35. Statistically
significant differences measured by ANOVA (p < 0.05) according to genotype are shown with different letters in the same column (Tukey’s test).
Roasted roots of G12 genotype present higher proportion of citrate, fumarate, lactate, formate, acetate, and inositol than those of G35 genotype.
Inversely, roasted roots of G35 genotype were richer in inulin, sucrose, and fructose as well as in 3-mono-O-caffeoylquinic acid and
dihydrodeoxylactucin.
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0.03 was used for OTU generation. 16S Reference alignment and
taxonomical assignation were based upon the SILVA database (v1.28)
of full-length 16S rDNA sequences.25 Species assignment of
representative sequence for each OTU was based upon a BlastN
algorithm search using SILVA v1.28 database with an identity cutoff of
0.01. From 1 938 786 raw reads, we obtained 1 515 443 reads after
cleaning (length and sequence quality). We retained 8 000 reads per
sample as a subsampling process, which were further screened for
chimeric contaminants. Finally, 217 790 reads (median: 7 632 per
sample) were used for OTU clustering and taxonomic assignment.
Good’s coverage estimator was used as a measure of sampling effort
for each sample, with a mean value of 98.44%. Subsample data sets
were obtained and used to evaluate ecological indicators, richness
estimation (Chao 1 estimator), microbial biodiversity (reciprocal
Simpson index), and population evenness (derived from Simpson
index) using MOTHUR. Population structure and community
membership were assessed with MOTHUR using distance matrix
based on Bray−Curtis dissimilarity index as a measure of community
structure, which considers shared OTUs and their relative
abundances.26 Ordination analysis and 3D plots were performed
with Vegan, Vegan3d, and rgl packages in R. Nonmetric dimensional
scaling, based upon the Bray−Curtis dissimilarity matrix, was applied
to visualize the biodiversity between the groups. AMOVA test was
performed to assess the diversity clustering of treatment groups with
Bray−Curtis matrix using MOTHUR.27 Statistical differences between
bacterial biodiversity, richness, and evenness were assessed with two-
way ANOVA corrected for multitesting (Benjamini, Krieger, and
Yekutieli) using PRISM 7 (Graphpad Software); differences were
considered significant for a p-value of <0.05. Statistical differences of
population abundance between groups were assessed with ANOVA,
using STAMP software.28 Statistical paired differences between
treatment groups of specific bacterial populations were assessed by
two-way ANOVA and Tukey−Kramerposthoc test using PRISM 7
(Graphpad Software); differences were considered significant for a p-
value of <0.05. All the biosample raw reads have been deposited at the
National Center for Biotechnology Information (NCBI) and are
available under ID PRJNA433087. Microbial profiling was validated
for the most important bacterial phyla, using quantitative PCR
(Supporting Information).

■ RESULTS
Metabolomic Analyses in Chicory Plants. Nine

industrial chicory genotypes were selected from a 48 genotype
diversity field trial. This selection was performed through a
genetic diversity characterization using the combination of 47
metabolomic signals and 170 alleles issued from 19 monoloci,
codominant, well-dispersed on the genome as informative
chicory-specific simple sequence repeat (SSR) markers
(unpublished results). From 9 interrogated chicory genotypes,
metabolomic analyses revealed two very distinct genotypes:
G12 and G35 (Figure 1). The G12 genotype presented
significantly more citrate, fumarate, lactate, formate, acetate,
and inositol than G35. Inversely, roasted roots of G35 genotype
where richer in inulin, sucrose, and fructose as well as in 3-
mono-O-caffeoylquinic acid and dihydrodeoxylactucin. G12
and G35 genotypes were selected and used for mice feeding in
order to observe modifications at the gut microbiota level.
In Vitro Gut Hormone Regulation. The roasted roots

were predigested using SGID to mimic the first three
compartments of the gastrointestinal tract, in order to compare
the effects of the roots from two different genotypes. The
samples for which SGID was not undertaken were incubated
alongside the duodenal digests for 2 h with the STC-1 cells.
Results showed that each genotype exerted a significant dose-
dependent stimulation of CCK release before and after SGID,
and interestingly, the SGID treatment led to an increase in the
CCK release for the G12 and the G35 genotypes (Figure 2A).

These increases were significant for the highest dose assayed
(1% w/v) and represented 20- and 25-fold the value of the
control (buffer), respectively. In comparison, the hemoglobin
digest, which was previously described as a strong stimulator of
CCK release21 and used here as positive control, led to an
increase of 30-fold of control.
The impact of SGID on the stimulation potential of GLP-1

secretion observed was significant (Figure 2B). Thus, the effects
of the roasted roots before SGID on GLP-1 secretion were
relatively weak and similar for the G12 and the G35 genotypes
but significant compared to control (6- and 8.5-fold of control
for the two highest doses). After the SGID treatment, a dose-
dependent increase on GLP-1 release, significant for 0.5 and
1.0% w/v, was observed for the G12 and G35 genotypes (28-
and 33-fold of control, respectively). At the same dose, the
positive control, i.e., the hemoglobin digest, led to a 50-fold
increase in GLP-1 release. Moreover, the DPP-IV inhibition
capacities of the different roasted roots samples before and after
SGID were assayed. No significant inhibition of the DPP-IV
activity could be observed for any of the samples (data not
shown).

Figure 2. Effect of chicory roasted roots on intestinal hormone
secretion by STC-1 cells. STC-1 cells were incubated with different
final concentrations (0.2, 0.5, and 1% dry matter) of chicory roasted
roots (G12 and G35 genotype), before and after SGID, in Hepes
buffer, pH 7.4. Bovine hemoglobin intestinal hydrolysate (Hb, I4, 1%
dry matter final concentration) was used as positive control.
Supernatants were collected after 2 h of incubation. (A)
Cholecystokinin (CCK) and (B) glucagon-like peptide-1 (GLP-1)
levels were determined by RIA and expressed as % of control (buffer)
levels. Data are expressed in mean (n = 3) ± SD. Means without a
common letter are different (p < 0.05) using one-way ANOVA with
Tukey’s test for pairwise comparisons.
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Metagenetic Analyses in Chicory-Treated Mice.
Roasted roots of G12 and G35 chicory genotypes were used
for 30 days of daily supplementary dietary feeding of mice at
350 mg·kg−1, a concentration estimated to be proportional to
human daily consumption. No significant difference on the
body weights of mice was found after treatments and after the
washout period (Supporting Information). Fecal samples from
mice before and after 30 days of chicory feeding and after the 1-
week washout were used for DNA extraction and 16S rRNA
gene sequencing in order to perform a metagenetic analysis.
The microbial α-diversity within each group (G12, G35, and

control) was quantified for each treatment range. Composed of
scores between 0 and 5, the Shannon index (SI) represents a
synthetic numerical value of the ecological α-diversity of the
microbiota in each fecal sample, a higher SI indicating a greater
diversity. A significant decrease in SI was observed after 30 days
of treatment with G35 (Figure 3A), suggesting that the effect
on microbiota could be dependent on the dietary chicory
genotype. After the washout period (D36), both chicory

genotypes seemed to maintain a decreased level of α-diversity
compared to control (Figure 3B).
Chicory-dependent microbiota profile was next explored at

the phylum level (Table 2). Four weeks of chicory diet induced
several changes in the gut microbial community at the phylum
level compared with the control (no-treated mice). The relative
abundance of Firmicutes was less changed in G12-treated mice
(15.6% vs 14.1%) but greatly reduced in G35-treated mice
(3.1% vs 14.1%). The Bacteroidetes phylum was also less
modified in the G12 group (83.6% vs 85.5%) but increased in
the G35 group (96.5% vs 85.5%). Other phyla showed low
variations during chicory treatment, <1%. In addition, the ratio
of Firmicutes (F) to Bacteroidetes (B) was higher in G12-
treated mice and significantly lower in G35-treated mice
compared to the control (0.187 to 0.032 vs 0.165) (Figure 4).
qPCR analyses on three different feces samples confirmed this
result (Supporting Information).
At the genus level, all changes observed in the relative

abundance after 30 days of chicory treatment are represented in
Figure 5 and the Supporting Information. Beta diversity among

Figure 3. Shannon index of bacterial diversity during different chicory diets. G35 chicory triggered the most reduced bacterial diversity in fecal
samples after 30 days of diet (D30). After the washout period (D36), both chicory genotypes indicate a decreased level of α-diversity compared to
control. Significant differences (p < 0.05) are indicated with letters (a, b); * indicates p < 0.05.

Table 2. Mean Relative Abundances (%) of Bacterial Phyla in Mice Microbiota During Different Chicory Diets (D30)a

control G12 G35

phylum mean (%) SD mean (%) SD mean (%) SD

Bacteroidetes 85.593 a 5.114 83.646 a 3.960 96.500 b 1.256
Firmicutes 14.131 a 5.155 15.670 a 3.760 3.122 b 1.209
Verrucomicrobia 0.018 0.022 0.066 0.099 0.032 0.053
Proteobacteria 0.042 0.032 0.023 0.029 0.169 0.032
Cyanobacteria 0.150 0.140 0.464 0.225 0.141 0.064
Tenericutes 0.046 0.032 0.089 0.091 0.023 0.035
Actinobacteria 0.009 0.011 0.000 0.000 0.004 0.008
Deferribacteres 0.000 0.000 0.000 0.000 0.000 0.000
TM7 0.009 0.018 0.042 0.031 0.000 0.000
Fusobacteria 0.000 0.000 0.000 0.000 0.009 0.010

aStandard deviations (SD) were calculated for each phylum abundance, and statistically significant differences were measured by ANOVA (p < 0.05)
and are shown with different letters (Tukey’s test).
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different conditions as a measure of genera turnover was
considered by factorial correspondence analysis (FCA) (Figure
6) and showed a specific distribution of the significant bacterial
genera abundances around each chicory treatment. Two taxa
seemed to be more associated with the G35 treatment:
Bacteroidales_unclassified and Alloprevotella, as they present a
significantly increased abundance in G35 treatment. Six other
taxa, Ruminococcaceae_unclassified, Alistipes, Oscillibacter, Lach-
nospiraceae_unclassified, Blautia, and Clostridiales_unclassified,
showed an important decrease in the G35 group (Supporting
Information). The significant variations in classified taxa were
compared to controls after 30 days (Figure 7). Alloprevotella
relative abundance increased while abundance of Alistipes,
Blautia, and Oscillibacter decreased during G35 chicory feeding.

■ DISCUSSION
Many studies have already been done on the inulin of chicory
and its prebiotic effect. Our work was oriented toward a new
analytical dimension. The composition of roasted roots of
chicory was considered for the first time by all major metabolic
compounds and also by the variability of these compounds. We
tested the effects of the roasted products of chicory on the
intestinal microbiota of mice, and these tests were performed
for the first time on murine model. There are no safe or
effective doses established for chicory consumption in humans
as yet, but common doses that have been traditionally used
range from 3 to 6 g of chicory root per day.29,30 Taking this into
account, 7 mg of roasted roots/mouse/day was used, which was
considered to be the equivalent of a moderated human
alimentary dose. We then analyzed the daily feeding
consequences on mice gut microbiota composition and, in
parallel, the in vitro effects on two satiety hormones. All results
were then converged to be finally associated with the
metabolite composition of each chicory genotype in order to
estimate their effect as prebiotic and on appetite control.

Chicory Genotypes Contain Different Metabolites
Proportions. G12 and G35 chicory genotypes contain
carboxylic compounds such as citrate, fumarate, lactate,

Figure 4. Relative abundance (%) of Firmicutes and Bacteroidetes in
mice microbiota after chicory diet. Relative abundance of phyla
Firmicutes and Bacteroidetes detected by NGS is expressed as a mean
(Tukey’s test, n = 5/group, ** indicates p < 0.01).

Figure 5. Relative abundance (%) of main genera in mice fecal
microbiota after chicory diet. Relative abundance of genera are
indicated when their values are >0.1%. Genera with a low relative
abundance were assigned as “other”.

Figure 6. Factorial correspondence analysis (FCA) of the significant abundant bacterial genera. FCA was used to describe variability among genera
abundance (8 must abundant genera were used as variables, black letters) in the two analyzed chicory genotypes G12 and G35 (used as factors, red
letters). The commonality created around the chicory G12 seems richer than those of G35. A genotype-dependent effect could be observed (the two
rings).
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formate, or acetate, but a significant increasing amount of these
was observed for G12 (Figure 1). Lactate and citrate could
contribute to acetate production,31−33 known as a short-chain
fatty acid (SCFA).34 An important source of SCFAs is also
inulin. This fermentable carbohydrate is a soluble dietary fiber
that is present in noticeable amounts in chicory roots. In our
experiments, inulin content of both chicory genotypes are
elevated, with a significant increased amount for G35,
representing 236.6% more inulin than G12. Similarly, fructose
and sucrose contents were found to be significantly increased in
G35 (Figure 1). It was demonstrated that supplementation of
inulin resulted further in significantly elevated concentrations of
total SCFAs in the cecum with positive effects on lipid
metabolism and obesity development.35 Fructose indirectly
contributed to the formation of SCFAs because of its presence
in fructans and fructooligosaccharides (FOS) that generate
SCFAs under microbiota fermentation.36

Either ingested with food or produced by gut microbiota
metabolism, SCFAs are then absorbed and used in different
biosynthetic routes by the host, entering diverse carbohydrate
and lipid metabolic pathways. The involvement of SCFAs in
energy and lipid metabolism has largely been analyzed, and the
potential role of SCFAs in the control of metabolic syndrome
has also been observed and discussed in the literature. Butyrate
and propionate have been reported to induce the production of
the glucagon-like peptide-1 (GLP-1) gut hormone, thus
reducing food intake.37 Acetate has also been found to reduce
the appetite, but mainly through the interaction with the central
nervous system, by a hypothalamic mechanism involved in the
control of body weight.38

Chlorogenic acids were detected in roasted chicory roots
with a significant increased concentration for 3-mono-O-
caffeoylquinic acid (cqa) in G35 (Figure 1). Chlorogenic
acids refer to a related polyphenol family of esters that can play
a role in blood-pressure reduction39,40 and have potential anti-
inflammatory effects.41

Another group of biologically active compounds in chicory
are sesquiterpene lactones (SLs). SLs possess anti-inflammatory
and antitumor activity and are the main determinants of
bitterness. Control of their concentrations is a key point for the
market value of different chicory varieties.42 Among SLs we
noticed that the amount of 11β,13-dihydro-8-deoxylactucin
(DHdLc) varied significantly between chicory genotypes
(Figure 1), as G35 is richer in DHdLc than G12.
To conclude, we focused on the most significant differences

between G12 and G35 chicory genotypes. The G35 roasted
roots contained a higher amount of fermentable carbohydrates
(inulin and fructose) that are considered as SCFA generators
during colon digestion and present a potential satiety control
by different digestive mechanisms. G12 roasted roots showed
less fermentable carbohydrate content than G35 but an
increased amount of acetate, which is involved also in the
control of body weight. Moreover, G35 showed an increased
content of anti-inflammatory compounds as cqa and DHdLc.
Taking into account these significant differences, we then
addressed one further question, whether the feeding with G12
and G35 chicory roots has different effects on the production of
satiety hormones and on gut microbiota composition.

Satiety Hormones Increase Is Dependent on Chicory
Genotype. To the best of our knowledge, this is the first work
to describe the effect of chicory on the regulation of gut
hormones in vitro. Thus, the results obtained highlight for the
first time the capability of roasted chicory roots to enhance
both CCK and GLP-1 secretion in EECs. Interestingly, SGID
enhances the ability to induce both CCK and GLP-1 secretion
for the G12 and G35 genotypes. Considering the small
intestine compartment of the SGID, the effects obtained on
CCK and GLP-1 secretion with G35 and G12 are very
significant when compared to those obtained for the
hemoglobin intestinal digest (used as positive control), which
was previously reported to be a strong stimulator of gut
hormone secretion.21 Interestingly, the bioactivities were

Figure 7. Significant variations in four genera of mice microbiota after chicory diet. Bar graphs compare relative abundance of each condition
between D0 and D30 for the most significant genera variations analyzed by NGS and metagenetics. Relative abundance is expressed as mean ± SD
(* indicates P < 0.05, Student’s t test, n = 5/group).
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impacted by the genotype; the G12 was more efficient to
induce CCK secretion, whereas G35 was more potent for GLP-
1 secretion. This is presumably due to the difference observed
in the metabolite composition of the two genotypes as
commented on earlier and shown in Figure 1. Thus, it is
well-known that carbohydrates such as glucose and fructose are
strong stimulators of gut hormone secretion.43 Moreover,
recently an increasing number of works have shown the
implication of polyphenols in energy homeostasis as potent
stimulators of gut hormone secretion and/or inhibitors of DPP-
IV activity.44,45 These properties together with the previously
described effect of inulin and oligofructose on satiety, via its
action on gut microbiota,46 make chicory a very promising
ingredient for testing for effects on obesity and T2DM in
different experimental assays.
Diversity of the Gut Microbiota Changes with Chicory

Genotype. Daily feeding with G12 and G35 genotypes of
roasted chicory equivalent to a human moderated alimentary
dose triggered changes in α-diversity, as indicated in Figure 3.
At this level of analysis, the microbial community diversity
alone does not necessarily provide understanding of
community function, as was observed for other studies,47 but
indicates a genotype-specific effect of the chicory feeding. The
fact that the SI sustainably decreased in mice microbiota during
G35 diet suggests that the composition of different specific
metabolites of the G35 chicory genotype could probably more
rapidly alter the gut microbiota.
Composition of the Gut Microbiota Changes with

Chicory Genotype. The ratio between the Firmicutes and
Bacterioidetes phyla was calculated for different chicory
treatments, and a genotype-dependent effect was observed
(Figure 4). The G35 genotype, which is richer in inulin and
fructose, led to a decrease in the abundance of Firmicutes and a
significant lower F/B ratio. A change of F/B ratio may be
important in itself because this can influence the efficiency of
processing of otherwise indigestible complex polysaccharides in
the diet. In our pilot study, roasted chicory roots were used for
feeding mice for a short period (30 days), and body weight was
not significantly altered (Supporting Information), while a
small decrease in body weight was observed for G35 feed mice.
It was observed that diet-inducing obesity triggered changes in
the F/B ratio as the abundance of Firmicutes dramatically
increased within the distal gut microbiota.48 This ratio was
found also to be significantly increased in patients developing
type 1 diabetes.49 Parnell and Reimer50 demonstrated a
significant shift in the Bacteroidetes and Firmicutes groups
with increasing doses of prebiotic fiber intake; F/B was thus
reduced with beneficial effects on obesity physiopathology.
Presently, changes in intestinal microbial composition are
thought to be an important causal factor in the development of
obesity.51 Animal data and human studies have reported that
the overall F/B proportion is increased in obese people
compared to lean people.52,53 However, this criterion is not
consistent to our study design. In this context, we observed an
effect of the G35 chicory genotype, which must be further
investigated in different analogous models or in human subjects
in order to specify the metabolic action related to diabetes and
obesity.
Daily feeding with roasted chicory triggered changes in the

relative abundance of several bacterial genera also (Figure 5).
FCA was used to select the genotype-specific bacterial genera
(Figure 6). Thus, the abundance of Alloprevotella was found to
be increased in all chicory-treated groups and significantly

increased in G35 treatment. The abundance of Blautia, Alistipes,
and Oscillibacter was found to be significantly decreased in G35
treatments (Figure 7).
Alloprevotella belongs to Prevotelaceae family that was

recently associated with an important role in gut−brain
interactions as well as in metabolic disorders. Furthermore,
low levels of Prevotellaceae have been reported in patients with
autism54 but also in patients with type 1 diabetes.55 The mean
abundance of Prevotellaceae in the feces of patients with
Parkinson disease was reduced by 77.6% in comparison with
control subjects.56 On the basis of these observations, high fecal
abundance of Prevotellaceae was proposed as a useful biomarker
to exclude Parkinson disease.56

Blautia is a genus in the bacterial family Lachnospiraceae that
participates in nutrient assimilation.57 An increased abundance
of Blaudia has been observed during antibiotic administration,58

giving reason to believe that this bacterial genus could be
involved in antagonistic relationships at the gut microbial
ecosystem level. The change in abundance must be correlated
to other imbalanced bacterial groups and be specifically
associated with a particular diet59 or pathology60 on a case-
by-case basis.
Alistipes is a genus belonging to the Bacteroidetes phylum

and was observed to be significantly correlated with autism
disorders. Thus, decreased levels of ileal serotonin in the
intestinal epithelial cell layer were associated with an increased
abundance of the Alistipes genus.61

Oscillibacter belongs to the Clostridia class of Firmicutes, and
in human gut microbiota it grows fermentatively, producing
predominantly valerate when grown using glucose as a carbon
source.62 Valeric acid is similar in structure to GBH (γ-
hydroxybutyric acid) and GABA (γ-aminobutyric acid), which
are involved in neurotransmission in the mammalian central
nervous system. Increasing abundance of Alloprevotella and
decreasing Blautia, Alistipes, and Oscillibacter levels during
chicory feeding could be further more closely correlated to
these putative neurological effects and/or metabolic disorders.
In conclusion, we investigated many different chicory

genotypes for their content of metabolites, and two genotypes,
G12 and G35, were retained for their different compositions.
The most important differences concerned amounts of
fermentable carbohydrates (inulin and fructose), carboxylic
compounds such as acetate, chlorogenic acids such as cqa, and
sesquiterpene lactones (for example, DHdLc). In the literature,
the majority of chicory analyses use the different compounds
that are isolated and employed for targeted investigations. We
did not extract isolated compounds but rather used chicory
roasted roots from G12 and G35 genotypes as part of the food
matrix to feed mice in order to analyze satiety hormones as well
as variations in the gut microbiota. Because chicory treatments
were performed with moderate quantities of roasted roots and
because the two investigated chicory genotypes belong to the
same species, no qualitative differences were observed in
microbiome bacterial abundance. However, a genotype-depend-
ent effect was observed. The G35 chicory genotype, which is
richer in fermentable carbohydrates and also in anti-
inflammatory compounds such as cqa and DHdLc, could
more rapidly alter the gut microbiota α-diversity. Also, a
significant change in F/B ratio was generated by the G35
intake. CCK and GPL-1 secretion were found to be increased
by the samples obtained after in vitro digestion of chicory for
both genotypes, with G35 inducing the most significant
increase of GLP-1. These observations explain for the first
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time the potential of chicory products in appetite control by
inducing increased levels of satiety hormones. With the aim of
defining the benefits of chicory for functional food, further
studies must therefore be targeted through investigating
microbiota composition and intestinal hormone levels in
association with metabolomic composition of chicory, for a
more detailed understanding of appetite-regulation mechanisms
conferred by this plant. The abundance of Alloprevotella,
Blautia, Alistipes, and Oscillibacter in the gut microbiota was also
found to be modified during G35 chicory feeding. As these
bacterial genera were described as neuroprotective or associated
with gut−brain axis, there could be an interesting perspective to
open for testing the psychobiotic effect of different chicory
genotypes.
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