The Major Origin of Seedless Grapes Is Associated with a Missense Mutation in the MADS-Box Gene VviAGL11

Carolina Royo, Rafael Torres-Pérez, Nuria Mauri, Nieves Diestro, José Antonio Cabezas, Cécile Marchal, Thierry Lacombe, Javier Ibanez, Manuel Tornel, Juan Carreño, et al.

To cite this version:

Carolina Royo, Rafael Torres-Pérez, Nuria Mauri, Nieves Diestro, José Antonio Cabezas, et al.. The Major Origin of Seedless Grapes Is Associated with a Missense Mutation in the MADS-Box Gene VviAGL11. Plant Physiology, American Society of Plant Biologists, 2018, 177 (3), pp.1234-1253. 10.1104/pp.18.00259 . hal-02621641

HAL Id: hal-02621641
https://hal.inrae.fr/hal-02621641
Submitted on 26 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Running title: A VviAGL11 point mutation led to seedless grapes

The major origin of seedless grapes is associated with a missense mutation in the MADS-box gene VviAGL11

Carolina Royo1, Rafael Torres-Pérez1, Nuria Mauri1, Nieves Diestro1, José Antonio Cabezas2, Cécile Marchal3, Thierry Lacombe4, Javier Ibáñez1, Manuel Tornel5, Juan Carreño5, José Miguel Martínez-Zapater1, Pablo Carbonell-Bejerano1*

1 Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC-Universidad de La Rioja-Gobierno de La Rioja, 26007 Logroño, Spain
2 Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - Centro de Investigación Forestal (INIA-CIFOR), INIA-UPM, 28040 Madrid, Spain
3 Institut National de la Recherche Agronomique (INRA), Centre de Ressources Biologiques de la Vigne, Domaine de Vassal, 34340 Marseillan-Plage, France
4 AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, 34060 Montpellier, France
5 Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), ITUM, 30150 La Alberca, Spain

One-sentence summary: Integrative genetics and genomics approaches revealed a missense substitution in the MADS-box gene VviAGL11 as the mutation leading to seed abortion in most seedless table grape varieties.
Author contributions
J.M-Z. and P.C-B. conceived the research. P.C-B., J.M-Z. and C.R designed experiments. C.R. and P.C-B. performed experiments. C.R., P.C-B., R.T-P., N.M., N.D. and J.A.C. analyzed data. J.C., M.T., C.R., J.I., C.M. and T.L. provided materials and contributed to phenotyping tasks. P.C-B., C.R. and J.M-Z. wrote the manuscript with input and comments from all the other authors.

Funding information
This work was partially supported by project GRASP from European Union’s Plant Genomics ERA-Net and projects BIO2011-026229 and BIO2014-59324-R from the Spanish Ministry of Economy (MINECO). This work also benefited from networking activities within the funded European Cooperation in Science and Technology (COST) Action FA1106 QualityFruit.

* Corresponding author

E-mail: pablo.carbonell@icvv.es (P.C-B.)
Abstract

Seedlessness is greatly prized by consumers of fresh grapes. While stenospermocarpic seed abortion determined by the *SEED DEVELOPMENT INHIBITOR* (*SDI*) locus is the usual source of seedlessness in commercial grapevine (*Vitis vinifera*) cultivars, the underlying *sdi* mutation remains unknown. Here, we undertook an integrative approach to identify the causal mutation. Quantitative genetics and fine mapping in two ‘Crimson Seedless’ (CS)-derived *F*₁ mapping populations confirmed the major effect of the *SDI* locus and delimited the *sdi* mutation to a 323-kb region on chromosome 18. RNA-seq comparing seed traces of seedless and seeds of seeded *F*₁ individuals identified processes triggered during *sdi*-determined seed abortion, including activation of salicylic acid-dependent defenses. The RNA-seq dataset was investigated for candidate genes and, while no evidence for causal *cis-*acting regulatory mutations was detected, deleterious nucleotide changes in coding sequences of the seedless haplotype were predicted in two genes within the *sdi* fine mapping interval. Targeted re-sequencing of the two genes in a collection of 124 grapevine cultivars showed that only the point variation causing the Arg197Leu substitution in the seed morphogenesis regulator gene *AGAMOUS-LIKE 11* (*VviAGL11*) was fully linked with stenospermocarpity. The concurrent post-zygotic variation identified for this missense polymorphism and seedlessness phenotype in seeded somatic variants of the original stenospermocarpic cultivar supports a causal effect. We postulate that seed abortion caused by this amino acid substitution in *VviAGL11* is the major cause of seedlessness in cultivated grapevine. This information can be exploited to boost seedless grape breeding.
Introduction

The reduction of seed content without altering fruit size is a major breeding goal in many fruit crops because it eases fruit eating, which increases attractiveness for consumers and improves the suitability of fruits for the food processing industry (Varoquaux et al., 2000). For centuries, seedlessness has been one of the most prized quality traits in grapevine (*Vitis vinifera*) berries intended for direct consumption either as fresh fruit or raisins (Ledbetter and Ramming, 1989). World demand for seedless grapes is rising and vine-growers are increasingly asking for seedless cultivars (FAO and OIV, 2016). Understanding the genetic control of seedlessness is therefore paramount to boost the success of table grape breeding and fulfill such demands.

Although seeds are the sexual propagules of angiosperm plants, they are not required for the propagation of many woody crops such as grapevine that are vegetatively multiplied. This propagation method enables the establishment of new cultivars of seedless somatic variants that appeared spontaneously along the history of grapevine domestication (This et al., 2006). Seedless grape variants can be classified into two major groups depending on the type of seedlessness (Stout, 1936; Pratt, 1971): (i) Stenospermocarpy, in which fertilization and embryo development take place, but seed development is prematurely aborted (Stout, 1936; Ledbetter and Ramming, 1989; Kovaleva et al., 1997); (ii) Parthenocarpy, in which fruits develop in the absence of fertilization yielding small berries that completely lack seeds, which has recently been related with impaired meiosis (Royo et al., 2016). Stenospermocarpy is widely used in the production of seedless table grape cultivars because berry
size is less compromised, likely due to the presence of seminal rudiments or seed traces that promote fruit growth (Stout, 1936; Nitsch et al., 1960; Pratt, 1971).

A stable stenospermocarpy phenotype is shown by a few ancient oriental grapevine cultivars known as ‘Kishmish’ and derived varieties. They include the white-berried ‘Kishmish’, also known as ‘Sultanina’ or ‘Thompson Seedless’ (Dangl et al., 2001), which has been the major source of seedlessness in table grape breeding programs (Adam-Blondon et al., 2001; Ibáñez et al., 2009; Ibáñez et al., 2015). Studies of stenospermocarpy have therefore focused on ‘Sultanina’ and ‘Sultanina’-derived cultivars, which produce soft and often imperceptible seed traces generally lacking seed coat lignification. While the embryo usually remains viable, the degree of endosperm degeneration detected from 3-4 weeks after flowering (WAF) and the final size of seed traces are variable, depending on the genetic background (Pearson, 1932; Stout, 1936; Barritt, 1970; Pratt, 1971; Striem et al., 1992; Wang et al., 2015; Wang et al., 2016). Stenospermocarpy in ‘Sultanina’ has been associated with defects in the development of maternal seed coat tissues (Malabarba et al., 2017). Specifically, endotesta growth and lignification does not take place in seed traces. Abnormal development of the precursor inner ovule integument has also been reported in ‘Sultanina’ at earlier developmental stages (Pearson, 1932).

Concerning the genetic control of ‘Sultanina’-derived seedlessness, different hypotheses were initially proposed depending on the approaches used to measure the trait and the genetic backgrounds analyzed (Bouquet and Danglot, 1996). However, a systematic analysis in several F₁ cross progenies shows that a model involving three independent recessive loci regulated by a dominant
locus could explain most segregations (Bouquet and Danglot, 1996). This dominant locus was later named \textit{SEED DEVELOPMENT INHIBITOR (SDI)} (Lahogue et al., 1998). Different quantitative genetic studies located the \textit{SDI} quantitative trait locus (QTL) on linkage group (LG) 18, explaining up to 70% of the phenotypic variance in seed content parameters (Cabezas et al., 2006; Mejia et al., 2007; Costantini et al., 2008; Mejia et al., 2011; Doligez et al., 2013).

Based on genetic linkage and putative homology, grapevine \textit{AGAMOUS-LIKE 11} (\textit{VviAGL11}= \textit{AGAMOUS-LIKE 3}, \textit{VviAG3}= \textit{MINICHROMOSOME MAINTENANCE1}, \textit{AGAMOUS}, \textit{DEFICIENS} and \textit{SERUMRESPONSE FACTOR 5}, \textit{VvMADS5}) was proposed as the \textit{SDI} candidate gene in the absence of information for other genes in the region (Costantini et al., 2008; Mejia et al., 2011). This assumption was done considering its homology to the MADS-box gene \textit{AGL11}, also known as \textit{SEEDSTICK (STK, At4g09960)}, which controls ovule morphogenesis and seed coat differentiation in Arabidopsis (\textit{Arabidopsis thaliana}) (Pinyopich et al., 2003; Mizzotti et al., 2014). A role in seed morphogenesis was also shown for grapevine \textit{VviAGL11} homolog proteins (Malabarba et al., 2017). Molecular analyses identified two non-silent single nucleotide polymorphisms (SNPs) in the seedless mutant haplotype (\textit{sdi+}) of \textit{VviAGL11} (Mejia et al., 2011; Malabarba et al., 2017). However, both amino acid substitutions were detected in homozygosity in the seeded wine cultivar ‘Asyl Kara’, a result that excluded them as functional dominant polymorphisms causing seedlessness (Mejia et al., 2011). Alternatively, the reduced expression of \textit{VviAGL11} in fruits of seedless \textit{sdi+} individuals compared to fruits or seeds of seeded individuals was related with the origin of seedlessness (Mejia et al., 2011).
2011; Ocarez and Mejia, 2016; Malabarba et al., 2017). Following this hypothesis, sequence polymorphisms observed in non-coding regions of the seedless allele of VviAGL11 were proposed as putative mutations causing misexpression and seedlessness (Mejia et al., 2011; Di Genova et al., 2014). In a later effort to confirm the misexpression hypothesis, Ocarez and Mejia (2016) related several putative gene conversion events in the promoter region of VviAGL11 with reversion of stenospermocarpy in somatic variants of ‘Sultanina’ that produce regular seeds. However, these studies did not assess the question on whether the observed expression differences in VviAGL11 are causes or consequences of the seedless syndrome. The misexpression hypothesis also has limitations in explaining the dominant nature of the sdi mutation. In addition, the fact that VviAGL11 expression is decreased in seed tissues has not consistently been proven (Mejia et al., 2011; Ocarez and Mejia, 2016; Malabarba et al., 2017).

Here we have reassessed the genetic and molecular origin of the ‘Sultanina’-derived seedlessness in an independent unbiased study. We used large F1 crosses of table grape cultivars segregating for stenospermocarpy to delimit the location of the causal mutation through crossover mapping. To identify putative misexpression or coding mutations within the delimited interval, we followed a strategy that combined RNA-seq comparisons in F1 hybrids and targeted sequencing in a large collection of seeded and stenospermocarpic grapevine cultivars. The results clearly point to a single nucleotide missense mutation in VviAGL11 as the origin of the dominant seedless phenotype.
Results

QTL mapping of seed content variation

Since we used the bred cultivar CS as the seedlessness donor (Ramming et al., 1995) in our study, we wanted to confirm the effect of the major SDI QTL in this genetic background. For this purpose we used a F₁ mapping population derived from a RG (‘Red Globe’) by CS cross hybridization. As an indicator of seed lignification that is useful to discriminate stenospermocarpy (Bouquet and Danglot, 1996), we analyzed the variation in seed dry weight per berry (SDW). Both progenitors showed extreme divergence in their seed content (Fig. 1). RG berries had an average of 3.2±0.2 fully developed seeds with a mean SDW of 33.2±9.3 mg, while CS berries had an average of 2.2±0.7 seed traces with a mean SDW of 0.43±0.2 mg (Supplemental Table 1). SDW distribution in F₁ progeny was asymmetric and bimodal and did not fit a normal distribution in any of the analyzed years (Fig. 1 and Supplemental Table 1). Values for SDW were highly correlated over the three seasons analyzed (0.86<r<0.93) in agreement with a high broad sense heritability (0.80-0.91) of the trait.

To map the QTLs responsible for SDW in RG×CS progeny, we built a total of three linkage maps corresponding to each progenitor as well as a consensus map for the cross. Linkage maps comprised both simple sequence repeat (SSR) and SNP markers up to a total of 191 markers in the case of RG, 227 for CS and 290 for the consensus map. QTLs for SDW were analyzed in every linkage map and every season. The results confirmed the detection of a major QTL for seedlessness in LG 18 linked to the microsatellite marker VMC7F2 both in the CS and the consensus maps (Table 1). This QTL was consistently identified in the three years with a very high Logarithm of Odds (LOD) value and...
Figure 1. Stenospermocarpic phenotype and segregation in a RG×CS F1 population.

explained between 71 and 83% of the total variance for SDW depending on the
year and the linkage map. It co-localized with the SDI QTL detected previously in different genetic backgrounds related with stenospermocarpic seedlessness (Doligez et al., 2002; Cabezas et al., 2006; Mejia et al., 2007; Costantini et al., 2008; Mejia et al., 2011; Doligez et al., 2013). Another QTL detected in all the analyzed seasons for SDW was located on LG 2 (Table 1). Rather than contributing to stenospermocarpy, the genotype in this QTL marker (VVIB23) correlates with the variation for seed number per berry (Supplemental Table 1) and likely co-localizes with the sex locus as has been described previously (Costantini et al., 2008; Battilana et al., 2013; Doligez et al., 2013). Finally, two other minor QTLs for SDW were located on LGs 5 and 14, but they showed environmental interactions since they were not detected in every season (Table 1).

Fine mapping of the sdi mutation

A genetic fine mapping strategy was developed to delimit the location of the mutation that underlies the SDI QTL. For every RG×CS F₁ individual, the seedlessness phenotype *de visu*-determined during at least three years was fully linked to the genotype in the VMC7F2 marker, with no recombinant individuals or false detection observed (Supplemental Table 1). Every F₁ individual inheriting the *sdi* + seedless allele (198-bp) or the *sdi*- seeded allele (200-bp) from the CS progenitor showed a seedless or seeded phenotype, respectively, confirming the dominant nature of the *sdi* mutation (Lahogue et al., 1998; Cabezas et al., 2006; Karaagac et al., 2012; Bergamini et al., 2013). This F₁ population was therefore screened for meiotic recombinants by studying the VVIN16 SSR marker and a newly developed Cleaved Amplified Polymorphic
Sequence (CAPS) marker (CAPS-28.53) mapping at either side of the VMC7F2 marker, respectively (Fig. 2). This interval comprises a 5.1 Mb physical distance in the 12X.0 grapevine reference genome assembly (Fig. 2), which is equivalent to 5.5 Mb in the recently published 12X.v2 assembly as one small scaffold has
been remapped between the VVIN16 and SNP-25.16 markers (Canaguier et al., 2017). A total of 29 recombinants were detected, 14 and 15 of them corresponding to recombination in upstream and downstream sequences relative to VMC7F2, respectively (Fig. 2). Additional inner markers were genotyped to map the meiotic recombination breakpoint in these individuals. In this manner, the sdi mutation was delimited to an interval of 1.69 Mb (chr18:25,246,979- chr18:26,936,376 positions in the 12X.0 reference genome) flanked by markers SNP-25.24 and SNP-26.93 (Fig. 2 and Supplemental Table 2). Supporting its continuity in the grapevine reference genome, the delimited mapping interval remained intact in the re-assembled 12X.v2 version (Canaguier et al., 2017).

To further delimit the location of the sdi mutation, additional recombinants within the interval delimited in RG×CS progeny were searched for in another seeded × seedless F\textsubscript{1} mapping population derived from an ‘Imperial Napoleon’ (IN) by CS cross. Inheritance of seedlessness was fully linked to the presence of the sdi+ allele for the CAPS-26.88 marker in this mapping population, which co-localizes with VviAGL11 (VIT\textsubscript{18s0041g01880}), in close proximity to the VMC7F2 marker (Fig. 2). The IN×CS progeny was screened using CAPS-26.39 and CAPS-26.88 markers (Fig. 2 and Supplemental Table 2) and nine recombinant F\textsubscript{1} individuals were detected. Additional genotyping for crossover mapping delimited the sdi mutation to an interval of 323 kb (chr18:26,613,101-26,936,376) flanked by markers SNP-26.613 and SNP-26.93. Unfortunately, recombination breakpoints for individuals 502-181 and 502-206 could not be more precisely mapped to further restrict the interval length because material for these recombinants is no longer available. According to grapevine 12X V1 gene annotations...
Transcriptome analysis reveals the activation of salicylic acid (SA)-dependent defenses along with the repression of seed morphogenesis during stenospermocarpic seed abortion.

Transcriptome comparisons were addressed to understand the processes involved in stenospermocarpic seed abortion and to search for candidate mutations underlying the SDI locus. To these aims, RNA-seq was used to compare seedless and seeded RG×CS F₁ individuals. To minimize genetic background effects, different F₁ individuals were analyzed as independent biological replicates. Individuals were selected to contrast in the allele of the SDI locus inherited from CS (sdi+, seedless or sdi-, seeded; Supplemental Table 1). From pea size fruits collected at 4 WAF, seeds or seed traces were extracted to specifically analyze gene expression in the affected organ. In this manner, we identified 2,888 differentially expressed genes (DEGs) with adjusted p-value ≤0.05 in edgeR and ≥2-fold change, most of which (76%) were upregulated in seed traces of seedless F₁ progeny (Fig. 3A, and Supplemental Table 3). To understand the biological meaning underlying these differences, a functional enrichment analysis was carried out. Remarkably, several pathogen response-related functions were over-represented among genes upregulated in seed traces, which coincided with the activation of senescence/catabolism processes (Fig. 3B and Supplemental Table 4). WRKY, Homeobox and NAC
transcription factors (TFs) may regulate these processes during seed abortion as these TF families were over-represented in seed trace-upregulated genes as well. Likely connected with lack of seed differentiation, genes upregulated in seed traces were also over-represented in photosynthesis-related categories. As expected, genes downregulated in seed traces were over-represented in functional categories related with seed morphogenesis such as ‘phenylpropanoid metabolism’ (Fig. 3B and Supplemental Table 4). Collectively, these results are in line with general trends described by Wang et al. (2016) following a similar approach.

To assess for transcriptome differences at earlier stages, a similar comparison between sdi+ and sdi- RG×CS F1 individuals was carried out at fruit set stage (2...
WAF) using NimbleGen microarrays. Although we used whole setting fruits because the extraction of seed content was difficult at this stage, this strategy eased the analysis of a higher number of replicates. In this case, only 335 DEGs were detected (adjusted \(p \)-value ≤0.05 in limma and ≥2-fold change). Nevertheless, 55% of these DEGs coincided with 4 WAF DEGs and seedless-upregulated genes predominated this dataset as well (86.6% of DEGs identified at 2 WAF), showing a consistency between the two experiments in spite of ontogeny, tissue and inter-annual differences (Fig. 3A and Supplemental Table 3). Also in agreement with 4 WAF results, genes downregulated in seedless fruits at 2 WAF were over-represented in seed differentiation related functions such as ‘lignin metabolism’ (Fig. 3B and Supplemental Table 4). Immune-like responses were activated in whole seedless fruits at 2 WAT, indicating that at 4 WAT these responses are not an artifact due to sample manipulation during the extraction of seed traces.

Immune-like responses activated in stenospermocarpic offspring comprised SA signaling pathway homologs such as *ENHANCED DISEASE SUSCEPTIBILITY 1* (*EDS1, VIT_17s0000g07370, VIT_17s0000g07400, VIT_17s0000g07420, VIT_17s0000g07560*), a gene annotated as putative *SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1* (*SARD1, VIT_17s0000g03370*, NCBI annotated locus LOC100259493) and *PATHOGEN RESPONSE 1* (*PR1, VIT_00s0207g00130, VIT_00s0207g00160, VIT_03s0088g00710, VIT_03s0088g00780, VIT_03s0088g00810*; Supplemental Table 3). Considering that EDS1 and SARD1 activate SA production and defense responses in Arabidopsis (Zhang et al., 2010; Rietz et al., 2011), levels of SA were compared between seeds and seed traces at 4 WAF. A prominent 16-fold
increase in SA levels was detected in seed traces when sdi+ and sdi- RG×CS F1 individuals were compared (Fig. 3C), suggesting a role of SA in sdi-mediated seed abortion. A greater difference (33-fold) was observed between the seedless progenitor CS, with small seed traces, and RG, with big seeds. When the active gibberellins GA1 and GA4 were measured, no significant difference was observed in F1 progeny (Fig. 3C), suggesting a minor contribution of this phytohormone to stenospermocarpy, at least in the studied developmental stage.

Stenospermocarpy does not associate with misexpression mutations

To identify candidate misexpression mutations, we inspected the transcriptome dataset for the presence of DEGs within the SDI fine mapping interval. Supporting the continuity of this interval in the grapevine reference genome (Jaillon et al., 2007), we found that it is almost fully covered by one contig (000279F) in the genome assembly that was independently produced in the ‘Cabernet-Sauvignon’ cultivar (Chin et al., 2016). In addition, the same gene models are annotated in that interval of the reference genome according to V1 and V2 gene predictions (Vitulo et al., 2014) and no additional missing gene was supported by our RNA-seq read alignments (PRJNA418130 in NCBI Sequence Read Archive). While no DEG was detected in the RNA-seq assay, VviAGL11 was the only one out of the 14 genes within the interval that was differentially expressed in the microarrays of whole berries 2 WAF, showing a 3.4-fold repression in sdi+ fruits (Supplemental Table 3). When seed tissues were specifically studied in the RNA-seq experiment at 4 WAF, VviAGL11 did not exceed the significance thresholds (adjusted p-value=0.23 and 2.0-fold...
repression in sdi+ individuals). Regardless, any potential allelic imbalance in VviAGL11 transcript levels was assessed from the RNA-seq dataset. Considering the mean allelic frequency at heterozygous SNP positions (Fig. 4A), the expression between sdi+ and sdi- alleles was balanced in the seedless RG×CS F₁ individuals analyzed (Fig. 4B). In fact, the seedless individual 669-60 showed ca 50% more counts for the sdi+ allele (Fig. 4A), which indicates that no cis-acting regulatory mutation inhibiting the expression of VviAGL11 was present in the sdi+ haplotype. Similar balanced expression between the two sdi- VviAGL11 alleles was observed in seeded F₁ individuals (Fig. 4C). In agreement with RNA-seq results, the absence of allelic imbalance in VviAGL11 was confirmed when allele-specific primers were used to compare the expression between the two alleles in ‘Sultanina’ seed traces at fruit set stage.
by reverse transcription quantitative PCR (RT-qPCR) (sdi^+/sdi- allelic expression ratio = 0.91±0.1 SD). According to RNA-seq data, allelic imbalance was also absent in all other expressed genes located within the SDI interval (Supplemental Table 5 and GSE107014 entry of Gene Expression Omnibus (GEO) database).

We also compared absolute expression of VviAGL11 in additional seedless and seeded accessions and different fruit tissues using RT-qPCR. This assay showed that at fruit set and pea size stages, the expression of VviAGL11 was restricted to seed or seed traces and was not present in fruit pericarp (Fig. 4D). Remarkably, when sdi+ seed traces and sdi- developing seeds were directly compared, VviAGL11 transcript levels were similar or even higher in several seedless accessions. Altogether, the balanced allelic expression of VviAGL11 in seedless sdi+/sdi- heterozygous accessions, along with the lack of correlation of VviAGL11 absolute expression in seed organs and seedlessness phenotype, reject the hypothesis of misexpression mutations in this gene as the origin of stenospermocarpy.

Transcriptome sequence analysis identifies sdi candidate coding mutations

Once the presence of causal misexpression mutations was ruled out, we investigated the RNA-seq dataset for candidate sdi mutations in coding sequences. Variant calling of RNA-seq data detected 68 variants specific to the sdi+ haplotype within the fine mapping interval and all of them were single nucleotide variants (SNVs). While these SNVs affected the sequence of six genes within the interval, no high effect (loss of start or gain of stop codon) was
predicted for any of them (Supplemental Table 5). Nonetheless, four of these genes collectively harbored six missense substitutions specific to the sdi+ haplotype: two located in the putative pantetheine-phosphate adenyllyltransferase VviPPAT2 (VIT_18s0041g01870) gene, two in VviAGL11 (VIT_18s0041g01880), one in an unknown protein (VIT_18s0041g01890) gene, and one in a translation elongation factor (VIT_18s0041g01900) gene (Table 2). An analysis using PROVEAN software predicted that three of these missense substitutions impact the biological function of the affected proteins: Arg151Cys (chr18:26,859,228) and Gln195Leu (chr18:26,871,891) in VviPPAT2, and Arg197Leu (chr18:26,889,437) in its consecutive downstream gene VviAGL11 (Table 2). These three missense SNVs were thereby tested as candidate sdi mutations in subsequent phenotype-association genotyping analyses.

Candidate missense substitutions in VviPPAT2 do not associate with seedlessness

VviPPAT2 is homolog to a gene coding for an enzyme involved in coenzyme A biosynthesis and lipid storage in Arabidopsis seeds (Rubio et al., 2008). We named this gene in that manner because a VviPPAT1 paralog is present in the grapevine reference genome (VIT_04s0023g01990). To assess for any possible connection between the two predicted deleterious amino acid substitutions in VviPPAT2 and seedlessness determination, amplicons containing each SNV were sequenced in 20 and 73 sdi+ seedless and sdi- seeded cultivars, respectively (Table 3 and Supplemental Table 6). While both SNVs were validated by PCR in the CS progenitor, no genotype-phenotype association was confirmed. For the SNV at position chr18:26,859,228 (C:T), the T nucleotide
allele inferred the sdi^+ haplotype of CS from the RNA-seq analysis was present in ten seeded cultivars (‘Afus Ali’, ‘Alphonse Lavallee’, ‘Aramon’, ‘Aubun’, ‘Morio Muskat’, ‘Naparo’, ‘Planta Nova’, ‘Pedro Ximenes’, ‘Semillon’ and ‘Verdil’); and similarly, for the SNV at position chr18:26,871,891 (A:T), the T nucleotide allele of the sdi^+ haplotype in CS was present in two seeded cultivars (‘Cornichon Blanc’ and ‘Verdil’, Table 3 and Supplemental Table 6). These results do not support a role for candidate variants in $VviPPAT2$ as major seedlessness-responsible dominant mutations.

Stenospermocarpic seedlessness is specifically linked to one missense substitution in $VviAGL11$

Genotyping was also conducted to assess the role in stenospermocarpy for the candidate missense SNV detected in $VviAGL11$. Given that previous studies proposed several sdi candidate mutations in this gene (Mejia et al., 2011; Di Genova et al., 2014; Ocarez and Mejia, 2016; Malabarba et al., 2017), the whole gene plus the 2-kb upstream sequence were targeted for re-sequencing in a collection of 110 grapevine accessions using Illumina next-generation sequencing (NGS). Variant calling from NGS data identified 537 polymorphic sites in the 110 accessions, which included 448 SNPs and 89 insertion-deletions (INDELs) (Supplemental Table 7). For 146 polymorphic sites (124 SNPs and 22 INDELs), the variant allele compared to the reference genome was shared in all five ‘Sultanina’-derived seedless accessions studied (Fig. 5A). These variants were considered to be linked in the sdi^+ haplotype because the analysis included two sdi^+/sdi^+ homozygous seedless ‘Ruby Seedless’ × ‘Moscatuel’ (RS×MO) F$_1$ individuals obtained from a seedless by seedless
From all these positions, only the genotype for the SNP at position chr18:26,889,437 (A:C, according to the sequence in the plus strand) was fully associated with the seedlessness phenotype. Remarkably, this SNP causes the Arg197Leu substitution with the predicted deleterious effect already detected in the RNA-seq variant calling (Table 2). The A nucleotide allele was present and absent, respectively, in every stenospermocarpic and seeded accession (Fig. 5A and Supplemental Table 7). This amino acid substitution is located in the C-terminal domain characteristic of MIKC-type MADS-box genes (Fig. 5B). Although this domain is the most variable in MIKC genes (Kaufmann et al., 2005), the Arg residue at this position is generally conserved in AGL11 homologs of dicotyledonous species as well as in the related AGAMOUS-lineage SHATTERPROOF 1 (SHP1) and SHP2 proteins, (Fig. 5B and Pabon-
Mora et al. (2014)), which suggests that this residue could be functionally relevant.

Other candidate variants in \textit{VviAGL11} were discarded in the re-sequencing analysis. For the SNP at position chr18:26,889,399 (C:T) corresponding to the second amino acid substitution in the \textit{sd}i+ haplotype (Thr210Ala), the C nucleotide detected in the \textit{sd}i+ haplotype was also present in \textquote{Aubun}', \textquote{Cornichon Blanc'} and \textquote{Verdil'} seeded cultivars (Fig. 5A and Supplemental Table 7). Similarly, the poly-GA insertion candidate allele (8×TC according to the sequence in the plus strand) proposed in intron 1 (Di Genova et al., 2014) was detected in 17 seeded cultivars. In the putative promoter, the AG and GA \textit{sd}i+ alleles of \textit{VMC7F2} and p3\textunderscore \textit{VvAGL11} markers, respectively, were detected in 44 and 33 seeded cultivars (Fig. 5A and Supplemental Table 7), which does not support the role in seedlessness determination proposed by Mejía et al., 2011.

To validate the association of the Arg197Leu substitution in \textit{VviAGL11} with stenospermocarpic seedlessness, 16 stenospermocarpic and one seeded cultivars were specifically genotyped following PCR and Sanger sequencing. The full association for position chr18:26,889,437 (A:C) was again confirmed in these accessions (Supplemental Table 6). This study included \textquote{Asyl Kara'}, a seeded cultivar that in our analysis was homozygous for the seeded allele (C:C) in that position despite that it was described as A:A homozygous in a previous study (Mejia et al., 2011). \textquote{Asyl Kara'} was independently genotyped several times for this position, confirming the C:C genotype. The accession of \textquote{Asyl Kara'} used at the Instituto de Ciencias de la Vid y del Vino (ICVV) collection comes from the Vassal-Montpellier collection and, following microsatellite marker genotyping, we confirmed in the same DNA used for \textit{VviAGL11}
sequencing its true-to-typeness with the genetic profile indicated for ‘Asyl Kara’ in the *Vitis* International Variety Catalogue (VIVC) database (Supplemental Table 8 and www.vivc.de). ‘Asyl Kara’ was also homozygous for the seeded allele (T:T) in position chr18:26,889,399 (Supplemental Table 6). Again, this genotype contrasts with that reported by Mejia et al. (2011), suggesting a likely sample mistaking by these authors. In summary, the putative deleterious Arg197Leu substitution in *VviAGL11* is the only detected mutation within the SDI fine mapping interval that is fully linked to the stenospermocarpy phenotype with no false detection in our comprehensive approach, which strongly suggests that it could be the *sdi* causal mutation.

Concurrent somatic variation in the SNV resulting in the VviAGL11 Arg197Leu substitution and seedlessness trait supports a causal effect

Somatic or post-zygotic mutants occasionally appear during the characteristic vegetative propagation of grapevine cultivars (Torregrosa et al., 2011). In that manner, seeded somatic variants of the seedless cultivar ‘Sultanina’ have been reported previously and are known as ‘Sultanina Monococco’ (Adam-Blondon et al., 2001; Torregrosa et al., 2011; Ocarez and Mejia, 2016). We compared post-zygotic variants of the ‘Sultanina’ cultivar differing in their ability to develop seeds to evaluate the dominant effect of candidate *sdi* mutations.

We confirmed the seeded variant phenotype in two ‘Sultanina Monococco’ accessions (Fig. 6A). Mean SDW increased by more than 30 mg compared to a reference stenospermocarpic ‘Sultanina’ (Fig 6B), reaching values comparable to seeded individuals in other genetic backgrounds (Fig. 1 and Supplemental Table 1). Seeds produced by ‘Sultanina Monococco’ were generally filled and...
most of them sank in water (Fig. 6B). Moreover, 59.9% germination success under regular soil conditions was obtained for ‘Sultanina Monococco’ (2085Mpt1 accession) self-cross filled seeds, confirming that they are functional. A similar seeded variant phenotype was visually confirmed in two other available accessions of ‘Sultanina Monococco’. Genotyping of 13 microsatellite markers confirmed the identity of the four studied ‘Sultanina Monococco’ accessions as post-zygotic variants of ‘Sultanina’ (Supplemental Table 8).
Amplicons containing the three candidate deleterious SNVs in VviAGL11 and VviPPAT2 were sequenced both in seedless and seeded post-zygotic variants of ‘Sultanina’ (Supplemental Table 6). Remarkably, the genotype obtained for the four ‘Sultanina Monococco’ accessions was identical to that in ‘Sultanina’ with the exception of the VviAGL11 SNV at position chr18:26,889,437 (Fig. 6C and Supplemental Table 6), which in fact is the only polymorphism that was fully associated with seedlessness in a large collection of cultivars (Fig. 5A). At this position, the A:C genotype characteristic of ‘Sultanina’ was changed to C:C in all ‘Sultanina Monococco’ accessions. Altogether, given the unlikely casual coincidence in somatic variants, the concurrent post-zygotic variation in both the VviAGL11 missense SNV and seedlessness phenotype that we identified in ‘Sultanina Monococco’ is consistent genetic proof for the causal effect of this mutation. Accordingly, we postulate that the Arg197Leu missense substitution in VviAGL11 is the mutation responsible for stenospermocarpic seedlessness.
Discussion

Multiple lines of evidence converge on a VviAGL11 missense mutation as the cause of stenospermocarpy

In this study we carried out genome-wide approaches, which were devised independently of previous hypotheses, in an unbiased attempt to identify the mutation responsible for stenospermocarpic seedlessness in grapevine. Our data converge on a missense SNV resulting in an Arg197Leu substitution in VviAGL11 as the sdi mutation that is exploited worldwide for the production of commercial seedless grapes.

In the first place, crossover mapping in F1 recombinants allowed us to delimit the sdi mutation to a 323-kb segment (Fig. 2). These recombinants involve physical/genetic distance ratios between 166 and 555 kb/cM in this chromosomal region depending on the mapping population (Fig. 2). These results are in line with average ratios between 198-390 kb/cM estimated in genetic maps produced in other grapevine crosses (Doligez et al., 2006; Houel et al., 2015; Teh et al., 2017) and therefore, they do not support the recombination hotspot proposed by Mejia et al. (2011) in the vicinity of the SDI locus. Crossover mapping would be required to validate the smaller 92-kb confidence interval considered by these authors for the screening of the SDI gene.

In the second place, RNA-seq, allele-specific RT-qPCR and genotyping studies conducted here do not support the presence of cis-acting misexpression mutations within the sdi fine mapping interval (Fig. 4, Fig. 5, Supplemental Table 3, Supplemental Table 5 and Supplemental Table 7). Specifically for VviAGL11 we show that rather than misexpression, which was related by other
authors to the cause of stenospermocarpy, the lower proportion of seed-related
tissues in developing stenospermocarpic fruits is probably the origin of the
differential expression that is detected for this gene when whole seeded and
seedless fruits are compared (Mejia et al., 2011; Ocarez and Mejia, 2016;
Malabarba et al., 2017). The relatively high expression of \textit{VviAGL11} that we
detected in seed traces of ‘Sultanina’ (Fig. 4D) is also contradictory with the
absence of expression that Malabarba et al. (2017) reported in sections of
developing flowers and fruits of this cultivar following in situ hybridization. In
agreement with our results, some degree of \textit{VviAGL11} expression has
repeatedly been detected in developing flowers and fruits of \textit{sdi}+ accessions
using diverse approaches (Mejia et al., 2011; Wang et al., 2015; Ocarez and
Mejia, 2016; Wang et al., 2016; Malabarba et al., 2017). Considering the fact
that 80\% of the probe used by Malabarba et al. (2017) for the in situ
hybridization does not match with \textit{VviAGL11} transcripts synthesized by
‘Sultanina’ but with a specific allele of ‘Pinot Noir’, deficient probe-transcript
hybridization instead of lack of expression would be a likely cause for the
absence of signal in ‘Sultanina’ on that assay.

In line with the inconsistent difference in \textit{VviAGL11} expression between seeds
and seed traces (Fig. 4 and Supplemental Table 3), candidate \textit{sdi}
polymorphisms that were previously proposed in regulatory regions of
\textit{VviAGL11} (Mejia et al., 2011; Di Genova et al., 2014; Ocarez and Mejia, 2016)
can be specifically discarded according to the dominant nature of the \textit{sdi}
mutation and the presence in seeded accessions of the alleles linked in the
\textit{sdi}+ haplotype (Fig. 5A and Supplemental Table 7; Mejia et al., 2011;
Karaagac et al., 2012; Bergamini et al., 2013). Importantly, irrespective of the
presence of polymorphisms in regulatory regions of *VviAGL11*, we found lack of allelic expression imbalance in seed traces of *sdi+/sdi-* heterozygous seedless individuals (Fig. 4), which rules out the presence of *cis*-acting misexpression mutations in the *sdi*+ haplotype of this gene. In the absence of allelic imbalance, mitotic recombination between the two alleles of 'Sultanina' could not recover *VviAGL11* expression as it was suggested previously for the origin of 'Sultanina Monococco' somatic variants (Ocarez and Mejia, 2016).

Finally, after RNA-seq screening of coding sequences within the *sdi* mapping interval (Table 2), the SNV causing the Arg197Leu substitution in *VvAGL11* was the only predicted deleterious variant in which a full linkage with seedlessness phenotype was confirmed in a collection of grapevine cultivars (Fig. 5A). Although this missense variation was previously discarded according to its homozygous presence in the seeded cultivar 'Asyl Kara' (Mejia et al., 2011), in our study this cultivar was homozygous for the Arg codon similar to all other 106 seeded cultivars analyzed (Supplemental Table 6 and Supplemental Table 7). Remarkably, as consistent genetic proof, this polymorphism is the only candidate mutation that is not detected in 'Sultanina Monococco' seeded somatic variants of the original seedless cultivar 'Sultanina' (Fig. 6). Given that unlikely coincidence in near-isogenic somatic variants, it can be assumed that somatic variations (either genetic or cellular) that altered the genotype of the missense SNV are the cause of the polymorphic seed development phenotype displayed by post-zygotic variants of 'Sultanina'. This causality proof, together with all other genetic and molecular evidence described above, led us to postulate that *VviAGL11* is the major dominant regulator gene and the SNV resulting in the Arg197Leu substitution is the monogenic *sdi* mutation that two
decades ago were proposed for the main origin of seedlessness in grapevine (Bouquet and Danglot, 1996; Lahogue et al., 1998).

Molecular determination of stenospermocarpy by the sdi missense mutation

In agreement with the absence of the VviAGL11 missense mutation in seeded somatic variants of ‘Sultanina’ (Fig. 6C), AGL11 homologs participate in the development of maternal seed tissues that is triggered after fertilization in other plant species (Colombo et al., 1997; Mizzotti et al., 2014; Malabarba et al., 2017). Resembling the phenotype of grape stenospermocarpy (Pearson, 1932; Barritt, 1970; Pratt, 1971; Striem et al., 1992; Malabarba et al., 2017), co-suppression of FLORAL BINDING PROTEIN7 (FBP7) and FBP11, two AGL11 homologs present in petunia (Petunia hybrida), caused the development of shrunken seeds that lack seed coat sclerification with a consequent degeneration of the endosperm, while the embryo frequently remained viable (Colombo et al., 1997). As reported for FBP7 and FBP11 transcripts in wild-type petunia or AGL11/STK protein in Arabidopsis (Colombo et al., 1997; Mizzotti et al., 2014), VviAGL11 is specifically transcribed in the developing seed coat in ‘Pinot Noir’ seeded grape cultivar (Malabarba et al., 2017). These coincidences suggest that AGL11 function is impaired in grapevines carrying the Arg197Leu substitution.

Resembling the Arg197Leu substitution identified in grapevine (Table 2, Fig. 5 and Fig. 6), variation of endocarp lignification in different accessions of oil palm (Elaeis guineensis) is associated with five independent missense substitutions in the MADS-box domain of SHELL, an oil palm homolog of AGL11 (Singh et al., 2013; Ooi et al., 2016). The Arg197Leu substitution in VviAGL11 is located
in the C domain characteristic of MIKC-type MADS-domain proteins (Fig. 5B). This domain participates in binding activity of MIKC tetramers to DNA and it may also determine protein-protein interaction specificity (Honma and Goto, 2001; Melzer et al., 2009; van Dijk et al., 2010). According to this function, and considering also that VviAGL11-SEPALLATA heterodimers interact with additional VviAGL11 units (Mellway and Lund, 2013), the Arg197Leu substitution might cause dominant effects by disrupting the action of VviAGL11-containing multiprotein complexes, even in the presence of the seeded allele in heterozygous individuals as postulated for mutant alleles of SHELL (Singh et al., 2013; Singh et al., 2015). This mechanism would be compatible with the incomplete dominance of the sdi mutation that can be inferred in view of the more extreme seedless phenotype that is often displayed by sdi+/sdi+ homozygous individuals (Mejia et al., 2011; Ocarez and Mejia, 2016).

In spite of genetic proofs leading to the missense substitution in VviAGL11 (Table 2, Fig. 5 and Fig. 6) and all other indirect evidence mentioned above, a heterologous assay in Arabidopsis was inconclusive about the role in seedlessness determination of the VviAGL11 protein encoded by the sdi+ haplotype (Malabarba et al., 2017). However, species-specific functions of AGL11 homologs are conceivable since, contrasting with co-suppressed petunia lines and sdi stenospermocarpy, the Arabidopsis stk loss-of-function mutant over-accumulates polyphenols in the seed coat in the absence of endosperm degeneration or embryo arrest (Mizzotti et al., 2014). In fact, while 28 DEGs between sdi+ and sdi- RG×CS offspring were the closest grapevine homologs to any out of the 248 de-regulated genes in the stk mutant (Mizzotti et al., 2014), 71% of these DEGs showed inverted expression response
compared to the experiment in Arabidopsis (Supplemental Table 3). Genes involved in flavonoid accumulation were upregulated in seeds of the stk mutant, including **DIHYDROFLAVONOL 4-REDUCTASE/TRANSPARENT TESTA 3 (DFR/TT3)**, **BANYULS/ANTHOCYANIDIN REDUCTASE (BAN/ANR)** and **TT12**. In contrast, the grapevine homologs VviDFR1 (**VIT_18s0001g12800**), VviANR (**VIT_00s0361g00040**) and VviTT12 (**VIT_12s0028g01150**), respectively, together with the master regulator of proanthocyanidin accumulation in grape **MYB PROANTHOCYANIDIN 1 (VviMYBPA1, VIT_15s0046g00170)** (Bogs et al., 2007), were down-regulated in sdi+ seed traces (Supplemental Table 3), which in turn accumulate less polyphenols than **sdi-** grapevine seeds (Merin et al., 1983). In line with these inverted effects, a reversible role of AGL11/STK in the control of tissue lignification has been shown in Arabidopsis depending on the presence of transcriptional co-suppressor partners (Balanza et al., 2016). We thereby assume that functional studies in genetically engineered vines are required to ensure the presence of grapevine-specific protein partners. While functional studies of fruit traits takes a long time in species with long juvenile phases, such as grapevine, we are conducting additional research in this direction to demonstrate the consequences of the Arg197Leu substitution for VviAGL11 protein function and the determination of seed development abortion.

At this point, according to all evidence described above, we suggest a working model in which the **sdi** missense substitution identified here disrupts the function of multimeric complexes containing VviAGL11 proteins (Fig. 7). This would prevent proper seed coat development and lignification (Malabarba et al., 2017), which is required for nutrient and signaling flux between maternal...
tissues and fertilization products (Mizzotti et al., 2012; Figueiredo et al., 2016).

Apparently, this impaired flux in developing seeds of stenospermocarpic grapes leads to SA-dependent autoimmune responses (Fig. 3), and to endosperm degeneration and embryo development arrest (Pratt, 1971), which at the transcriptome level associate with the repression of secondary metabolism and MADS-box genes and the activation of photosynthesis-related genes (Fig. 3, Supplemental Table 3, Supplemental Table 4). These molecular responses are very similar to those reported during SA-dependent seed abortion in incompatible Arabidopsis inter-specific hybrids that, like sd1-determined stenospermocarpy, proceed with abnormal seed coat development (Burkart-Waco et al., 2013).

Conclusions
Diverse approaches converge on the SNV causing the Arg197Leu substitution in \textit{VviAGL11} as the seedlessness responsible mutation underlying the grapevine \textit{SDI} locus. While molecular and expression assays rejected the hypothesis of \textit{cis}-acting misexpression mutations, the deleterious effect predicted for this amino acid change, the full association between the variant allele and stenospermocarpy in a collection of grapevine cultivars, and the concurrent post-zygotic variation of both the missense polymorphism and seedlessness phenotype in somatic variants of the ‘Sultanina’ cultivar consistently point to this SNV as the causal mutation. This finding, together with previous discoveries in oil palm (Singh et al., 2013), show that variation in the amino acid sequence of AGL11 homologs has been selected in parallel during the domestication of distant monocot and dicot crops to control the proportion between pericarp and seed tissues of fruits as well as their level of sclerification. While seedlessness is the most relevant fruit feature for the greatly active table grape breeding field, our discovery enables the development of the most efficient marker-assisted selection to track the major locus controlling this trait. The simultaneous tracking of the \textit{sdi} mutation and of minor \textit{SDI}-independent loci controlling the degree of lignification and the size and number of seed traces will optimize the generation of new seedless cultivars in future table grape breeding programs. Remarkably, knowledge of the \textit{sdi} mutation can also be exploited to introduce stenospermocarpy into other genetic backgrounds through controlled genome editing.

Materials and Methods

Plant material
Two table grape (*Vitis vinifera*) F₁ mapping populations, (RG×CS, n = 292 and IN×CS, n = 299) were generated from controlled crosses carried out in 2003 and 2008, respectively. For these crosses, emasculated flowers of RG and IN seeded cultivars were pollinated with pollen collected from CS that in both populations was the donor of the sdi mutation. One plant for each F₁ individual and three plants for each progenitor were grown in the same experimental field belonging to the Sociedad Murciana de Investigación y Tecnología de Uva de Mesa (ITUM) located in Blanca, Murcia, Spain. Plants were grafted onto 1103 Paulsen rootstock conducted under parral trellis, ferti-irrigated and cultivated under the same management practices.

For the study of sequence variation at selected loci, 124 grapevine cultivars and two RS×MO F₁ individuals were used (Supplemental Table 6 and Supplemental Table 7). Samples of 120 cultivars were obtained from the Grapevine Germplasm Collection of the Instituto de Ciencias de la Vid y del Vino (ICVV, ESP-217). At ICVV, ten plants per cultivar were maintained under the same agronomical conditions in ‘Finca La Grajera’ located in Logroño, La Rioja, Spain. These plants were grafted in 2010 onto 110 Richter rootstock, and their true-to-typeness was verified by genotyping SNP markers and comparing the results with the ICVV-SNP database (Cabezas et al. 2011). RG and CS samples were obtained from ITUM, whereas RS×MO F₁ individuals and the MO cultivar were obtained and cultivated as described elsewhere (Carreño et al., 2015). Material for ‘Chasselas Doré’ was obtained from plants, grafted onto 110 Richter in 2003, in the ‘*Vitis* Germplasm Bank’ (ESP-080) of the Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA) located in ‘Finca El Encín’ in Alcalá de Henares (Madrid, Spain). In addition to...
the previous 126 accessions, materials for four ‘Sultanina Monococco’
accessions (2085Mpt1, 2594Mtp2, 2594Mtp1 and 2777Mtp1; SM1 to SM4,
respectively) and for a second reference accession of ‘Sultanina’ (1566Mtp2)
that all were confirmed previously as clonal lines (Laucou et al., 2011), were
obtained from the collection of the Institut National de la Recherche
Agronomique Centre de Ressources Biologiques de la Vigne at Vassal-
Montpellier (FRA-139), Marseillan-Plage, France. SM1 to SM4 accessions
entered the Vassal-Montpellier repository in 1966, 1959, 1966 and 1975 from
Cyprus, Turkey, Iran and Bulgaria, respectively

Seedlessness trait assessment

For RG×CS F₁ progeny and progenitors, seed content was evaluated at harvest
during three years (2007-2009). For each individual and year, 20 fruits randomly
collected from all the clusters produced by the plant were analyzed to estimate
seed or seed trace number per berry and dry weight of seed content per berry
(SDW). SDW was measured after 48 h of incubation of seeds and seed traces
in an 80°C oven.

The seedlessness phenotype was also de visu registered as a qualitative trait
for every RG×CS F₁ individual in the same three seasons. For recombinants in
the SDI mapping interval, de visu determination of seedlessness was conducted
in 2012 and 2013 as well. To this aim, seeded and seedless individuals were
classified according to the presence of hard seeds with totally sclerified
integuments or soft seed traces with unsclerified or partially sclerified
integuments, respectively, as previously described (Costantini et al., 2008).

Similar de visu classification of the seedlessness trait was carried out at least
twice (between 2013 and 2016 seasons) for the IN×CS F₁ mapping population and for the 120 cultivars from the ICVV collection used for genotyping of candidate genes (Supplemental Table 1, Supplemental Table 6 and Supplemental Table 7). At least 20 berries from 2-3 representative clusters from the same plant were inspected each time. Furthermore seed content phenotypes in ‘Sultanina’ variant lines from the Vassal-Montpellier collection were quantitatively measured in the 2017 season following the same procedures described for RG×CS offspring.

DNA extraction

DNA was extracted from young leaves. For RG×CS progeny, DNA was extracted using the DNeasy Plant Mini kit (Qiagen, Hilden, Germany) and modified by adding 1% PVP40 to the AP1 buffer. The BioSprint 96 DNA Plant Kit (Qiagen) was used for IN×CS progeny following the manufacturer’s instruction. For all other accessions, the DNeasy Plant Mini kit (Qiagen, Hilden, Germany) was used without modifications.

QTL analysis

Marker genotyping. RG, CS and RG×CS F₁ individuals were genotyped for a set of 223 SSR markers previously mapped on the grapevine genome (Doligez et al., 2002; Cabezas et al., 2006; Costantini et al., 2008), 178 of which showed segregation types suitable for genetic mapping. Primers were modified at the 3’ end with a fluorochrome (NED, 6-FAM, VIC or PET) by Applied Biosystems. PCR amplifications were performed with Ecogen Taq polymerase. PCR products were analyzed with ABI Prism 3730 (Applied Biosystems) at the Unidad de Genómica-Campus Moncloa del Parque Científico de Madrid.

Detection of amplified fragments and allele assignment was carried out using
GeneMapper™ v3.7 (Applied Biosystems). Additionally, F₁ individuals and progenitors were genotyped for 335 SNP markers described in Lijavetzky et al. (2007) and Cabezas et al. (2011), 112 of which showed segregation types suitable for genetic mapping and were analyzed as described previously (Cabezas et al., 2011).

Genetic map construction. Genetic maps were built according to a 2-way pseudo-testcross strategy (Grattapaglia and Sederoff, 1994) using JoinMap 3.0 (van Ooijen and Voorrips, 2001). DH (Doubled Haploid) and CP (Cross Pollinators) models were assumed for the construction of parental and consensus maps, respectively. The global segregation of each marker was tested for the expected Mendelian segregation ratio using a χ² goodness-of-fit test ($P<0.01$). Markers were grouped in the same LG according to the threshold LOD≥5.0 and ordered by paired markers with LOD≥3.0 and recombination frequency (REC) ≤0.35. These parameters were reduced to LOD≥1.0 and REC≤0.45 when required to adapt linkage groups to current information on the physical genome map. Mapping distances were calculated (in cM) using the Kosambi function (Kosambi, 1944).

QTL detection. QTL analyses were carried out on RG×CS mapping progeny independently for each of the three SDW evaluations (seasons 2007, 2008 and 2009) using the framework maps of each progenitor and the consensus framework map for the cross. QTL mapping was performed using MapQTL 4.0 (van Ooijen et al., 2002). Two parametric methods, Interval Mapping (IM) (Lander and Botstein, 1989; van Ooijen, 1992) and Multiple QTL Mapping (MQM) (Jansen and Stam, 1994) were used. LOD score thresholds of 0.99 significance for each LG and 0.95 for the whole genome were established.
through 1000 permutations for each trait (Churchill and Doerge, 1994). QTL position was estimated from the location of the maximum LOD value and a minimum confidence interval (minimum overlapping interval for 1 LOD intervals independently detected for each year of analysis on each QTL and map).

Fine mapping of the SDI QTL

RG×CS F₁ individuals were screened for meiotic recombination around the SDI QTL according to the genotype at the microsatellite locus VVIN16 (Merdinoglu et al., 2005), and CAPS-28.53. This CAPS was designed for a BstBI (New England Biolabs, Inc., MA, USA) restriction enzyme target specific of the sdi⁺ haplotype in this progeny (Supplemental Table 2). Primer pairs used to obtain this and other target amplicons are described in Supplemental Table 9. PCR primers were designed with the NCBI Primer BLAST tool (https://www.ncbi.nlm.nih.gov/tools/primer-blast/) using the grapevine 12X.0 reference genome assembly sequence as a template (https://urgi.versailles.inra.fr/Species/Vitis/Data-Sequences/Genome-sequences). Similarly, recombinant individuals within the fine mapping interval delimited in RG×CS F₁ progeny were searched for in IN×CS F₁ progeny by genotyping the CAPS-26.39 and CAPS-26.88 markers. These markers were respectively designed taking advantage of the presence of BlpI and MseI (New England Biolabs, Inc., Ipswich, MA, USA) restriction enzyme targets that are specific to the sdi⁺ haplotype in this F₁ mapping population. Crossovers were mapped in recombinant F₁ individuals by genotyping SNP markers indicated in Supplemental Table 2, which were developed and genotyped through PCR amplification and Sanger capillary electrophoresis sequencing. In most cases, primers were designed to align in coding sequences according to grapevine
12X V1 gene annotations (http://genomes.cribi.unipd.it/). For PCR, KAPA2G Fast DNA Polymerase (KAPA Biosystems, Cape Town, South Africa) was used for amplification from ~50 ng of gDNA. Amplification products were purified with ExoSAP-IT (USB Products Affymetrix, Cleveland, OH, USA) following the manufacturer’s instructions and then sequenced by Sanger capillary electrophoresis using the same primers as in PCR. For every marker, the allele present in the sdi+ haplotype was inferred according to the genotype observed in cross progenitors, F1 individuals with extreme seed/seedless phenotype and the two RS×MO sdi homozygous F1 individuals (Supplemental Table 2).

Transcriptome analysis

RNA extraction. Total RNA was extracted from frozen tissue powder using the Spectrum™ Plant Total RNA kit (Sigma-Aldrich) with an added on-column DNase digestion step with the RNase-Free DNase Set (Qiagen).

Microarray analysis. Developing fruits at fruit set stage (~2 WAF, flowering time 20 May 2010) were collected on 3 June 2010, around midday, from four seeded (660-43, 660-50, 669-45, 671-19) and five seedless (660-40, 660-41, 660-57, 669-19, 671-34) RG×CS F1 individuals and immediately frozen in liquid nitrogen. Individuals were selected according to contrasting genotypes in the VMC7F2 marker (Pellerone et al., 2001), which co-localizes with the SDI QTL (Table 1), and to extreme phenotypes for SDW in the corresponding progeny distribution tail (Supplemental Table 1). Each individual was analyzed in separate as independent biological replicates. At least 12 developing fruits collected from ≥2 different clusters were ground for each RNA extraction. Analysis of RNA integrity as well as synthesis, labeling, and hybridization of cDNA to NimbleGen microarray 090818 Vitus exp HX12 (NimbleGen-Roche)
and robust multi-array average (RMA) normalization were performed as indicated elsewhere (Carbonell-Bejerano et al., 2014). Linear models for microarray data (limma) were run in Babelomics (Medina et al., 2010) to search for DEGs between seedless and seeded individuals. DEGs were identified considering a Benjamini-Hochberg adjusted P-value ≤0.05 and ≥2-fold change as significance thresholds.

RNA-seq and differential gene expression analysis. RNA was obtained from seed traces of three seedless (669-60, 670-17, 675-17) and seeds from three seeded (665-17, 671-19, 677-06) RG×CS F₁ individuals. These individuals were selected according to contrasting genotypes for the SDI QTL marker VMC7F2 (Supplemental Table 1). Selected seeded individuals belonged to the higher tail of the distribution for SDW phenotype in the progeny, whereas seedless individuals without extremely low SDW were selected to ease the extraction of seed traces. Berries at pea size (10-12 mm) developmental stage were collected on 12 June 2012 (~4 WAF, flowering time 18 May 2012) around midday and immediately frozen in liquid nitrogen. Berries were allowed to briefly thaw in the laboratory, opened by cutting with a scalpel and then, seed content was rapidly recovered with tweezers and refrozen in nitrogen. Each individual was analyzed in separate as independent biological replicates. Seed content from 12-50 fruits collected from ≥2 different clusters was used for each RNA extraction. RNA-seq was performed in the Centre for Genomic Regulation (CRG) (Barcelona, Spain). The six corresponding cDNA libraries were prepared using the Illumina TruSeq Stranded mRNA Sample Prep kit starting from 1 µg of total RNA as described previously (Royo et al., 2016). A mean fragment size of 302 bp was obtained. Library sequencing was performed on an Illumina HiSeq
2000 using v4 chemistry (flow cells and sequencing reagents). Paired-end strand-specific reads of 125 nt were produced. Gapped alignment of reads to the PN40024 12X.0 grapevine reference genome assembly (http://www.genoscope.cns.fr/externe/GenomeBrowser/Vitis/) was carried out using TopHat2 v.2.0.13 (Kim et al., 2013). TopHat2 was run under default parameters with the exception of gap length ≤8, mismatch ≤8 and edit distance ≤8 that were allowed in 125 nt reads. These values were adjusted to compensate for the relatively high genetic distance between the table grape genotypes studied here and the reference genome of the wine grape-related PN40024 reference genome. As post-filtering, only uniquely mapped single copy reads with quality ≥20, aligned in the same chromosome and paired in the expected orientation were kept for further analysis. After filtering, an average of more than 15 million reads per replicate was considered for subsequent analysis (Supplemental Table 10). The htseq-count tool (v.0.5.4p5) from HTSeq (Anders et al., 2015) was used to estimate unambiguous read count for each 12X V1 annotated transcript. Normalization following the trimmed mean of M-values (TMM) method (Robinson and Oshlack, 2010), as well as seed trace versus seed DEGs search (adjusted Benjamini-Hochberg P-value ≤0.05 and ≥2-fold change) were performed in edgeR v.2.2.6 (Robinson et al., 2010). Finally, reads per kb of exon per million fragments mapped (RPKM) was calculated using edgeR and low expressed transcripts were filtered out if average RPKM was <1 in both seed traces and seeds.

Functional analysis of differentially expressed genes. Lists of DEGs identified from microarray and RNA-seq analyses were compared using Venny (http://bioinfogp.cnb.csic.es/tools/venny/). Gene lists were further analyzed for
functional enrichment compared to the whole set of transcripts predicted in the 12X V1 annotation of the grapevine reference genome following a grapevine-specific functional classification (Grimplet et al., 2012). The analysis was carried out in FatiGO as described elsewhere (Carbonell-Bejerano et al., 2014).

Search of RNA-seq data for candidate allelic imbalance. Aligned reads within the sdi fine-mapped interval were visually inspected for allele-specific expression with the Integrative Genomics Viewer (IGV) software (Thorvaldsdottir et al., 2013). For VviAGL11, the allelic ratio in each sample was estimated by comparing the frequency of each allele at heterozygous SNP positions in filtered Binary Alignment Map (BAM) files. A mean value was estimated for all the SNPs detected along the gene according to the parameters indicated in the following paragraph. The sdi+ haplotype was inferred from the comparison of two seedless RG×CS F1 individuals that shared the same allele inherited from RG for the SDI locus with the three seeded individuals analyzed by RNA-seq (Supplemental Table 1).

Search of RNA-seq data for candidate sequence variation. To detect sequence variation specific to the sdi+ haplotype in expressed transcripts, RNA-seq alignments used for differential expression analysis were also analyzed for the presence of SNPs and INDELs, basically following a similar pipeline to that described previously (Royo et al., 2016), but adjusted to boost variant calling in both low expressed and allelic imbalanced genes. For variant calling, three tools implemented in SAMtools package v.1.5 (Li et al., 2009; Li, 2011) were used to compare each sample to the PN40024 reference genome: `samtools mpileup` for genotype probability estimation, `bcftools` for variant calling, and finally, strand bias and baseQ bias filters were applied using `varfilter`. Subsequently, using `ad`
hoc Bash shell and Perl scripts (Royo et al., 2016), we selected polymorphisms within the *SDI* fine-mapping interval specific to the three seedless individuals according to the following filters: average depth of contrasting alleles (variant or reference) per F1 individual ≥5 counts, frequency of variant allele in *sdi*+ individuals ≥20%, frequency of variant allele in seeded individuals <2.5% and frequency of spurious alleles (alleles other than the reference and the first variant) <2.5% in both samples. In this case, reads corresponding to each transcription strand direction were independently computed. The effect of detected candidate *sdi* mutations considering grapevine 12X V1 gene annotations was estimated using SnpEff v.2.0.3 (Cingolani et al., 2012), whereas the effect of *sdi* candidate amino acid substitutions on protein function was predicted using PROVEAN (Choi et al., 2012).

Hormone analysis

To compare phytohormone levels between developing seeds and seed traces, five seedless (665-16, 669-60, 670-17, 675-17, 660-57) and five seeded (660-43, 660-50, 665-17, 671-19, 677-06) RG×CS F1 individuals were analyzed (Supplemental Table 1). Additionally, two independent biological replicates of RG and CS, each from a different plant, were analyzed as well. Fruits at pea size stage (~4 WAF) were collected simultaneously to RNA-seq samples on 12 June 2012 and immediately frozen in liquid nitrogen. For each replicate, seed content from ≥20 fruits was extracted. SA and active GA (GA1 and GA4) levels were measured at the Plant Hormone Quantification service of the Institute for Plant Molecular and Cell Biology (IBMCP), Valencia, Spain. In summary, 200 mg fresh weight of seeds or seed traces was extracted for each replicate as indicated above for RNA-seq analysis. Frozen ground tissue was then analyzed.
using an ultra performance liquid chromatography - tandem mass spectrometer (UHPLC-MS) system (Q-Exactive, ThermoFisher Scientific). The statistical treatment of results was carried out using SPSS software (v.24.0 for Windows; IBM Corp., Somers, NY, USA).

Reverse transcription quantitative PCR (RT-qPCR)

RNA was obtained from either berry skin, flesh, pericarp, seeds or seed traces. Pea size fruits collected from the ITUM experimental field on 26 June 2011 were used for three RG×CS F1 individuals (660-41, 660-43, 660-57) and RG and CS progenitor accessions. ‘Sultanina’ samples from ESP217-5186 accession were collected at fruit set (6 June 2011) in the ICVV collection. At least 8 fruits were used for each RNA extraction. For reverse transcription from total RNA (1 µg), SuperScript™ III First Strand (Invitrogen, USA) and oligo (dT) were used following manufacturer’s instructions. Transcript levels were determined by RT-qPCR using a 7500 Real-Time PCR System (Applied Biosystems) and SYBR Green PCR Master Mix (Applied Biosystems). Reactions were performed in a final volume of 20 µl with 5 µl of a 1:10 dilution of cDNA. Gene-specific primers (Supplemental Table 9) were designed using the Oligo Explorer 1.2 software (Gene Link) and the gene sequences from the grapevine 12X.0 genome assembly (Jaillon et al., 2007) as design templates. For allele-specific RT-qPCR, the 3’ end of forward and reverse primers coincided with SNP positions in a way that each primer was specific for one allele. No-template controls were included for each primer pair, and each PCR was performed in triplicate. Amplification data were analyzed using the 7500 SDS software 1.3 (Applied Biosystems). Relative transcript levels were calculated after normalization to the grapevine *UBIQUITIN*
(VIT_16s0098g01190), ELONGATION FACTOR 1-α (EF1-α), VIT_06s0004g03220) and GLYCERALDEHYDE-3-PHOSPHATE DEHYDRONGENASE (GPDH (VIT_17s0000g10430) using the ∆∆Ct method. For allele-specific RT-qPCR, two independent biological replicates from different stenospermocarpic ‘Sultanina’ plants were analyzed and gDNA from the same accession was used for allelic ratio normalization assuming a balanced ratio in the genome. Graphical representations of relative transcript levels with standard deviations were performed using the Microsoft Excel software. The statistical treatment of results was carried out using SPSS software (v.24.0 for Windows; IBM Corp., Somers, NY, USA).

Genotyping of candidate mutations in VviPPAT2

For validation of candidate SNVs detected from RNA-seq data, the gene VviPPAT2 (VIT_18s0041g01870) was partially sequenced in a collection of 93 grapevine accessions (Supplemental Table 6). Primer pairs PPAT2-R151C and PPAT2-Q195L were used for PCR and Sanger sequencing to this end (Supplemental Table 9).

Targeted re-sequencing of VviAGL11

The gene VviAGL11 (VIT_18s0041g01880) plus a 2-kb upstream sequence (9,849-bp in total corresponding to positions chr18:26,888,672-26,898,521 in the PN40024 12X.0 grapevine reference genome) were sequenced in a collection of 110 accessions (Supplemental Table 7) by BGI company (http://www.genomics.cn/en) as described in Tello et al. (2016). Briefly, Agilent SureSelect (http://www.genomics.agilent.com) was used to target the VviAGL11 locus that was then sequenced in 90 nt paired-end reads using Illumina HiSeq 2000. Sequencing data was analyzed as described by Tello et al. (2015): reads
were aligned to the PN40024 12X.0 reference genome using Bowtie 2 (Langmead and Salzberg, 2012). Then, the variant calling tool implemented in SAMtools was used to detect SNPs and small INDELs by comparing the sequence of aligned reads in each of the 110 accessions to the 12X.0 PN40024 reference genome. Polymorphisms were initially filtered by means of *ad hoc* Perl scripts as previously described (Tello et al., 2015). Significant polymorphisms present and absent in every seedless and seeded accession, respectively, were selected as candidate *sdi* mutations.

Validation by PCR and amplicon sequencing of the *sdi* candidate mutation identified in *VviAGL11* was carried out using the primer pair CAPS-26.88 from Supplemental Table 9 on gDNA of 15 additional seedless cultivars as well as in the seeded cultivar ‘Asyl Kara’ and in two ‘Sultanina Monococco’ accessions (Supplemental Table 6). Genotyping of 13 microsatellite markers in the same DNA sample used to genotype *sdi* candidate variants by PCR and Sanger sequencing was carried out to verify the identity of ‘Asyl Kara’ and ‘Sultanina’ seedless and seeded accessions (Supplemental Table 8). Microsatellite marker genotyping was performed as described elsewhere (Ibáñez et al., 2009).

Accession numbers

Microarray hybridization and RNA-seq data have been deposited in the NCBI GEO database under GSE106668 and GSE107014 accession numbers, respectively. BAM files for read alignments of *VviAGL11*-targeted NGS data were deposited under BioProject ID PRJNA418130 (SRP124845) of the NCBI Sequence Read Archive.
Supplemental data

Supplemental Table 1. Phenotype and genotype of offspring in F₁ mapping populations.

Supplemental Table 2. Genotyping for fine mapping in seeded × seedless F₁ mapping populations.

Supplemental Table 3. List of differentially-expressed genes detected between seedless and seeded RG×CS progeny.

Supplemental Table 4. Functional enrichment analysis of differentially-expressed genes detected between seedless and seeded RG×CS progeny.

Supplemental Table 5. List of single nucleotide variants linked to the sdi haplotype detected from RNA-seq data.

Supplemental Table 6. Genotype of candidate missense substitutions in VviPPAT2 and VviAGL11 and seedlessness phenotype in a collection of grapevine cultivars.

Supplemental Table 7. Polymorphisms in VviAGL11 detected by next generation sequencing and seedlessness phenotype in a collection of grapevine cultivars.

Supplemental Table 8. Microsatellite genotyping identification for ‘Sultanina’ and ‘Asyl Kara’ accessions.

Supplemental Table 9. List of primer pairs used for PCR amplification and sequencing.

Supplemental Table 10. RNA-seq library size and normalization factors.

Acknowledgements
We thank J.L. Pérez-Sotés and Servicio de Investigación Vitivinícola (SIVV, Gobierno de La Rioja) at ICVV collection and Rosa M. Arnaú and María J. Candel at IMIDA and ITUM for plant maintenance and technical support in phenotyping tasks. We are very grateful to Nacho Montemayor, Rufino Aguirrezabal, Miguel Angulo and Silvia Hernández for technical assistance. We also thank the Genomics service of the CNB-CSIC for running microarray hybridizations and Dr. Iván Carreño for sharing information regarding RS×MO F₁ progeny.

Abbreviations

AGL = Agamous-like

Arg = Arginine

CAPS = Cleaved amplified polymorphic sequence

CS = Crimson Seedless

DEG = Differentially expressed gene

GEO: Gene expression omnibus

IN = Imperial Napoleon

INDEL = Insertion-deletion

Leu = Leucine

LG = Linkage group

LOD = Logarithm of odds

QTL = Quantitative trait locus

MO = Moscatuel

NGS = Next generation sequencing

PPAT = Pantetheine-phosphate adenylyltransferase

REC = Recombination frequency
RG = Red Globe
RS = Ruby Seedless
SA = Salicylic acid
SDI = Seed Development Inhibitor
SDW = Seed dry weight
SNP = Single nucleotide polymorphism
SNV = Single nucleotide variation
SSR = Simple sequence repeat
VIVC = Vitis International Variety Catalogue
WAF = Weeks after flowering
Tables

Table 1. Quantitative trait loci (QTLs) identified for seed dry weight per berry (SDW) in the ‘Red Globe’ (RG) × ‘Crimson Seedless’ (CS) F₁ mapping population. QTLs detected in the CS map and in the consensus map (c) are indicated. QTLs were not detected in the RG map. LG, linkage group; LOD, log₁₀ of odds; variance, percentage of SDW variation explained by the QTL. Ranges of LOD and variance are shown if the QTL was detected in more than one year.

<table>
<thead>
<tr>
<th>QTL-linked marker</th>
<th>Map</th>
<th>LG</th>
<th>Year</th>
<th>Position (cM)</th>
<th>Confidence interval (cM)</th>
<th>LOD</th>
<th>Variance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMC6F1-CS</td>
<td>CS</td>
<td>2</td>
<td>07, 08, 09</td>
<td>15.6</td>
<td>0.0-36.6</td>
<td>1.4-4.7</td>
<td>0.7-1.6</td>
</tr>
<tr>
<td>SNP1053_81-c</td>
<td>CS</td>
<td>5</td>
<td>08</td>
<td>7.9</td>
<td>0.0-19.9</td>
<td>2.7</td>
<td>0.8</td>
</tr>
<tr>
<td>VMC2H5-c</td>
<td>CS</td>
<td>14</td>
<td>08</td>
<td>21.3</td>
<td>0.0-42.0</td>
<td>1.6</td>
<td>0.4</td>
</tr>
<tr>
<td>VMC7F2-CS</td>
<td>CS</td>
<td>18</td>
<td>07, 08, 09</td>
<td>66.1</td>
<td>64.7-66.1</td>
<td>67.4-109.7</td>
<td>71.0-83.0</td>
</tr>
<tr>
<td>VVIIB23-c</td>
<td>c</td>
<td>2</td>
<td>07, 08, 09</td>
<td>23.2</td>
<td>16.2-31.2</td>
<td>3.0-9.9</td>
<td>1.6-2.3</td>
</tr>
<tr>
<td>SNP1053_81-c</td>
<td>c</td>
<td>5</td>
<td>08</td>
<td>9.3</td>
<td>0.0-36.3</td>
<td>4.4</td>
<td>1.0</td>
</tr>
<tr>
<td>VMCN1G1E1-CS</td>
<td>c</td>
<td>14</td>
<td>08, 09</td>
<td>0.0</td>
<td>0.0-9.0</td>
<td>2.7-2.8</td>
<td>0.7-1.1</td>
</tr>
<tr>
<td>VMC7F2-CS</td>
<td>c</td>
<td>18</td>
<td>07, 08, 09</td>
<td>73.3</td>
<td>72.1-73.3</td>
<td>69.6-116.2</td>
<td>71.8-80.9</td>
</tr>
</tbody>
</table>
Table 2. Nucleotide variation in the sdi+ haplotype generating protein sequence variation. Single nucleotide variants (SNVs) specific to the sdi+ haplotype located within the sdi fine mapping interval that were detected in the RNA-seq dataset (Supplemental Table 5) with an impact on protein coding sequence are presented here. For each SNV, the position and gene annotation in the 12X V1 grapevine reference genome, the nucleotide change in the coding sequence of the sdi+ haplotype, the amino acid change, the PROVEAN score and the predicted effect of the change in the function of the protein are indicated. PROVEAN score ≤ -2.5 and > -2.5 are considered ‘deleterious’ and ‘neutral’, respectively (Choi et al., 2012). Predicted deleterious changes are in bold.

<table>
<thead>
<tr>
<th>Genome position</th>
<th>Gene ID</th>
<th>Functional annotation</th>
<th>Coding sequence change</th>
<th>Amino acid change</th>
<th>Score</th>
<th>Predicted effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>chr18:26,859,228</td>
<td>VIT_18s0041g01870</td>
<td>VviPPAT2</td>
<td>451 C>T</td>
<td>Arg151Cys</td>
<td>-6.44</td>
<td>Deleterious</td>
</tr>
<tr>
<td>chr18:26,871,891</td>
<td>VIT_18s0041g01870</td>
<td>VviPPAT2</td>
<td>584 A>T</td>
<td>Gln195Leu</td>
<td>-4.27</td>
<td>Deleterious</td>
</tr>
<tr>
<td>chr18:26,889,399</td>
<td>VIT_18s0041g01880</td>
<td>VviAGL11</td>
<td>626 A>G</td>
<td>Thr210Ala</td>
<td>-0.21</td>
<td>Neutral</td>
</tr>
<tr>
<td>chr18:26,889,437</td>
<td>VIT_18s0041g01880</td>
<td>VviAGL11</td>
<td>590 G>T</td>
<td>Arg197Leu</td>
<td>-5.40</td>
<td>Deleterious</td>
</tr>
<tr>
<td>chr18:26,914,516</td>
<td>VIT_18s0041g01890</td>
<td>Unknown protein</td>
<td>148 G>A</td>
<td>Asp50Asn</td>
<td>0.45</td>
<td>Neutral</td>
</tr>
<tr>
<td>chr18:26,918,160</td>
<td>VIT_18s0041g01900</td>
<td>Translation elongation factor</td>
<td>997 A>T</td>
<td>Thr333Ser</td>
<td>1.01</td>
<td>Neutral</td>
</tr>
</tbody>
</table>
Table 3. Genotype of the two VviPPAT2 candidate single nucleotide variants (SNVs) in a collection of 93 accessions. The number of seedless and seeded accessions identified for each genotype are specified. For each position, the allele encoding candidate deleterious substitutions is denoted in bold. Accessions excluding these candidate SNVs are described in the footnote. The full list of genotypes for each accession can be found in Supplemental Table 6.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>VviPPAT2 Arg151Cys</th>
<th>VviPPAT2 Gln195Leu</th>
<th>Seedless accessions</th>
<th>Seeded accessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T:T</td>
<td>T:T</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>T:T</td>
<td>A:T</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>C:T</td>
<td>A:T</td>
<td>14</td>
<td>1<sup>a</sup></td>
</tr>
<tr>
<td>4</td>
<td>C:C</td>
<td>A:A</td>
<td>0</td>
<td>1<sup>b</sup></td>
</tr>
<tr>
<td>5</td>
<td>C:C</td>
<td>A:A</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>T:T</td>
<td>nd</td>
<td>0</td>
<td>1<sup>c</sup></td>
</tr>
<tr>
<td>7</td>
<td>nd</td>
<td>T:T</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>C:T</td>
<td>nd</td>
<td>0</td>
<td>7<sup>d</sup></td>
</tr>
<tr>
<td>9</td>
<td>nd</td>
<td>A:T</td>
<td>2</td>
<td>1<sup>e</sup></td>
</tr>
<tr>
<td>10</td>
<td>C:C</td>
<td>nd</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>nd</td>
<td>A:A</td>
<td>0</td>
<td>33</td>
</tr>
</tbody>
</table>

Figure legends

Figure 1. Stenospermocarpic phenotype and segregation in a RG×CS F₁ population. A, Berries of ‘Red Globe’ (RG) and ‘Crimson Seedless’ (CS) cross progenitors. Representative berries, seeds (RG) and stenospermocarpic seed traces (CS) at maturity are shown. B, Histogram showing the distribution of seed dry weight per berry (SDW) trait in RG×CS F₁ progeny. SDW values
correspond to the average of three seasons. The number of F\textsubscript{1} individuals is denoted in different colors depending on the genotype in the SDI QTL-linked marker VMC7F2: sdi+ (198:200) and sdi- (200:200) individuals are represented in red and blue, respectively. RG and CS indicate the phenotypic class coincident with the phenotype of each progenitor.

Figure 2. Fine mapping of the sdi mutation in two seedless × seeded F\textsubscript{1} populations. Scheme of crossover mapping for recombinants around the SDI locus in A, ‘Red Globe’ × ‘Crimson Seedless’ (RG×CS) and B, ‘Imperial Napoleon’ × ‘Crimson Seedless’ (IN×CS) F\textsubscript{1} mapping populations. Each class of recombinant F\textsubscript{1} individuals is depicted in different lines, where red, blue and grey colors denote chromosome fragments corresponding to the sdi+ seedless, sdi- seeded, or undetermined haplotypes, respectively. F\textsubscript{1} individuals considered and their phenotype (seed, seeded; trace, seedless) are indicated for each class in the left and right sides of the corresponding line, respectively. Markers studied in each F\textsubscript{1} mapping population, the sdi fine-mapped interval and the genes included on it according to distances in the PN40024 12X.0 reference genome and 12X V1 gene annotations are represented as well.

Figure 3. Transcriptome and phytohormone level comparisons between seedless (sdi+) and seeded (sdi-) RG×CS F\textsubscript{1} individuals. A, Venn diagram comparison of differentially expressed genes (DEGs) identified in 2 weeks after flowering (WAF) fruits (NimbleGen microarray) and 4 WAF aborting/developing seeds (RNA-seq). The number of up- and down-regulated DEGs in seedless (sdi+) versus seeded (sdi-) individuals in each experiment is shown. B, Summary of functional categories over-represented in up- and down-regulated DEGs in each experiment. This panel corresponds to a summary of the full list.
of functional enrichment results presented in Supplemental Table 4. C, Levels of salicylic acid (SA) and bioactive gibberellins (GA\textsubscript{1} and GA\textsubscript{4}) in RG×CS sdi+ and sdi- F\textsubscript{1} individuals and in the cross progenitors, ‘Crimson Seedless’ (CS) and ‘Red Globe’ (RG). Hormones were measured in seed traces or in seeds at 4 WAF. Average and SD concentration values of five replicates for sdi+ and sdi-F\textsubscript{1} individuals and two replicates for CS and RG are shown. Letters denote significant differences at p-value <0.01 using Duncan’s post-hoc test.

Figure 4. VviAGL11 transcript levels. A, Representation of RNA-seq reads aligned in a region of VviAGL11 with a high density of heterozygous single nucleotide polymorphisms (SNPs). Image obtained from IGV viewer. Read depth is shown separately for each studied seedless (sdi+) and seeded (sdi-) RG×CS F\textsubscript{1} individual. The frequency of each allele at single nucleotide variant (SNV) positions compared to the reference genome is denoted in colors. The read depth range depicted for each individual is indicated as well. A scheme of the portion of VviAGL11 12X V1 gene model annotated in this region of the PN40024 12X.0 reference genome is shown in blue at the bottom of the image with coding sequence exons (cds) numbered from the start codon. B, Average VviAGL11 allelic frequency in seedless RG×CS F\textsubscript{1} individuals estimated from RNA-seq data. C, Average VviAGL11 allelic frequency in seeded RG×CS F\textsubscript{1} individuals estimated from RNA-seq. In B and C, frequencies were normalized to the sdi- allele inherited from RG, for which expression levels are depicted in blue. Only positions with a heterozygous genotype in the three replicates (six and three SNPs in seedless and seeded individuals, respectively) were considered to estimate average frequencies and SD (represented by error bars) in the three seeded or seedless replicates. D, VviAGL11 expression estimated
by RT-qPCR. Expression in different pericarp and seed or seed trace (trace) tissues is shown for ‘Sultanina’ (Sult) at fruit set as well as for ‘Crimson Seedless’ (CS), ‘Red Globe’ (RG) and RG×CS F\textsubscript{1} individuals at 4 weeks after flowering (WAF). Expression levels were normalized relative to the \textit{GPDH} house-keeping gene and to RG seed tissue. Similar results were obtained when two other control genes were used for normalization (see Methods). Data represent the mean and SD of three technical replicates. Different letters denote significant differences between seed-related tissue samples with \textit{p}-value \textless{}0.01 using Duncan’s post-hoc test. Red and blue colors denote expression in stenospermocarpic and seeded individuals, respectively.

Figure 5. Sequence variation in \textit{AGL11} and association with seedlessness. \textbf{A}, Nucleotide sequence variation in the \textit{sdi}+ haplotype of \textit{VviAGL11} and association of the \textit{sdi}-linked variants with seedlessness in a collection of grapevine cultivars. \textit{VviAGL11} (exons + introns) plus the 2-kb upstream sequence were targeted for Illumina paired-end sequencing in 105 seeded and 5 seedless accessions. The position of single nucleotide polymorphisms (SNPs) and insertion-deletions (INDELs) identified in the \textit{sdi} haplotype compared to the PN40024 reference genome is depicted on a scheme of the gene (encoded in the minus strand) with coding sequences (CDS) numbered from the start codon of the gene. The frequency of the variant allele in stenospermocarpic seedless and seeded accessions is indicated for specific candidate polymorphisms selected from the full list of polymorphisms available in Supplemental Table 7. Genotype-phenotype correlation of 100% was only identified for the SNP causing the Arg197Leu substitution in the \textit{sdi} allele, which is highlighted in red. \textbf{B}, \textit{VviAGL11} protein domain model and
alignment of the C-terminal domain from homologous AGL11 and related Arabidopsis AGAMOUS-lineage MIKC-type proteins. Grapevine proteins encoded by the seeded (VviAGL11) and the seedless (VviAGL11-sdi) alleles, AGL11 homologs from dicotyledonous (Petunia hybrida, FBP7 CAA57311.1 and FBP11 CAA57445.1; Solanum lycopersicum, SIAGL11 AY098736.2 and SIMBP3 XM_010324479.2; Malus domestica, MdMADS10 CAA04324.1; Populus trichocarpa, Pr_0019s10580 U5FIJ5; Arabidopsis AtSTK AT4G09960.3; Glycine max, GmAGL11 B9MSS8) and monocotyledonous (Zea mays, ZmAGAMOUS NP_001105946.1; Brachypodium distachyum, BradiMADS21 G9BIK9; Oryza sativa, OsMADS13 Q2QW53; Sorghum bicolor, SorbiMADS21 C5XEN4; Triticum aestivum, TaAGL11 ABF57916.1) species as well as related AGAMOUS-lineage SHATTERPROOF Arabidopsis homologs (AtSHP1, AT3G58780.3 and AtSHP2, AT2G42830.2) were compared using the Conserved Domain Database tool available from NCBI (http://www.ncbi.nlm.nih.gov/cdd/). The alignment was performed with ClustalW in Mega7 software (Kumar et al., 2016). The position of the two amino acid substitutions detected in the VviAGL11-sdi allele are highlighted in boxes, and the seedlessness-associated Arg197Leu substitution is shown in red.

Figure 6. Concurrent somatic variation of the sdi mutation and seedlessness trait in ‘Sultanina Monococco’. A, Images of representative fruits in the stenospermocarpic cultivar ‘Sultanina’ (Sult) and in two seeded post-zygotic variants of ‘Sultanina’ that are known as ‘Sultanina Monococco’ (SM1 and SM2). B, Phenotype characterization of ‘Sultanina’ somatic variants. Seed dry weight per berry (SDW), berry fresh weight (BFW), number of seeds or traces per berry (Nº ST/B) and seed floatability are presented for Sult, SM1
and SM2 accessions. C, Post-zygotic variation in the single nucleotide variants determining the Arg197Leu sdi missense substitution in four ‘Sultanina Monococco’ accessions (SM1 to SM4). Data were obtained after capillary electrophoresis Sanger sequencing of a specific amplicon.

Figure 7. Model of grape seedlessness determined by the sdi locus. The left panel represents a heterozygous sdi+/sdi- individual in which the sdi Arg197Leu substitution prevents the activation of gene expression by multiprotein complexes containing the mutant VviAGL11 protein (depicted in red). This lack of gene expression activation precludes seed coat differentiation, which triggers salicylic acid (SA) production along with the over-expression of WRKY, Homeobox-domain (HD), and NAC transcription factors, and finally leads to endosperm degeneration and embryo developmental arrest in seed traces. The right panel depicts the activation of seed morphogenesis that takes place in seeded sdi-/sdi- individuals. Complexes containing the wild-type VviAGL11 protein (depicted in blue) directly or indirectly activate the expression of genes involved in seed coat sclerification, which enables endosperm maintenance and embryo development.
We thank J.L. Pérez-Sotés and Servicio de Investigación Vitivinícola (SIVV, Gobierno de La Rioja) at ICVV collection and Rosa M. Arnau and María J. Candel at IMIDA and ITUM for plant maintenance and technical support in phenotyping tasks. We are very grateful to Nachi Montemayor, Rufino Aguirrezabal, Miguel Angulo and Silvia Hernáiz for technical assistance. We also thank the Genomics service of the CNB-CSIC for running microarray hybridizations and Dr. Iván Carreño for sharing information regarding RS×MO F1 progeny.

Abbreviations

AGL = Agamous-like
Arg = Arginine
CAPS = Cleaved amplified polymorphic sequence
CS = Crimson Seedless
DEG = Differentially expressed gene
GEO: Gene expression omnibus
IN = Imperial Napoleon
INDEL = Insertion-deletion
Leu = Leucine
LG = Linkage group
LOD = Logarithm of odds
QTL = Quantitative trait locus
MO = Moscatuel
NGS = Next generation sequencing
PPAT = Pantetheine-phosphate adenylyltransferase
REC = Recombination frequency
RG = Red Globe
RS = Ruby Seedless
SA = Salicylic acid
SDI = Seed Development Inhibitor
SDW = Seed dry weight
SNP = Single nucleotide polymorphism
SNV = Single nucleotide variation
SSR = Simple sequence repeat
VIVC = Vitis International Variety Catalogue
WAF = Weeks after flowering

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Boursiquot JM, This P (2011) High throughput analysis of grape genetic diversity as a tool for germplasm collection management. Theoretical and Applied Genetics 122: 1233-1245

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title
genotype. BMC Plant Biol 14: 99

