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ABSTRACT
Air temperature is one of the most critical climatic factors controlling rice growth, development, 
and production in current and future climatic scenarii predicting increasingly frequent situations 
of extreme and/or fluctuating temperatures. With its large spectrum of geographical origins and 
cropping areas, one can credit tropical japonica rice subspecies of a probable genetic diversity of 
its response to air temperature, which is of major interest for the breeding of better adapted rice 
varieties. A panel of 195 rice accessions (175 japonica plus 20 reference cultivars) was studied in 
controlled environment to estimate cardinal (base, optimum, and maximum) temperatures based 
on the monitoring of the elongation rate (LERmax) of the sixth leaf on the main stem in response 
to six fixed thermal treatments ranging from 16 to 35  °C. A dedicated statistical framework was 
elaborated for estimating LERmax, cardinal temperature and related uncertainties. Developed 
statistical framework enhanced the precision of cardinal temperatures estimated compared to 
previously reported methods, especially for base temperature. Maximum temperature was trickier 
to estimate and will require further studies. A significant genotypic variability for base and optimal 
temperature was pointed out, suggesting tropical japonica subspecies represents a relevant genetic 
pool to breed for rice genotypes adapted to various thermal situations. These results also suggested 
that using genotype-dependent cardinal temperature values should enhance the way crop growth 
models account for genotype × environment interactions hence their predictive value in current and 
future climatic conditions.

Introduction

Climate change and particularly increasingly fluctuating 
and extreme temperatures strongly impact on crop growth 
and development and ultimately crop production particu-
larly for rice (Challinor et al., 2007; Hatfield & Prueger, 2015). 
Nevertheless, the response of plant growth and develop-
ment to temperature is complex and still partially under-
stood. First, growth (organ expansion, C assimilation, and 
respiration) and development (organ initiation) do not cor-
respond to the same physiological processes, nevertheless 
they are commonly considered with identical responses to 
air temperature (Zhang & Tao, 2013) and there are physio-
logical evidences for so (Parent et al., 2010). Crop growth 
and development response to temperature is classically 
modeled through the duration of phenological phases 
measured in thermal time. This is consistent with the sim-
ple hypothesis that growth and development rates are lin-
ear functions of air temperature above a base temperature. 
This simple approximation is only valid for a small range 

of temperatures; for wider ranges, more complex mod-
els have been published (Yan & Hunt, 1999, Zhang & Tao, 
2013). For example, growth rate can be viewed as a linear 
function of the temperature between a base temperature 
(Tbase) and an optimum temperature (Topt), and then dis-
play a plateau and even further a descending line down to 
a 0 at maximum temperature Tmax. Tbase, Topt, and Tmax 
are called cardinal temperatures. This type of piecewise 
linear modeling can be made more complex but the higher 
the number of linear components, the higher the number 
of parameters, and the more difficult their estimation is. 
Parameter estimation is even hardened when the number 
of components is not known initially and varies from one 
case study to the other, e.g. when some varieties display a 
plateau while others do not. In addition, piecewise linear 
models can generate unrealistic curves with too abrupt 
changes compared to that observed.

Models with smoother curves such as the Beta distri-
bution models, proposed by Yin et al. (1995) and Yan and 
Hunt (1999), provide a more realistic response curve and 
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a model adapted from Yan and Hunt (1999) and (2) esti-
mate cardinal temperatures and evaluate their variability 
within the rice japonica panel.

Once described the genetic material, experimental 
design and data, the modeling tools, calibration method, 
and results are presented and discussed with respect to 
the added value of characterizing the intraspecific varia-
bility of developmental parameters and its impact on the 
predictive value of crop models.

Materials and method

Experimental data

Genetic material
A panel composed of 175 tropical japonica rice acces-
sions, augmented with 20 reference accessions belong-
ing to other genetic groups: indica, aus and aromatic, 
was studied. This panel gathered both traditional and 
improved varieties originating from 32 different countries. 
Its description is available at (http://ricephenonetwork.irri.
org/diversity-panels/orytage-diversity-panels).

Experimental design and plant measurements
The elongation of the sixth leaf was monitored on the 195 
accessions in six thermal treatments applied in growth 
chambers. Two temporal replicates were performed in 
CIRAD facilities (Montpellier, France), one in 2010 and 
the other in 2011. Each year, for each temperature, each 
variety appeared once in a unique pot. Each year, an aux-
iliary chamber and two main chambers were used. The 
auxiliary chamber had an average air temperature of 27 °C 
during the day and 23 °C during the night, a 70% relative 
air humidity day and night and a 12-h photoperiod. Of 
the two main chambers, one was dedicated to the 16 °C 
target temperature and in the other, the 20, 23, 26, 30, 
and 35 °C target temperatures succeeded each other in a 
random order. In each main growth chamber, temperature 
was automatically regulated and a 12-h photoperiod was 
supplied with metal halid lamps (OSRAM HQI/TS 250 W) 
that provided a photosynthetically active radiation (PAR) 
of 600 μmol m−² s−1 at canopy level. Temperature and rel-
ative humidity sensors (Type T Thermocouple, Copper/
Constantan), three per chamber, were evenly distributed 
among the plants and their data recorded with a data-
logger (CR1000 Campbell Scientific Ltd, 80 Hathern Road, 
Shepshed, Leicestershire LE12 9GX UK). For each replicate 
and for each target temperature and variety in a replicate, 
four seeds were selected and germinated in cleaned and 
dried Petri boxes. Seeds were placed on a filter paper and 
wetted with distilled water. They were incubated at 30 °C 
for two days. The two most homogenous and vigorous 
seedlings of each accession were selected and planted 
at two cm depth in a one-liter pot filled with a substrate 

require fewer parameters: the maximum growth rate over 
temperature, Rmax, and the cardinal temperatures Tbase, 
Topt, and Tmax. Schematically, below the base tempera-
ture (Tbase, or Tmin for Yan & Hunt, 1999), crop growth and 
development stop. Above this base temperature, the rate 
of growth and development increase with temperature 
up to an optimum at Topt, beyond which they decrease 
until a maximum temperature (Tmax) is reached and no 
further growth or development occur. Between Tbase (or 
Tmin) and Tmax, growth rate is supposed to have an asym-
metric bell-shape evolution. By definition no growth can 
be observed below Tbase or over Tmax, so the estimation 
of Tbase and Tmax parameters must rely on extrapolations 
that may result in a lack of precision. Parent et al. (2010) 
proposed another paradigm to model plant growth and 
development response to temperature in analogy with 
the response observed for underlying enzymatic activ-
ity. However, the adjustment of this model requires data 
acquired under extreme temperatures rarely met in field 
conditions and hardly reproducible in non-dedicated 
growth chambers.

Usually, crop growth models use the same cardinal tem-
peratures for all cultivars within a given species such as 
rice (Kumar et al., 2016) or other crops (Brisson et al., 1998; 
Wang et al., 2002). This is mainly due to the experimental 
difficulty to estimate these parameters, although several 
studies already demonstrated that these parameters are 
genotype dependent, in particular within the rice indica 
subspecies (Dingkuhn & Miézan, 1995 and Dingkuhn, Sow 
et al. 2015 on a larger indica panel). This should imply con-
siderable errors in the way crop models simulate the gen-
otype × environment interactions (GxE) underlying crop 
growth and production in response to thermal conditions. 
To our knowledge, such a study was not performed yet on 
tropical japonica rice. As this subspecies is originating from 
and cultivated in a large spectrum of environments from 
sea level to altitudes above 2000 m. asl, it should show 
some genetic variability in plant response to temperature, 
which is of major interest to breed for adaptation to cli-
mate change and extreme temperatures (Lv et al.,2016).

The present study aims at exploring the genetic varia-
tion of cardinal temperatures within the tropical japonica 
rice subspecies. The response of maximum leaf expansion 
rate (LERmax) to air temperature was chosen as an easy-to-
measure trait to estimate cardinal temperatures. LERmax 
of the sixth leaf on the main stem was chosen, since dur-
ing the vegetative phase and more precisely between the 
appearance of the fourth and the eighth leaf, rice develop-
mental pattern is stable along time for a given genotype 
and environment (Katayama, 1951; Yoshida, 1981). Based 
on the measurement of sixth leaf elongation under six 
temperature modalities, a statistical framework was elab-
orated to (1) model LERmax response to temperature using 
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made of compost Nehaus-S and podzolane (5.7%) mixed 
with two grams of Plantacote fertilizer. Pots were posi-
tioned in the auxiliary growth chamber. Potted plants were 
grown under well-watered aerobic conditions all along 
the trial. At the two-leaf stage for a given accession, the 
most vigorous seedling was selected and the other was 
thinned. When the fifth leaf on the main stem appeared for 
a given accession, the corresponding pot was transferred 
into a main growth chamber in order to get acclimated 
to the target temperature before the sixth leaf appeared 
and its growth was monitored. The positions of the plants 
in the room were exchanged every day to minimize the 
effect of any possible heterogeneity in light intensity and 
temperature.

From the day of its appearance until it reached its final 
length, the sixth leaf length was daily measured approx-
imately at the same time of the day, i.e. at around 10 h in 
the morning. Leaf length was measured from the ligule of 
the fifth leaf to the tip of the sixth leaf, using a vertically 
mounted ruler.

Statistical and modeling framework to estimate 
cardinal temperatures from leaf length 
measurements

Estimating LERmax and correcting for departures 
from each target temperature
At any given temperature, leaf length is supposed to follow 
a logistic function of time. The maximum derivative of this 

function, i.e. the maximum leaf expansion rate (LERmax), 
is in turn a function of temperature. Thus, the resulting 
model is hierarchical (Figure 1); it is non-linear, because the 
leaf growth is a non-linear function of the parameters. It 
is also mixed because the measurements are repeated on 
the same leaf and parameters are likely to fluctuate ran-
domly from one plant to another according to individual 
and environmental fluctuations.

The first step of the hierarchical model analysis con-
sisted in modeling the sixth leaf length for each rice plant 
as a function of time, at constant six target temperatures 
16, 20, 23, 26, 30 and 35 °C. The model used was a logistic 
function

 

where t is the time and K, a and r real are positive param-
eters to estimate.

This logistic function has a point of symmetry I with 
coordinates 

(
xI =

ln(a)

r
;yI =

K

2

)
 (Figure 2). This point is also 

the inflexion point of the curve. f′, the first derivative of f, 
models the leaf elongation rate (LER). LERmax, the maxi-
mum of f′ is reached at point I and its value is f �

(
ln(a)

r

)
=

Kr

4
.

LERmax was estimated by nonlinear least squares using 
proc nlin of Sas/Stat version 9.3 (SAS Institute Inc., 2011). 
The standard error of LERmax was estimated with the Delta 
method (see for example Ver Hoef, 2012).

The second step consisted in evaluating the environ-
mental effects on LERmax estimation by estimating the 

(1)f (t) = K
1

1 + ae−rt

Figure 1. Hierarchical model of the leaf length as a function of the time and temperature. Bottom: the sixth leaf length is a function of 
time. top: lermax, the maximum derivative of this function is governed by the temperature following a second function with parameters 
tbase, topt, tmax, and rmax.
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•  bk is the locally linear response of LERmax to temper-
ature in the vicinity of T0k (cm day−1 °C−1);

•  cjk is the mean effect of year j (2010 or 2011), with ∑
j

cjk = 0, for target temperature k;

•  Dijk is the random effect of the lack of reproducibility 
on variety i the year j with target temperature k
Dijk~   (0,σ²Dk);

•  ɛijk is the error of estimation of LERmax from the 
length measurements, of variance σ²εijk (already esti-
mated at step 1).

Using the mixed procedure of SAS/STAT software version 
9.3, this model allowed us to estimate a mean year effect 
on LERmax for each temperature. The LERmax estimates 
were then adjusted for this year effect before proceeding 
to the next modeling step.

Modeling the response of LERmax to temperature
This third step of the statistical analysis consisted in mod-
eling the effect of air temperature on LERmax and esti-
mating cardinal temperatures using values previously 
estimated for each accession at six target temperatures 
and in each replicate separately. Beta-linear (Beta-L) model 
was devised as an alternative to Yan and Hunt’s Beta model, 
from which it is derived. It can be defined as follows:
 

with xJ = 2 Topt – Tmax

When the temperature is greater or equal to xJ defined 
above, the model coincides with Yan and Hunt’s (1999) 
Beta model. When the temperature is lower than xJ, 
the model is defined as the left half-tangent to the 
Beta model curve at the inflexion point J with coordi-
nates (xJ; yJ). Then Tbase is defined as the intersection 
of this half-line with the x axis. For the sake of clarity, 
the above expression is voluntarily over-parameterized. 
Only four parameters Rmax, Tbase, Topt and Tmax are 
needed to entirely define the Beta-L model. Thereafter, 
�i =

(
Rmaxi , Tbasei , Tmaxi , Topti

)
 will refer to the vector 

of parameters related to the variety i.

(3)

BetaL(Rmax, Tbase, Tmax, Topt, T )

=

⎧
⎪⎪⎨⎪⎪⎩

Rmax
�

Tmax−T

Tmax−Topt

��
T−Tmin

Topt−Tmin

��
Topt−Tmin

Tmax−Topt

�

, if T ≥ xJ

yJ
T−Tbase

xJ−Tbase
, if Tbase ≤ T ≤ xJ

0 , otherwise

yJ = 2Rmax

(
2Topt − Tmax − Tmin

Topt − Tmin

)(
Topt−Tmin

Tmax−Topt

)

Tmin =
2TbaseTopt − Tbase(2Topt − Tmax) − (2Topt − Tmax)2

Tbase − 4Topt + 3Tmax

year effect and the lack of reproducibility variance. Out of 
the 196 cultivars tested, up to 14 were missing for a given 
year and temperature. Any difference in environmental 
conditions of the two different years that affects the mean 
of LERmax would then result in a bias in the LERmax mean 
for the cultivars observed only one year when compared 
to those observed the two years.

As the actual temperatures fluctuated around the target 
temperatures, of ±1.5 °C for 90% of the measurements, we 
fitted an analysis of covariance, with the variety as factor 
and the temperature as covariate (Equation (2)), despite 
LERmax being a non-linear function of the temperature. 
For this, the small variations of actual temperature around 
their targets were supposed to have an approximately lin-
ear effect on LERmax, by considering a first-order Taylor 
expansion around the actual mean temperature and 
neglecting the variations in slope among the varieties. 
After this adjustment for temperature fluctuations, a year 
effect was still significant and was retained for final model.

Adding these three effects of variety, actual tempera-
ture and year, a linear mixed model was fitted to LERmax 
for each target temperature k 

where

•  LERmaxijk is the maximum leaf expansion rate 
obtained at actual temperature Tijk for variety i dur-
ing year j with target temperature k;

•  LERmaxi0k is the expected maximum expansion rate 
at target temperature T0k for variety i;

(2)
LERmaxijk = LERmaxi0k + bk

(
Tijk − T

0k

)
+ cjk + Dijk + �ijk

Figure 2. leaf length as a logistic function of the time.
notes: the inflexion point is represented at the intersection of the vertical 
and the horizontal green segments. the slope of the tangent of the logistic 
function at its inflexion point (red line) is the maximum elongation rate 
(lermax). example of apo accession at target temperature of 26 °c.
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•  BetaL(θi, Tijk) is the expected maximum expansion 
rate with variety i at the actual temperature Tijk, mod-
eled as defined in Equation (3);

•  Dijk is the random effect of the lack of reproducibility 
on variety i the year j at target temperature k; Dijk ~ 
  (0,σ²Dk) (variance already estimated at step 2);

•  ɛijk is the error of estimation of LERmax from the 
length measurements, of variance σ²εijk (already esti-
mated at step 1).

From this, the parameters of the Beta-L model including 
Tbase could be estimated along with their standard errors. 
The same process was performed with the Beta model to 
obtain Tmin.

In order to take into account the error propagated from 
leaf measurements to LERmax through its estimation and 
also a possible lack-of-repeatability of the experiment, a non-
linear mixed model was used with two error components:

where

•  LERmaxijk is the maximum leaf expansion rate 
obtained at actual temperature Tijk

for variety i during year (or replicate) j with target tem-
perature k, adjusted for year effect using analysis of 
covariance (Equation (2));

LERmaxijk = BetaL
(
�i , Tijk

)
+ Dijk + �ijk

Figure 3. observed (dot) and modeled (blue line) leaf length of curinca variety, for one replication of the experiment, at each target 
temperature 16, 20, 23, 26, 30, and 35 °c (subplot a, b, c, d, e, and f, respectively).
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SAS 9.3 statistical softwares while all the statistical results 
were obtained with SAS 9.3.

Results

Estimation of maximum leaf expansion rate LERmax

Leaf growth plotted against time of the day confirmed 
the assumed logistic shape of this relationship. Sample 
curves are shown for one replication in Figure 3(a)–(f ) 
for variety curinca at temperatures 16, 20, 23, 26, 30, and 
35 °C, respectively. As the frequency of length measure-
ments was the same for all temperatures, more data were 
collected at lower temperatures, where leaf expansion 
took longer. As a result, the LERmax estimation was gen-
erally more precise at lower than at higher temperatures  
(Table 1 and Figure 4). For a given temperature, the num-
ber of measurements and their positions on the curve 
varied according to leaf expansion rate and the time the 
sixth leaf appeared (Figure 3). As a result, for a given tem-
perature, LERmax estimation precision was not the same 
for all the varieties (Figure 4).

The standard deviation of the individual LERmax esti-
mation error was smaller on average than that of the lack 
of repeatability (Table 1). However, as it varies from one 
pot to another (Figure 4), it can occasionally exceed the 
standard error of lack of repeatability.

Comparison of Beta-L and Beta models to estimate 
cardinal temperatures

The Vuong closeness test (Vuong, 1989) was used to eval-
uate which one of the two models, Beta or Beta-L, fits the 
best the LERmax evolution over temperature. Based on 
the Kullback-Leibler information criterion, it tests the null 
hypothesis that two models, nested, not nested or over-
lapping, is equally close to the data, against the alternative 
hypothesis that one of them is closer to the data than the 
other. Vuong’s Z-statistic was calculated for each variety, 
resulting in a sample of 195 Z-values. Vuong’s Z-statistic 
asymptotically follows a standard normal distribution. A 
large enough deviation towards negative or positive val-
ues indicates a better fit of one model or the other.

Test for significant variability of Tbase and Topt

An analysis of variance was conducted using proc mixed 
of SAS software to assess the genotypic variability of the 
Tbase and Topt estimates obtained using the previously 
described modeling framework.

Graphical representations and statistical analysis

All the graphics presented in the present article were made 
using either R 3.3.1 (R Development Core Team, 2016) or 

Table 1. Standard error of the lack of repeatability and mean standard error of estimation of maximum leaf expansion rate of leaf 6 on 
the main stem (lermax).

Target temperature (°C)

16 20 23 26 30 35
Mean of
Standard error of lack of repeatability 0.014 0.028 0.040 0.040 0.049 0.057
Standard error of estimation from an individual curve 0.003 0.007 0.012 0.017 0.022 0.021
Global standard error 0.014 0.029 0.042 0.043 0.054 0.061
Global cV (%) 19.6 12.8 11.7 9.3 9.4 12.3

Figure 4. Boxplots of the frequency distributions of the standard errors of the lermax estimators obtained at each target temperature.
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shown). Tbase varied between 12.8  °C (SE  =  0.36) and 
15.6 °C (SE = 0.55) and Topt between 28.2 °C (SE = 0.50) and 
35.2 °C (SE = 1.89). Tbase was thus systematically higher 
than values commonly used in crop models that vary from 
8 to 13 °C.

Discussion and conclusion

The present study explored the genetic variation of cardi-
nal temperatures (base, optimal and maximal) within the 
japonica rice subspecies. The maximum expansion rate of 
the sixth leaf (LERmax) was chosen as the reference growth 
process and studied on 195 accessions. A statistical frame-
work was elaborated to model LERmax response to tem-
perature using a new model, called Beta-L model, adapted 
from the Beta model of Yan and Hunt (1999). This new 
model improved the estimation of cardinal temperatures 
at least in the case of rice. These key results are discussed 
below with respect to their implications and perspectives 
for rice crop modeling, phenotyping, and genetic studies.

Advantages and limits of methodological choices

In this study, the Beta-L model enabled to estimate more 
accurately the base temperature (Tbase) than the mini-
mum temperature (Tmin) of the Beta model classically 
used in literature (e.g. Yin et al., 2003). The Beta model 
has a curved response to low temperatures, whereas 
linear, piecewise linear and our Beta-L models have a lin-
ear response to low temperatures. To our knowledge, no 
study previously compared the goodness of fit of curve vs. 
straight line fitting regarding this response to low temper-
atures, and the present study did not show a clear winner 
in that respect. This may be due to the technical difficulties 
in observing low plant growth rates while keeping them 

Modeling the effect of temperature on LERmax 
using the Beta-L model

Comparison of Beta-L and Beta models to estimate 
cardinal temperatures
Vuong’s Z-statistic was calculated for each variety, result-
ing in a sample of 195 Z-values. The Z-values’ unimodal 
distribution fitted approximately the standard normal dis-
tribution, with a slight left shift. Its variance was slightly 
lower than 1 (σ² = 0.98), and its negative mean showed a 
non-significant leaning (p  =  0.0957) towards the Beta-L 
model. Thus, no sign of heterogeneity of the response 
shapes could be detected, suggesting the same model 
can be used for all of them. Overall, the Beta-L model fits 
the data at least as well as the Beta model.

The median of the standard error for Tbase estimated 
using Beta-L model was 0.30 °C, and was never higher than 
0.78 °C, whereas this median was 1.5 °C for the standard 
error of Tmin estimated using Beta model, and its third 
quartile was 2.4 °C (Figure 5(A)). The difference in precision 
of Topt was less pronounced (Figure 5(B)), still the Beta-L 
model provided a more precise estimation. Results for 
Tmax showed a strong imprecision for both models, due 
to the fact that this parameter was estimated by extrap-
olating the model curves. Also Tmax will not be further 
analyzed in this study. Because of its better precision in 
Tbase and Topt estimation, with an equivalent fit to data, 
the Beta-L model was preferred to the Beta model.

Genotypic variability of cardinal temperatures 
obtained with the Beta-L model
The distributions of Tbase and Topt estimated for each 
accession in the japonica panel are plotted in Figure 6(A) 
and (B) together with their standard error. Both Tbase and 
Topt showed a significant genotypic variability, confirmed 
by their significant variety effects (p < 0.0001) (results not 

Figure 5. Boxplots for the standard errors of parameter estimations of the two models. (a) the tbase parameter of the Beta-l model is 
more precisely estimated than the tmin parameter of the Yan and Hunt’s Beta model. (B) this is less pronounced for the topt parameter.
note: Boxplot legend is the same as in Figure 4.
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rice leaf tissue growth and function under heat conditions 
and further methodological set up must be performed for 
improving the estimation of Tmax.

Implications for crop modeling

Cardinal temperatures are simplifying concepts classically 
used to summarize the response of the plant to the air 
temperature. As model parameters, they make it possible 
to render the general shape of the response of growth to 
temperature. They also define a range of favorable tem-
peratures for the enzymatic activities, related to the cell 
division and elongation, underlying the different growth 
processes observable at the plant level (Parent et al., 2010). 
This is not to say they define absolute thresholds: some 
variation is indeed observed around the modeled curves, 
and this is true at all temperatures. Thus, one could not 
affirm that no growth is to be observed outside the esti-
mated (Tmin, Tmax) or (Tbase, Tmax) range.

As said in the introduction, it is a common prac-
tice in crop modeling to consider, for a given species, 
a unique value for these cardinal temperatures. Here, 
both the distributions of Tbase and Topt estimated for 
each accession in the japonica panel showed a signifi-
cant genotypic variability which was not demonstrated 
yet to our knowledge. In the particular case of Tbase, the 
175 tropical japonica accessions showed values rang-
ing between 12.8 °C (SE = 0.36) and 15.6 °C (SE = 0.55), 
whereas most of studies and crop models commonly 
use from 8 to 13 °C as a fixed value for rice (Bouman et 
al., 2001; Luquet et al., 2006). This raises the question of 

alive. By contrast, the Tbase parameter of the Beta-L model 
was more accurately estimated than the Tmin parameter 
of Yan and Hunt’s Beta model certainly because it requires 
less extrapolation. This made of Tbase a better candidate 
than Tmin for selection and marker association. Moreover, 
in its linear part, the Beta-L model was consistent with the 
concept of thermal time underlying most crop models. 
Using Tbase estimated by the Beta-L model should thus 
be more appropriate in a modeling context than using 
Tmin estimated by the Beta model. Topt was also more 
accurately estimated with Beta-L than with Beta model, 
though the superiority of Beta-L was less obvious than for 
Tbase. As the maximum target temperature was 35 °C, the 
standard error of Topt got higher as Topt got closer to 35 °C. 
A similar behavior is not observed for Tbase, although it 
results from an extrapolation under the minimum 16 °C 
target temperature. Apart from these general trends, some 
heterogeneity in standard error was observed and prob-
ably resulted from the different patterns of missing data 
for some cultivars. Tmax could not be estimated accurately 
for all varieties, as 35 °C was already a maximum attainable 
target for our growth chambers. With equipment better 
fitted for high temperatures, it is likely that useful esti-
mates could be obtained for Tmax as they were for Tbase. 
There again, when data is available, the linearization of the 
beta model for the high temperatures may be an option 
to consider. However, attention must be paid at high tem-
peratures to maintain air vapor pressure deficit (VPD) at an 
acceptable value in order to avoid water stress and ulti-
mately leaf burning. It would be also interesting to explore 
whether there is genetic variability in the maintenance of 

Figure 6. Sorted base and optimum temperatures of the 195 varieties and their standard errors show a genotypic variability of tbase (a) 
and topt (B).
notes: cultivars were put in order from the smallest to the highest base (resp. optimum) temperature values. the rank of a particular cultivar is its position in the 
resulting sorted list.
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the impact of considering, within a given species, fixed 
vs. variable value for these parameters when modeling 
and predicting crop growth and ultimately yield in a given 
environment. This was also suggested by Dingkuhn et al. 
(2015) in the case of a model-based study of the genetic 
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species. Cardinal temperatures indeed are key parameters 
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Perspectives for genetic studies and model based 
ideotype definition

Cardinal temperatures estimated in the present study come 
in complement to the set of traits and model parameters 
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with 16664 SNP markers. This will reinforce the connec-
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