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Abstract 

As it is the case for any spectroscopic technique, laser-induced breakdown spectroscopy 

(LIBS) is strongly influenced by the signal fluctuations, and the LIBS spectra need to be normalized to 

obtain enhanced analytical performance. Nowadays, normalization in LIBS remains an open question 

and, in the present review, the normalization methods commonly applied to LIBS are presented and 

discussed, in particular those based on background, total area, internal standard, and Standard 

Normal Variate. We emphasize that the figures of merit, namely the coefficient of determination, the 

root-mean square error of prediction and the limit of quantification used to assess the advantages of 

processing normalized instead of non-normalized LIBS spectra, in a context of quantification, must be 

calculated in a rigorous way to be able to draw conclusions. We thus propose advices and good 

practices to achieve a rigorous comparison between quantitative models involving various 

normalization approaches, the final choice of the best normalization being ultimately driven by the 

analytical context. In order to take the best advantage from normalization in LIBS and thus increase 

the analytical performance of this technique, we encourage the analyst to thoroughly compare 

different normalization methods. 
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Introduction 

As it is the case for any spectroscopic technique, laser-induced breakdown 
spectroscopy (LIBS) is strongly influenced by signal fluctuations [1]. Indeed, the LIBS 
spectra are correlated to the plasma properties, themselves correlated to: i) the measurement 
conditions such as laser energy, lens-to-sample distance, and spectrometer calibration, and ii) 
the physical properties of the sample such as roughness, hardness, and porosity. 

Reducing the signal fluctuations allows increasing the quality in LIBS, which is of 
major importance for the development of this technique. The first strategy in order to reduce 
fluctuations is to build LIBS experiments with a high degree of control and stabilization. In 
this case, stabilizing the laser energy, the lens-to-sample distance as well as the spectrometer 
calibration allows for significantly reducing the signal fluctuations [2]. However, all the 
laboratory setups don’t share the same level of control and thus don’t allow for reaching the 
same reduction of signal fluctuations. In addition, in the case of on-site analyses, involving 
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compact LIBS systems [3], for either stand-off or handheld operation, the degree of control 
and stabilization is expected to be much lower, and the related level of fluctuations much 
higher compared to laboratory instruments. In this context, normalization approaches have 
been proposed in order to reduce the fluctuations observed in the raw LIBS data. A first type 
of normalization consists in monitoring other data in addition to the LIBS spectrum, either 
simultaneously, like the acoustic signal induced by the shock-wave [4, 5, 6], or after, like the 
ablated mass [7]. Then, the LIBS signal is corrected thanks to this additional information, 
namely divided by a factor related to this external parameter. Then, if the variation of the 
monitored parameter is correlated with those of the LIBS signal, this normalization process is 
expected to efficiently reduce the signal fluctuations. However, most of the LIBS instruments 
don’t allow to monitor additional parameters during or after the measurement and the analyst 
has to treat the raw LIBS signals, without any extra information. In this last case, 
normalization simply consists in a mathematical transformation of the raw data.  

Data normalization is expected to have a positive impact on both quantification and 
sorting models. Nevertheless, we decided to focus the present discussion only on 
quantification since this is, by principle, the top objective of any analytical method. In 
addition, quantification in LIBS can be addressed by building either a calibration model from 
a series of samples with known concentration values, or a physical model from the plasma 
properties and spectroscopic data, without any calibration, and well-known as calibration-free 
(CF-LIBS) [8]. It is interesting to note that signal fluctuations due to a change in plasma 
properties are naturally taken into account by CF-LIBS. Thus, any change in electron density 
and temperature induces complex modifications of the calculated LIBS spectra, which cannot 
be described by a simple multiplicative coefficient. More precisely, the components of the 
LIBS spectra, namely the continuum as well as the ionic, neutral, and molecular emission 
lines are changing in non-proportional ways according to the changes in the plasma 
properties. The CF-LIBS approach thus includes a kind of self-normalization process that 
enables to correctly interpret each single LIBS spectrum individually. Consequently, in the 
present review, we will focus our discussion only on the case of calibration models. In this 
case, the transformations to be applied to the raw LIBS spectra for normalization purposes are 
quite basic, but to date there is no normalization approach considered as being more efficient 
than the others to treat the LIBS data. Even more, the advantage of normalization in LIBS is 
sometimes questionable, making this topic still an open question. In the critical review 
proposed here, a state-of-the-art about normalization in LIBS is presented in the first section, 
with a particular emphasis on the four methods of normalization the most often adopted in 
LIBS, specifically normalization by: i) background, ii) total area, iii) internal standard, and iv) 
standard normal variate (SNV). Other factors were also tested to normalize the LIBS spectra 
such as the Euclidian norm, the maximum and the minimum intensity values of each 
individual spectrum [9, 10, 11]. However, the related normalization approaches can be 
considered as quite similar to the four methods previously mentioned, and they are finally 
rarely used and not detailed in this review. Then, in the second section of this review, in order 
to properly compare the performance of the different normalization approaches between them, 
good practices and significance of selected figures of merit, namely the coefficient of 
determination (R2); the root mean square error (RMSE) declined as the root mean square error 
of calibration (RMSEC) when strictly applied to the calibration set, the root mean square error 
of prediction (RMSEP) when strictly applied to the validation set not involved in the 
construction of the model, and the root mean square error of cross-validation (RMSECV) 



after a cross-validation process; the limit of detection (LOD), and the limit of quantification 
(LOQ) are presented as a key-step to make accurate decisions. Finally, we have decided to 
illustrate the present discussion through the quantitative analysis of a selected dataset after 
different normalization approaches, and we have accurately compared the related figures of 
merit to conclude if a given normalization method can be finally recommended in a general 
context. 

 

1. State of the art 

The need for normalization concerns not only LIBS but all spectroscopic techniques. 
And the most efficient strategies of spectra normalization in general are well documented in 
the scientific literature and routinely applied, especially for Near-Infrared Spectroscopy 
(NIR), and inductively-coupled plasma atomic emission spectroscopy (ICP-AES), selected 
here as two emblematic examples of the spectroscopic techniques, and detailed below. 

In the case of NIR, the spectra can significantly be influenced by light scattering 
through a baseline change, known as the multiplicative effect, and non-linear variations of 
intensity. Therefore, the most used normalization techniques in NIR are divided into two 
groups [12]: i) the scatter-correction methods, including Standard Normal Variate (SNV) and 
Multiplicative Scatter Correction, and ii) the signal derivative based on algorithms such as 
Savitzky-Golay or Norris-Williams. The review made by Rinnan et al. [12] about the pre-
processing methods in NIR, theoretically describes each of these normalization techniques as 
well as their advantages and limitations. Nowadays, all the NIR spectra are systematically 
normalized and the normalization process is well-established [13, 14].  

In the case of ICP-AES, the plasma fluctuations are eliminated by the use of the 
internal standard method [15]. It means that a chemical element is chosen for its compatibility 
with the matrix of interest, and by the presence of an atomic emission line exhibiting good 
signal-to-noise ratio and without any risk of spectral interference with emission lines related 
to other elements. The selected element is then used as a dopant and introduced under the 
same concentration into each solution prepared for quantification. In this context, the 
elements Yttrium (Y) and Scandium (Sc) are often selected as internal standards for these 
reasons and also because they are absent from almost all the real-life samples. Then, the 
emission line selected for the normalization process is exploited as follows: its peak intensity 
is measured for each sample, including the blank; and then, the ratio to the intensity of the 
blank is calculated for this emission line for each sample. Finally, the peak intensities related 
to all the other elements are multiplied by this ratio. This method is well-established and has 
been routinely applied to ICP-AES for many years [16].  

 Regarding LIBS, it is worth noticing that, despite many attempts of normalization 
during these last years, there is no clear preference for one type of normalization, the analysts 
adopting the method considered as the most efficient for their specific application. In 2010, 
Zorov et al. [5] described the strategies of normalization to be applied to LIBS and other 
spectroscopic techniques based on laser sampling, such as ICP-AES, atomic absorption 
spectroscopy and laser-enhanced ionization spectroscopy. They presented examples of LIBS 
data successfully normalized [17, 18] as well as cases for which the normalization was not 
efficient [19, 20], confirming that determining the right normalization method for LIBS is not 



an easy task. In 2012, Hahn and Omenetto [4] emphasized that it was almost impossible to 
apply the internal standard method to normalize the LIBS data since many important criteria 
couldn’t be satisfied. Furthermore, Tognoni and Cristoforetti [6] proposed three types of 
normalization approaches, namely the internal standard method, the normalization by the 
background and finally a normalization based on the calculation of the plasma properties, 
similar to the CF-LIBS method. The authors finally recommended to select the most relevant 
normalization strategy among the three, based on each single experimental context.  

To go further into details, an extended selection of articles dealing with normalization 
in LIBS is presented in Table 1. The aim of this list is to: i) show which normalization 
methods have been investigated and finally selected, ii) point out that some authors have 
demonstrated the advantage of treating normalized compared to uncorrected data, while some 
others haven’t, and iii) present the figures of merit that have been used to determine the 
prediction ability of each model, and thus the advantage of applying normalization. 

Table 1: Selection of articles dealing with normalization in LIBS. The investigated and selected normalization 

methods are presented as well as the figures of merit used to assess the prediction ability of each model. IS: 

internal standard; SNV: standard normal variate; Imax: maximum intensity; Imin: minimum intensity. 

Investigated 
normalization 

method 

Selected 
normalization 

method 

Comparison 
normalized/ 

uncorrected data 
Figures of merit References 

IS, Background, 
Total area 

IS yes RMSECV, LOD 2018, Thomas et al. [27] 

IS, Total area, 
Imax, Norm 

IS yes R², RMSEC 2019, Andrade et al. [28] 

Background Background no R², LOD 2011, Dell’Aglio et al. [30] 
Background Background no R², RMSEC 2009, Senesi et al. [31] 
Total area Total area no R², RSD 2014, Fabre et al. [22] 
Total area Total area no R², RMSE 2017, Payré et al. [61] 
Total area Total area yes R², RMSECV 2018, Takahashi et al. [26] 

IS IS no RSD 2008, Juvé et al. [21] 
IS IS yes R² 2011, Gupta et al. [48] 

IS applied to Fe, 
Mg, Al, Si 

IS (Fe line) yes R² 2009, Kwak et al. [35] 

IS applied to 
Ba, Si, B 

IS (Ba line) no R², RMSECV 2014, Sarkar et al. [36] 

SNV SNV no RSD 2011, Ismael et al. [23] 
SNV, IS SNV yes R², LOD  2015, Syvilay et al. [42] 

Total area, IS, 
Imax, norm  

Element dependent  yes 
RMSEC, RMSECV, 

RMSEP, LOD 
2016, Castro et al. [45] 

Total area, 
Background 

Total area yes RSD, RMSEP 2001, Body and Chadwick [17] 

Total area, IS, 
Calibration-free 

Element dependent  yes R² 2006, Sallé et al. [47] 

Total area, IS, 
Imax, norm  

Element dependent  yes R², RMSEC, RMSEP 2017, Augusto et al. [43] 

IS, Imax, norm Element dependent  yes 
RMSEC, RMSECV, 
RMSEP, LOD, LOQ 

2016, Andrade et al. [46] 

Total area, 
Background, IS  

IS, total area no R², RMSEP, RSD 2016, Karki et al. [24] 

Imin, Imax, IS, 
norm 

Norm no REP, RMSEP 2015, Sarkar et al. [44] 

 

Seven normalization methods are reported in Table 1, namely normalization to the 
maximum, minimum, background, total area, Euclidian norm, internal standard and SNV. 
Details about the calculations related to these methods can be found in the corresponding 



references. Table 1 also reveals that the comparison between normalized and uncorrected data 
has not been systematically presented, some of the authors assuming that normalization was 
expected to provide a priori better analytical results than uncorrected data, but without 
verifying if this statement is always true. The figures of merit that have been used to assess 
the normalization methods are also given in this table. First, the reduction of the variations of 
the LIBS signals was presented by some authors [21, 22, 23, 17, 24]. The coefficient of 
determination R2 has been very often used, either alone, or in complement to other figures of 
merit such as the root-mean square error (RMSE) declined as RMSEC (calibration set), 
RMSEP (validation set), and RMSECV (cross-validation), as well as the limits of detection 
(LOD) and quantification (LOQ). It is worth noticing that these figures of merit should be 
calculated with an extreme thoroughness since they allow not only for demonstrating if the 
normalization enables to reach better analytical performances than by uncorrected data, but 
also to determine if a normalization method provides a better correction than the others. In 
addition, it is worth pointing out that very recent publications [26, 27, 28] were partly 
dedicated to the selection of the best normalization approach, revealing it is still an open 
question. From Table 1, it is also interesting to notice that the best normalization method 
seems to depend on the element and the sample. However, in order to push further the 
discussion, the principles and advantages of the four most common normalization methods 
applied to LIBS are presented hereafter.  

 

Normalization to the background  

The background emission is theoretically considered to be a relevant indicator to monitor the 
plasma properties. In 2008, De Giacomo et al. [32] demonstrated the existence of a 
correlation between the intensity of the continuum radiation, i.e the background intensity, and 
the plasma density, itself correlated to the amount of emitters in the plasma. In the case of 
normalization to the background, the peak intensity value of the emission line of interest is 
divided by the value of the background emission. This one is recorded at the vicinity of the 
emission line of interest, either from the intensity value at a single wavelength, or from the 
average value over a selected spectral window [6]. It is worth pointing out that the 
background emission must be carefully recorded. In practice, it means that the detector dark 
current must be separately recorded and then subtracted prior to such signal processing. This 
point has been deeply discussed in ref. [6, 66] and is crucial to take into account the actual 
background signal. Zorov et al. [5] attributed the first results about the use of normalization to 
the background to Xu et al. [29], but the corresponding work was quickly disapproved by 
other authors [19], which clearly revealed a lack of generalization ability. However, this type 
of normalization has been successfully applied to several cases [5, 30, 31]. In the frame of 
analysis of soils polluted with heavy metals, Dell’Aglio et al. [30] adopted the normalization 
to the background for emission lines related to several elements (Cr, Cu, Pb, V, Zn) in order 
to reduce matrix effects. They concluded that the correlation between the data derived from 
ICP-AES and the normalized LIBS signals was quite satisfactory. Senesi et al. [31] also 
adopted the normalization to the background to quantify the concentrations of heavy metals in 
soils, with a particular focus on chromium. However, despite significant reduction of the 
fluctuations and high correlation between the normalized LIBS and ICP-AES data, it is very 
important to notice that only 3 to 4 points were taken into account to build the quantitative 
models in this study. The conclusions are thus likely to be non-robust. 



 

 

Normalization to the total area 

In the case of normalization to the total area, for each LIBS spectrum, the peak intensity 
value of the emission line related to the analyte is divided by the value of area of the spectrum 
over the whole spectral range. Here again, the detector dark current must be separately 
measured and subtracted prior to such signal processing, to deal with real LIBS spectra. The 
total area is calculated as the sum of all the intensity levels describing the LIBS spectrum, 
once the detector dark current has been removed, and is considered to be a good indicator of 
the plasma properties. Thus, Body and Chadwick [17] demonstrated the existence of a strong 
correlation between this area and the laser energy. Then, Fabre et al. [22] applied this 
normalization method to the analysis of Martian rocks and soils by ChemCam onboard the 
MSL Curiosity rover. In this case, three separate spectrometers were operated and the 
normalization to the total area was implemented by considering only the spectrometer for 
which the emission line of the analyte was detected. Therefore, all the results of quantification 
obtained from the ChemCam data, and based on Partial Least Squares regression (PLS) for 
the major elements and univariate analysis for the minor and traces, were entirely based on 
normalized data. In 2010, Zorov et al. [5] reported that J.A. Bolger [33] proposed the 
normalization method to the total area for the first time in LIBS, which allowed to improve 
the linearity of the calibration curves of Cu, Fe, Ni, Mn and Cr in mineral rocks. However, it 
is interesting to notice again that the calibration curves were built from a very small number 
of points, making the conclusion of this study potentially non-robust. Finally, Yu et al. [25], 
in the context of sorting certified soils by chemometric tools, examined the compensation of 
matrix effects and changes in experimental conditions, mainly temperature, through the 
normalization to the total area. They presented this normalization as a standard step of pre-
processing but without comparing the corresponding analytical results to those obtained from 
uncorrected data. More generally, most of the articles about the normalization to the total area 
have concluded that this pre-processing step provides a benefit.   

 

Normalization to an internal standard 

The internal standard (IS) method is frequently adopted by the LIBS analysts. It consists 
in dividing the peak intensity (or area) of the emission line related to the analyte by the peak 
intensity (or area) of a selected emission line related to the internal standard. The 
concentration of the internal standard is supposed to remain constant for the whole set of 
samples, or at least to be known by the analyst. The underlying hypothesis is that the 
variations of the peak intensity related to the internal standard are only due to changes in the 
plasma properties. This is expected to be true when all the samples considered to build a 
calibration model are characterized by a single matrix in order to avoid any risk of bias linked 
to matrix effects. But it is interesting to notice also that this normalization method can be 
indifferently applied to any kind of matrix [21, 36, 48, 63, 64, 65]. Moreover, it requires the 
use of another analytical technique to measure the concentration values of the internal 
standard inside each sample. 



The list of criteria defined by Barnett et al. [34] to be verified in order to identify a 
reliable internal standard, have been applied to LIBS [4]. Three of these criteria are related to 
the choice of the element playing the role of internal standard, since the analyte and the 
internal standard are expected to share similar: i) volatilization rates; ii) ionization energies; 
and iii) atomic weights. Then, three other criteria are focused on the selection of the spectral 
line, which is expected to: i) have the same excitation energy than the one of the analyte; ii) 
be not affected by self-absorption; iii) have a similar intensity as the one of the analyte. In 
practice, this list of criteria seems to be almost impossible to fulfill, especially in the case of 
natural and complex matrices, driving to conclude that the internal standard method is 
generally not ideal to LIBS analysis. Despite this statement, several studies have concluded on 
the advantages of applying the internal standard method to LIBS, even if the choice of the 
internal standard according to the criteria previously mentioned was not always clearly 
presented. Thus, Juvé et al. [21], selected the spectral line of carbon at 247.86 nm considered 
as an internal standard, to process the space-resolved analysis of trace elements (Mg, Al, Ca, 
Ti, Mn, Fe) in fresh vegetables. The choice of carbon was based on the fact that it was found 
under constant concentration in the studied samples but no reference to the selection criteria 
neither for the elements nor for the spectral lines can be found in their article. Thus, the 
advantage of adopting internal standard normalization reported in this article might be due to 
chance. Similarly, Kwak et al. [35] did not consider the criteria related to the selection of 
internal standard. In the case of quantification of arsenic in soils, they normalized the intensity 
of the As I line at 228.812 nm to the one of the Fe I line at 248.8 nm and also to the Mg I line 
at 285.2 nm, then the Al I line at 309.3 nm, and also the Si I line at 288.2 nm. The only 
criterion to select these lines was the increase of the coefficient of determination. Indeed, 
starting from 0.22 without normalization, R2=0.96 after a normalization to Fe, 0.91 with Mg, 
0.75 with Al, and 0.58 with Si, demonstrating the advantage of normalizing the LIBS signal to 
the Fe I line at 248.8 to reach the best performance for the calibration model. Moreover, 
Sarkar et al. [36], in the context of quantification of uranium in a barium borosilicate glass 
matrix, selected barium as internal standard, after comparison with other elements, such as 
silicon and boron. Then, they selected the emission line of Ba I at 649.786 nm, which was 
satisfying to all the given criteria. Finally, by comparing the figures of merit (R², RMSECV 
and the slope of the calibration curve), obtained after this normalization to the selected Ba I 
line, to the ones derived from other elements and spectral lines, they concluded that the best 
normalization according to theoretical criteria was also the best one from the experimental 
results.  

To conclude, normalization to an internal standard has been demonstrated to reduce the LIBS 
signal fluctuations and thus increase the analytical performance of the related quantitative 
models. However, in addition to the cases exhibiting a successful effect of this type of 
normalization on the analytical performance, it is worth noticing that LIBS is also often 
applied to analysis of samples for which it is impossible to find a proper internal standard, 
according to the list of criteria previously discussed. This normalization approach can’t thus 
be considered as a general strategy for LIBS analysis, and should only be applied to specific 
cases. 

 

 Standard Normal Variate - SNV 



Standard Normal Variate (SNV) is one of the most used normalization techniques in 
near-infrared spectroscopy (NIR) [37, 38, 39] and Raman spectroscopy [40, 41]. SNV 
calculation is processed on each spectrum individually by centering the spectrum on the mean 
value and then dividing the corrected spectrum by the standard deviation of the original 
spectrum (Equation 1): 

     I���� = ��	�
��

�           Equation 1 

where �� represents the intensity value at the wavelength k of the original spectrum; I����, the 
corresponding SNV normalized intensity value; �����, the mean of the intensity values of the 
original spectrum; and �, the standard deviation of the original spectrum.  

In the context of in-situ quantitative LIBS analyses of polluted soils involving Pb, Cu and Fe, 
Ismaël et al. [23] obtained good correlations between the SNV-corrected LIBS data and the 
reference concentration values derived from ICP-AES, for Pb (405.78nm), Cu (327.39nm) 
and Fe (344.08nm) and observed that SNV allowed to reduce the standard deviation after a 
series of repetitions. Then, Syvilay et al. [42] demonstrated in the context of quantitative 
analysis of Ag, Bi, Cu and Sn in lead samples, that the univariate models built from SNV-
corrected data provided better figures of merit (R2 and LOD) than those built from either raw 
data or data normalized to a selected emission line of lead, considered as internal standard. To 
conclude, the examples of LIBS studies reported in Table 1 indicate that SNV might be an 
efficient normalization technique for processing the LIBS data and we point out that the 
advantages of the SNV normalization is worth being accurately assessed in future works. 

As a general conclusion, the four normalization methods presented in the present review 
have been successfully applied to LIBS data, meaning they have permitted to reduce the 
signal fluctuations and by consequence, improve the calibration performances. 

 

2. Recommendations 

To support the advantages of normalizing, we recommend to systematically compare the 
figures of merit related to the models built from either normalized or uncorrected data. 
Indeed, from Table 1, one can notice that this simple comparison was not made in all the 
cases. In addition, it is worth pointing out that, in some cases, normalization might negatively 
impact the analytical performance of the models [19, 36, 43]. Based on the works reported in 
Table 1, it is not possible to conclude if one of the normalization methods might be 
advantageously adopted whatever the element and application. Thus, we recommend the 
LIBS analyst to test different normalization methods and then adopt the one offering the best 
analytical performance. This strategy of comparing different normalization methods has been 
adopted by some authors [44, 45, 24, 43, 46], who concluded that, in some cases, uncorrected 
data provide better analytical performances than normalized ones, and also that the 
normalization method should be selected on a case-to-case basis. Regarding the figures of 
merit calculated to assess the performance of each model, the coefficient of determination R² 
has been widely used. However, in some cases, R² was the only indicator considered for the 
assessment [35, 47, 48], which is clearly insufficient to establish robust conclusions, as it will 
be further discussed in this section.  

Minimum number of points to build a reliable calibration model 



In order to determine what is the best normalization approach for LIBS, we recommend to 
strictly apply the basic rules allowing to calculate correct values for the figures of merit 
dedicated to assess the analytical performances of the models. Our first advice concerns the 
minimum number of points (concentration values) to build a robust linear calibration model. 
This number is not defined in a unique way by the organizations in charge of standardization 
and traceability of chemical measurements. The ISO standard 11095:1996 [49], namely the 
standard dedicated to linear calibration using reference materials published by the 
International Organization for Standardization (ISO), advises to include more than three 
points to build a reliable model. Moreover, through a guide named “The Fitness for Purpose 
of Analytical Methods” [50], the European network of organizations EURACHEM, 
promoting good quality practices about chemical measurements, recommends to include a 
minimum of 6 concentration levels plus blank. In the same way, a commission decision 
(2002/657/EC), edited by the commission of the European communities [51], about the 
performance of the analytical methods and the interpretation of results advises to include at 
least 5 points, i.e. concentration levels, including zero. Based on these references, the 
minimum number of points to build a reliable calibration model should be around 5 or 6. 
Furthermore, these points should be, ideally, equally distributed over the concentration range 
related to the calibration to obtain the most representative calibration model related to the 
analytical context. But, despite of its major importance for quality purpose, this last criterion 
is generally under-estimated or simply not considered by the LIBS analysts. We have thus 
decided to illustrate how the use of an unappropriated dataset to build the calibration models 
might drive to non-robust conclusions. 

 

Coefficient of determination, R2 

The coefficient of determination, R2, is the figure of merit the most commonly used (cf. 
Table 1) to assess the quality of a calibration model. However, this indicator is reliable only 
when the points are equally distributed over the concentration range and when there is no 
extreme point, very far from the other ones. At the opposite, if one of these conditions is not 
fulfilled, the decision based only on the parameter R2 might be non-robust and this statement 
seems not always be taken into account in the LIBS literature [31, 33], still nowadays [52].  

 

Figure 1:  Linear calibration models (red lines) obtained (after baseline-subtraction) for: a) not normalized data, 

b) data normalized to the total area, and c) data normalized by SNV, with the corresponding R2 values.  

Figure 1 illustrates the case of univariate calibration models built from a set of 36 LIBS 
spectra. This dataset has been specially selected to illustrate the case of non-satisfying 
conditions to build a robust model. Thus, all the details about the samples, the analyte, and the 
experimental setup are voluntary not provided here, to highlight the general conclusions of 



this discussion and not consider it as a specific case-study. For each model displayed in Fig. 1, 
the baseline-subtracted signal (in arbitrary units, a.u.) was plotted on the vertical axis as a 
function of the concentration of the analyte (µg/g) on the horizontal axis in three cases: a) 
without normalization; b) after normalization to the total area of the spectrum; c) after 
normalization by SNV. In agreement with the a priori expectation, the R2 values are higher 
after normalization. However, it is worth noticing that, considering a range of calibration from 
0 to 8000 µg/g, 89% of the points of the calibration set correspond to concentration values 
lower than 1500 µg/g. Moreover, for these points, whatever the normalization process, there 
is no correlation between the LIBS signal and the concentration values. In such conditions, 
the increase of the R2 value from 0.52 (without normalization) to 0.84 (SNV) should be 
considered with caution, since the regression models over the full concentration range are, in 
this case, not robust. Indeed, none of the points from the calibration set is between 1500 and 
2500 µg/g and between 4500 and 7500 µg/g. Moreover, in such conditions, the coefficient of 
determination value is highly sensitive to extreme points, considered as outliers [53]. For 
instance, in this case, the last point of the calibration curve corresponds to a concentration 
value of 7500 µg/g, quite far from the previous one, which corresponds to 4500 µg/g. Indeed, 
after removing this last point from the calibration set, the new R² values become 0.38, 0.53 
and 0.59, for the non-normalized data, data normalized to the total area, and data normalized 
by SNV, respectively. Finally, the example given here aims at warning the LIBS analyst about 
the danger of looking only at R² [54] to characterize the calibration performances of a model, 
whatever the method of normalization. It also means that outliers should induce additional 
investigation through either new measurements, or new steps in data processing. 

 

 

Root Mean Squared Error of prediction (RMSE)  

In addition to the R2 parameter, the prediction ability has to be determined. It consists 
in calculating the common Root Mean Squared Error (RMSE) [55] resulting from the 
predicted concentration values from a series of samples. This indicator is expected to be as 
low as possible for a reliable model, and is mathematically written as in Eq.2.  

���� =  �∑ ���	�� !"#�$%
&   Equation 2 

Where '( is the predicted concentration value, '()  the reference concentration value of the 
sample p, and N the number of samples taken into account. It is worth noticing that, similarly 
to the case of R2, this figure of merit should be considered with extreme attention, as 
discussed below. 

When all the samples belonging to the calibration (C) set are simultaneously taken into 
account, the resulting ���� value is referred to as ����*. However, ����* might not be 
a reliable indicator of the calibration model in case of the presence of extreme points, namely 
points exhibiting very high concentration values compared to the other ones [55]. To 
overcome this drawback, the ���� value should be calculated on the basis of a cross-
validation (CV) process, and referred to as ����*+. Among the different techniques of 
cross-validation, the Leave-One-Out (LOO) method is the most common. It consists in 



removing one point from the dataset and then calculate the ����* value from the regression 
built from the N-1 remaining points. Then the excluded point is reintroduced, another point is 
excluded, and a new ����* value is calculated, and so on, until all the points of the 
calibration set have been excluded. Finally, ����*+ is the average value of the N values of 
����* calculated during the cross-validation process. ����*+ is expected to better reveal 
the limitations of the calibration model than ����*. When the calibration set is big, another 
method of cross-validation, known as bootstrapping, is generally preferred to the LOO, and 
consists in excluding not only one single point at a time but many. Finally, to fully assess a 
calibration model, it is necessary to predict the concentration values of a set of known samples 
different from the calibration set. Thus, it has been suggested [56] to split the original dataset 
into the calibration set (2/3) and the validation set (1/3), both of them equally spread over the 
concentration range. Then, the RMSE value is calculated over the validation set, and referred 
as ����,, with (P) related to the prediction of the concentration values of the samples 
belonging to the validation set. Comparing ����* and ����, allows to evaluate if there is 
a risk of overfitting (if ����* ≪ ����,), before comparing different strategies of 
normalization. Note also that ����*+ and ����, are commonly used in the frame of 
multivariate regression, not only to evaluate the model performances but also to select the best 
number of components, which can easily become user dependent. Finally, the validation step 
in multivariate analysis is not the aim of this present review, but many information can be 
found in the following studies [55, 56, 57].  

 

Limits of detection and quantification, LOD and LOQ 

The limits of detection (LOD) and quantification (LOQ) have been discussed by 
Mermet in review papers [58, 59] dedicated to atomic spectrometry. In LIBS, the LOD is the 
most frequently reported, and defined by Eq.3 [59], for a regression model written as: . =
/ + 1. 3 

456 = 7�
8      Equation 3 

where � is the standard deviation of the background signal measured close to the peak of 
interest. Similarly, the limit of quantification is defined by Eq. 4 [58, 59]: 

459 = :;�
8 = :;

7 456       Equation 4 

The limits of detection and quantification are calculated from the regression model. And, as 
already stated for the calculation of R2 and RMSE, the calibration set needs to fulfill basic 
requirements to obtain reliable results for the values of these limits. 

Finally, the figures of merit R2, RMSE, LOD (or LOQ) are perfect to assess the analytical 
performance of the models as well as the advantage of normalization [60]. In the next section, 
we exploit these figures of merit to compare, for a dataset recorded in our laboratory with a 
handheld LIBS instrument, the analytical performance obtained by i) non-normalized spectra, 
ii) spectra normalized to the total area, and iii) spectra normalized by SNV.  

 

3. Example of normalization  



 

The general discussion about normalization in LIBS has been presented in the state-of-
the-art of this review, and then important recommendations that deserve to be completed by a 
case-study. It aims at illustrating the question of normalization and allows us to propose a 
general guideline to assess and then report the analytical performance of the quantitative 
models based on different normalization methods. Let’s mention that this guideline could 
efficiently be applied to any spectroscopic technique and normalization method but it appears 
to be of major importance for LIBS. We consider a first set of 14 samples of plants 
(calibration set), sampled from field crops in France, and stored in a sample bank managed by 
the French National Institute for Agricultural Research (INRA), in the frame of the French 
national observatory network Quasaprove [62]. More precisely, these samples were analyzed 
by a portable LIBS instrument and the analyses presented here were focused on the 
quantification of magnesium. Each sample was dried and then ground by using a planetary 
ball mill (PM 400, Retsch), allowing to obtain a grain size smaller than 250 µm. Then, each 
sample was prepared as a 12-mm diameter pressed pellet after 8 tons load during 3 minutes 
without using any additional binder. 10 locations were randomly chosen at the surface of the 
sample. And at each location, 3 laser shots were considered as pre-shots and then the LIBS 
spectra related to the following 7 shots were recorded. The 10 locations and the 7 spectra per 
location gives access to 70 LIBS spectra per sample. The average spectrum over the 70 
spectra was considered for the analyses. At each wavelength, the RSD value from the 70 
spectra has also been calculated and reveals that each sample can be considered as 
homogeneous, which confirms the observation one can make with the naked eyes. 

Considering the quantification of magnesium as an example for the present guideline, the 
concentration values of the 14 samples composing the calibration set ranged from 0.7 to 8 
µg/g, according to the reference ICP-AES analyses. In addition, 4 other samples of plant, 
from the same bank, and not used for the calibration, were selected to validate the calibration 
models, based on their availability and their concentration values measured by ICP-AES.  

 

 

Figure 2: Linear calibration models (red lines) obtained (after baseline-subtraction) for: a) not normalized data, 

b) data normalized to the total area, and c) data normalized by SNV, with the corresponding R2 values. In this 

case-study, the analyte was magnesium and the samples were plants. 

 

 Figure 2 displays calibration models built from; a) the baseline subtracted peak 
intensity value of Mg II at 280.27 nm, b) normalization by the total area of the spectrum, c) 
normalization by SNV. It should be emphasized that the present discussion is focused on the 



methodology one should apply to be able to objectively compare the different methods of 
normalization between them. Thus, even if the models based on normalization to the 
background and internal standard could have also been presented in Figure 2, we have 
decided to select only two methods of normalization to illustrate our purpose. These two 
normalization methods were expected to reduce the fluctuations and thus to improve the 
analytical performance of the models, according to previous works [22, 25, 61, 26, 23, 24], 
and this result is again verified in the case of plant samples displayed in Figure 2. Indeed, the 
points related to the concentrations of magnesium larger than 3 µg/g are much closer to the 
linear regression curve after normalization. At the opposite, two of the points related to 
concentration values close to 1 µg/g and normalized by SNV are displayed far from the 
regression line and the other points.  

Table 2 displays the values of the figures of merit dedicated to the assessment of the 
quantitative models, specifically R2, RMSEC, RMSECV, RMSEP, LOD (reminding that 
LOD and LOQ are closely linked, no need to report also the values of LOQ), calculated for 
the three regression models displayed in Figure 2. As already discussed, even if the R2 values 
are higher after normalization, it might be risky to draw a conclusion based on this single 
parameter. Indeed, one can observe in Table 2 that while R2 is rising from 0.84 (without 
normalization) to 0.88 (SNV), RMSEP is unexpectedly increasing from 0.74 to 1.42, 
indicating that the regression model built after SNV normalization exhibits a lower predictive 
ability than the model built from non-normalized data. The SNV model might suffer from 
over-fitting since both the RMSEC and RMSECV values are half the RMSEP value. At the 
opposite, the values reported in Table 2 related to the normalization to the total area reveal for 
this model stronger correlation (higher R2) and better prediction ability (lower errors of 
prediction). Finally, even if the values of R2, RMSEC, RMSECV, and RMSEP are better after 
normalization to the total area, the values of LOD are not significantly different from data 
without normalization and after normalization. 

 

 R² RMSEC(µg/g) RMSECV(µg/g) RMSEP(µg/g) LOD(µg/g) 
Not-normalized 0.84 0.90 0.89 0.74 0.20 

Total area 0.95 0.45 0.45 0.57 0.24 
SNV 0.88 0.76 0.75 1.42 0.32 

Table 2: Figures of merit calculated to assess the performance of regression models involving different 

normalization strategies. 

In the case of the models reported in Table 2, the normalization to the total area allows 
for building a calibration model with a better coefficient of determination and smaller 
prediction errors. This type of normalization might thus be adopted here even if it doesn’t 
allow for lowering the limits of detection and quantification. At the opposite, the data 
normalized by SNV drive to worse prediction ability, namely a higher RMSEP value, than 
non-normalized data. 

More generally, the normalization to the total area has been considered as valuable not 
only in the case reported in Table 2 but also in many previous studies. It is thus a priori 

expected that this type of normalization should improve the quantification ability of any LIBS 
analysis. However, we recommend to demonstrate its advantage a posteriori, from a 
comparison of the values taken by the figures of merit reported in Table 2. At the opposite, 
the normalization by SNV appears to be more questionable. Some previous studies have 



demonstrated its advantage but it was not the case in the frame of the case-study reported in 
Table 2.   

We finally recommend, whatever the types of samples and elements to be quantified, 
to always compare the figures of merit related to the models calculated from not-normalized 
and normalized spectra, as displayed in Table 2. Let’s point out that, in addition to the 
normalization to the total area and by SNV, the normalization to the background and to an 
internal standard should also be considered. Based on the methodology presented here, not 
only the best normalization method can be objectively selected, but the calculated values of 
the figures of merit can also be directly exploited to report the analytical performance of the 
selected model. 

 

Conclusion 

LIBS spectra are often normalized in order to take into account signal fluctuations and 
thus obtain enhanced analytical performance. However, normalization in LIBS remains an 
open question and, in the present review, we have identified and discussed the normalization 
methods commonly applied to LIBS. We have more specifically detailed and discussed four 
of them, that we consider as the most relevant, namely i) background, ii) total area, iii) 
internal standard, and iv) SNV. We have also highlighted that the gain resulting from 
normalizing LIBS spectra was often not assessed and that the rare comparisons between 
different normalization methods were sometimes questionable. Indeed, this review has also 
revealed that basic requirements to calculate robust indicators were sometimes not fulfilled. A 
first case-study, based on the selection of LIBS spectra and concentration values unsuitable to 
build a robust calibration, has been discussed to emphasize the risk of taking a decision about 
the advantage of normalization from only the R2 value. Finally, advices and good practices 
have been proposed in order to correctly calculate the relevant figures of merit dedicated to 
the assessment of the performance of the quantitative models. Obviously, an efficient 
normalization method is expected to provide higher R2 values, and lower RMSE and LOD or 
LOQ values than those obtained without normalization. However, through a second case-
study, related to the quantification of magnesium in plant samples, we have demonstrated that 
these three figures of merit were not always simultaneously improved. Then, considering that 
the analytical context naturally introduces some hierarchy within the figures of merit, in the 
context of quantification of major or abundant elements, reducing the RMSE value becomes 
the top priority and reducing the LOD or LOQ value can be of secondary importance. At the 
opposite, for the quantification of minor or trace elements, the normalization method should 
be able to reduce the LOD or LOQ value while keeping a good predictive ability, i.e. a small 
RMSE value. Based on this methodology, it becomes possible to objectively compare 
different normalization methods between each other and finally select the best one according 
to the analytical context. Future works may adopt this methodology in order to take the best 
advantage from normalization in LIBS, and thus increase the analytical performance of this 
technique. 
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