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Abstract
The organization and mining of malaria genomic and post-genomic data is important to significantly
increase the knowledge of the biology of its causative agents, and is motivated, on a longer term, by the
necessity to predict and characterize new biological targets and new drugs. Biological targets are sought
in a biological space designed from the genomic data from Plasmodium falciparum, but using also the millions
of genomic data from other species. Drug candidates are sought in a chemical space containing the millions
of small molecules stored in public and private chemolibraries. Data management should, therefore, be as
reliable and versatile as possible. In this context, five aspects of the organization and mining of malaria
genomic and post-genomic data were examined: 1) the comparison of protein sequences including
compositionally atypical malaria sequences, 2) the high throughput reconstruction of molecular
phylogenies, 3) the representation of biological processes, particularly metabolic pathways, 4) the versatile
methods to integrate genomic data, biological representations and functional profiling obtained from X-
omic experiments after drug treatments and 5) the determination and prediction of protein structures and
their molecular docking with drug candidate structures. Recent progress towards a grid-enabled
chemogenomic knowledge space is discussed.
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Background
Malaria is a life-threatening disease affecting half a billion
humans in underdeveloped and developing countries. Its
global heartland is Africa, with an appalling death toll of
1 to 2 million people every year [1]. Endemic malaria
ranges from a permanent incidence in sub-Saharan and
equatorial Africa, to a seasonal but recently escalating
prevalence in Southern Africa [2]. Four species of malaria
parasites can infect humans via mosquito transmission:
Plasmodium falciparum (the species that causes the greatest
incidence of illness and death) as well as Plasmodium
vivax, Plasmodium ovale, and Plasmodium malariae. They
belong to the Apicomplexa phylum, which contains many
other parasitic protists of medical and veterinary impor-
tance [3].

Malaria was eradicated from temperate regions following
concerted preventative sanitary actions and after impor-
tant insecticide campaigns and systematic treatments with
available drugs, i.e. quinine and chloroquine [4-6]. The
prophylactic programmes of the 1950's and 1960's, essen-
tially based on insecticide and drug treatments, failed to
control malaria in subtropical areas [7]. Resistance to
chloroquine spread rapidly [8,9]. Subsequent attempts to
achieve progress in malaria prophylaxis have been charac-
terized by the failure of vaccine development, withdrawal
of some insecticides because of toxicity and negative envi-
ronmental impact, the alarming spread of mosquito
resistance to insecticides and of resistance of Plasmodium
to the very few drugs that have been developed [9-11]. The
promise of an effective vaccine is as distant as ever [12].
Current efforts focus on chemotherapy using artemisinin,
an antiplasmodial molecule from Artemisia annua, and
derivatives which can be produced efficiently and cheaply.
However, the scientific community is worried that plans
for the extensive use of artemisinin might be ruined by
emergence of the parasitic resistance it will almost cer-
tainly trigger, sooner or later [13-15]. Given the small
number of available drugs and the resistance they have
already induced, discovery of new targets and of new
drugs remains a key priority.

A major landmark in the history of malaria was the launch
of a collaborative genomic sequencing programme in
1996 [16-21]. In November 2002, the complete genome
of the 3D7 strain of P. falciparum [22] and a whole
genome-shotgun of Plasmodium yoelii yoelii [23] were
released, followed by whole-genome shotguns of Plasmo-
dium berghei, Plasmodium chabaudi, and P. vivax, and the
genomic sequencing of Plasmodium gallinaceum, Plasmo-
dium knowlesi and Plasmodium reichenowi still in progress
[21,24]. This unprecedented effort to sequence genomes
of eukaryotic pathogens was a technical challenge,
because the extreme compositional bias of Plasmodium
DNA (>80% A+T in P. falciparum) accounted for the insta-

bility of genomic fragments in bacteria [17-19] and com-
plicated assembly of contigs [19]. Among eukaryotes, the
Plasmodium genus is, therefore, the best documented at
the genomic sequence level, with well-established syn-
tenic relations. At the level of the Apicomplexa phylum,
additional complete genomes of Cryptosporidium, Theileria
and Toxoplasma have been either released or announced
[25,26].

All Plasmodium molecular data have been collected and
organized in the PlasmoDB public database as early as
sequencing outputs were made available [27-30]. The
architecture of the relational database was designed fol-
lowing biologically relevant relationships, i.e. the "gene to
mRNA to protein" dogma, using the Gemomics Unified
Schema [28,29], and ensures that gene loci are linked to
annotation using the Gene Ontology standards [30]. A
genome browser allows navigation along chromosome
sequences and the viewing of multiple Plasmodium species
at one glance, based on syntenies. Predictions of protein
domains, post-translational modifications, subcellular
targeting sequences, etc. are included. Furthermore, Plas-
moDB is currently the only site where molecular data are
(1) tentatively clustered based on homology, (2) linked to
generic schemes designed to view metabolic pathways,
and (3) linked to X-omic functional information (tran-
scriptome, proteome, interactome). Any biologist can
exploit these integrated data with basic or combined que-
ries [27-30], and this is the first resource designed to help
the scientific community to turn genomic data hopefully
into gold, i.e. appropriate biological knowledge that can
accelerate the design and introduction of new therapeutic
strategies. PlasmoDB operates inside ApiDB, a master web
portal for apicomplexan genomes [29,32].

Contrasting with this integrated and user-friendly access
to molecular and functional data, the proportion of genes
for which a biological function has been inferred appears
like a curse. Only 34 % of the P. falciparum genes could be
assigned a function, based on detected sequence hom-
ology with characterized genes from other organisms
[22,33,34]. The most-sequenced eukaryotic group
appears, therefore, as the worst functionally annotated.
The first version of the P. falciparum genome was esti-
mated to code for 5,268 proteins, out of which 3,208 did
not have any significant similarity to proteins in other
organisms to justify provision of functional assignment.
This proportion of uncharacterized genes was further
increased by 257 additional sequences, which had signif-
icant similarity to proteins, described as hypothetical, in
other organisms [22]. The 2005 updated EMBL version of
the 3D7 complete genome (generated at Sanger Institute,
The Institute for Genomic Research, and Stanford Univer-
sity; version 2.1) was still predicted to encode as many as
3,548 hypothetical proteins (65.6 % of total). This figure
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is the worst ever recorded for a eukaryotic genome (Table
1) and a clear limitation to any in silico exploration of the
malaria biology.

Since absence of evidence is not evidence of absence, the
scientific community faces a serious epistemological
problem when trying to derive conclusions from a small
genome (the number of genes is similar to that of yeast),
in which two thirds cannot be used in meaningful analy-
ses. A sustained effort is required to improve functional
annotation methods and to contribute to the PlasmoDB
gene descriptions. Different teams in the world have
attempted to address this problem. This paper provides an
overview of some of the theoretical and practical develop-
ments that were introduced to improve detection of simi-
larities between Plasmodium sequences and distantly
related organisms.

A second difficulty, also related to sequence homology
detection, is the reconstruction of molecular phylogenies
for malarial genes. Accurate molecular phylogenies are
particularly important since the Plasmodium cellular
organization is the result of multiple endosymbioses
involving an ancestral alga [3,35,36], at the origin of a
plastid relic, i.e. the apicoplast [37-43]. Comparative phy-
logenomics focusing on malarial plant-like genes proved
to be a valid strategy to detect potential targets for herbi-
cides that act as antiplasmodial [44]. In silico analyses
combining molecular phylogeny and targeting sequence
prediction allowed a first rationalized mining of the api-
coplast function [45]. The identification of all biological
processes that have been inherited through lateral gene
transfers from the ancestral alga (the algal sub-genome) is
one of the most important outputs one expects from com-
parative phylogenomics. Although molecular phylogenies

Table 1: Comparison of Plasmodium falciparum, Saccharomyces cerevisiae, Arabidopsis thaliana and Homo sapiens genomic statistics

Plasmodium falciparum Saccharomyces 
cerevisiae

Arabidopsis thaliana Homo sapiens

Genome general statistics
No of chromosomes 14 16 5 22 + X/Y
Size (bp) 22,853,764 12,495,682 115,409,949 3,272,187,692
average (A+T) % 80.6 61.7 65.1 59.0
Estimated number of genes 5,268 5,770 25,498 31,778
Average gene length 2,283 1,424 1,310 1,340
% of coding genome 53 66 29 9

Initial annotation based on sequence similarity (BLAST or *Smith-Waterman E-values)
Proportion of predicted protein sequences:
- having a detectable similarity to sequences, in 
other organisms, of known function at the 
initial genome release date.

34 % 75 % 69 % 59 %*

- without any detectable similarity to 
sequences in other organisms at the initial 
genome release date, i.e. "no BLASTP match 
to known proteins" (estimates based on 
published data and local BLAST searches).

61 % < 8 % < 20 % 15 %*

- of totally unknown function (hypothetical 
proteins = with similarity to sequences of 
unknown function + without any detectable 
similarity to sequences in other organisms).

66 % 16 % 31 % 41 %*

Average characteristics of open reading frames
Exons:
No per gene 2.39 1.05 5.18 12.1
(A+T) % 76.3 60 55 52
average length 949 1356 253 111
Introns:
(A+T) % 86.5 64 66 60
Intergenic regions:
(A+T) % 86.4 64 66 60

Presented data compile information from [22] for Plasmodium falciparum, [190] for yeast (completed with statistics made available via the 
Comprehensive Yeast Genome Database website, [191]), the Arabidopsis genome initiative [192] for Arabidopsis, and the International Human 
Genome Sequencing Consortium [193] and [194] for Human (completed with statistics made available via Ensembl, [195]). These statistics at the 
complete genome release date have been continuously updated since then.
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of a few genes can be achieved with conventional meth-
ods, combined with expert visual analysis, it is difficult to
carry out high-throughput phylogenetic determination at
a genomic scale. This paper summarizes how the question
of automatic assessment of orthologies has been
addressed, particularly with the OrthoMCL [46] and
TULIP [34,47] approaches.

A third difficulty is the representation of knowledge of
malaria parasite biology. Description of gene function fol-
lows the guidelines of the Gene Ontology (GO) structured
vocabulary [31]. GO is a standard adopted by all the sci-
entific community to circumvent problems raised by het-
erogeneous key word annotations. GO also complies with
in silico management (and mining) of information. Genes
coding for enzymes can further be linked to metabolic
scheme(s) designed using generic methods, i.e. KEGG
[48] or MetaCyc [49], or specifically designed for Plasmo-
dium, i.e. the Malaria Parasite Metabolic Pathways
(MPMP) [50,51]. Pathways based on generic methods do
not include representations for cell compartmentaliza-
tion. This information, which has been included in the
MPMP, is essential to understand the metabolism of
water-soluble intermediates inside and between different
cell compartments, and is critical for pathways involving
lipophilic compounds localized in disconnected mem-
branes. Eventually, knowledge should be represented in a
way that is usable for the organization and analysis of
functional data. Here, the compliance of each approach
with these theoretical and practical constraints, is dis-
cussed.

Fourthly, the difficulty of organizing molecular data into
knowledge representations becomes more pronounced in
the analysis of global datasets arising from X-omic (tran-
scriptome, proteome, interactome) experiments. The
strategies, methods and tools, which have been used or
designed in order to link malarial molecular and func-
tional data in the most versatile ways, were examined. In
particular the MADIBA tool, developed for local analyses
of transcriptomic outputs, is described.

A fifth difficulty, once a target gene has been identified for
possible antimalarial intervention, is the process of reach-
ing a decision on the entry into costly drug- or vaccine-
development programmes. Besides experimental valida-
tion criteria, in silico experiments can be a useful tool to
help characterize a possible new target. These include
determination of protein three-dimensional structure and
determination of possible binding ligands through in sil-
ico protein-ligand docking. To date, the structures of less
than 70 malaria proteins have been determined and made
available via the Protein Data Bank [52]. This review pro-
vides arguments in favour of a repository for all known
malaria resolved protein structures and structural models,

which should be initiated, curated and maintained. No
prediction of protein druggability has been investigated.
Access to such repository might be invaluable for drug dis-
covery projects: virtual screening of hundreds of thou-
sands of potential drugs, making use of protein structures
of a whole family has been achieved using computer grid
resources with the WISDOM I project [53], and oncoming
WISDOM II.

This review does not pretend to provide any complete
panorama on malaria molecular, functional and thera-
peutical genomics or to introduce panaceas. Important
difficulties for global analyses and high throughput
approaches were addressed here, as five major challenges
for the future, i.e., 1) comparisons of the compositionally
atypical malaria gene and protein sequences, 2) high
throughput molecular phylogeny assessment, 3) usable
and interoperable representations of metabolic and other
biological process, 4) versatile and local integration of
molecular and functional data obtained from X-omic
experiments, and 5) determination and prediction of pro-
tein structure and subsequent virtual ligand screening on
candidate therapeutical targets. Linking protein structures
with ligand structures is a pivotal step for a chemogenom-
ics knowledge base, in which functional and structural
knowledge deriving from malaria genomics and post-
genomics might be connected with the space of small
molecules containing known and potential drugs.

Integration of malaria genomic, post-genomic data and 
chemical information: current status and future challenges
Sequence comparisons of compositionally-biased and insert-
containing malaria genes and proteins. 
The extreme A+T bias in Plasmodium DNA has been a
recurrent problem for malarial genomics and post-
genomics. It was responsible for instability of genomic
segments in E. coli and difficult assembly during the
sequencing process [19]. It implied debated modifica-
tions and combinations of automatic gene detection
methods for open reading frame prediction [54,55]. The
nucleotide bias has been demonstrated to be responsible
for the protein composition bias in P. falciparum [56-58].
Some parasites of the Plasmodium genus, like P. vivax, do
not show such a strong compositional bias at the DNA
level, but their protein sequences appear to be also com-
positionally divergent from average.

Combined with the frequent insertions seen in malarial
proteins, the amino acid compositional bias is critical for
routine sequence comparison methods, particularly
because it can compromise the statistical analyses and
sorting of BlastP alignments [58]. Indeed, an alignment
algorithm comes with a statistical model implemented in
the code, particularly in the Blast package [59], on which
users rely to assess the significance of the alignment, and
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to sort them. It is, therefore, difficult to discuss the current
view on sequence comparison methods and statistics
independently. Two major statistical models are used to
test alignment scores. The most common test is an esti-
mate of the E-value (short for Expectation value), i.e. the
number of alignments one expects to find in the database
by chance, with equivalent or better scores. It can be deter-
mined from the complete distribution of scores. The
BlastP associated statistics defined by Karlin and Altschul
[59] are based on the probability of an observed local
alignment score according to an extreme value distribu-
tion. The validation of the Karlin-Altschul E-value compu-
tation model requires two restrictive conditions: first,
individual residue distributions for the two sequences
should not be 'too dissimilar' and second, sequence
lengths 'should grow at roughly equal rates' [59]. Validity
restrictions listed here are fully acceptable when dealing
with protein sequences of average lengths and amino acid
distribution, and BlastP, besides its constitutive limits in
detecting short similarities, is a good compromise for
batch analyses of genomic outputs. However, the compo-
sitionally biased proteome of P. falciparum fall outside of
the validity domain for a BlastP comparison with unbi-
ased sequences [58,60]. One of the reasons explaining
that 60 % of the Plasmodium sequences did not have any
apparent homology with sequences from other genomes
may not be that most malarial genes are unique in the liv-
ing world, but that the BlastP semi-automatic annotation
procedure was technically limited. Some missed
sequences could be retrieved by adding protein structural
information (such as hydrophobic cluster analysis, [61]),
but these methods require visual expertise and cannot eas-
ily be automated. Iterating the BlastP procedure has also
proven to be helpful in detecting missed homologies [62],
providing evidence for the initial failure of alignment sig-
nificance detection.

An alternative method to assess the relevance of a pairwise
alignment was introduced by Lipman and Pearson [63]. It
uses Monte Carlo techniques to investigate the signifi-
cance of a given score calculated from the alignment of
two real sequences. It can be used to sort results obtained
by any comparison methods, including BlastP, although
this has not yet been achieved at a massive scale. It is cur-
rently used to estimate the probabilities of Smith-Water-
man comparisons [64]. The asymptotic law of Z-value was
shown to be independent of sequence length and amino
acid distribution [65] and is fully valid for malaria
sequence comparisons. Bastien et al. [60] demonstrated
the TULIP theorem (theorem of the upper limit of a score
probability) assessing that Z-values can be used as a statis-
tical test and a single-linkage clustering criterion. In prac-
tice, a Z-value table can be analysed using the TULIP
theorem to detect pairs of proteins that are probable
homologues following a Z-value confidence cutoff. For

instance, a Z-value above 10 allows an estimate that the
alignment is significant with a statistical risk of 1/Z-value2,
i.e. 0.01. A version of the BlastP algorithm, implemented
with Z-value statistics, should be helpful to refine malaria
sequence comparisons.

Additional improvement of automatic annotation proce-
dure are expected, in particular by combining sequence
comparisons with GO term associations (e.g. GOtcha;
[33]) a complementary approach to the annotation based
on the combination of GO terms with functional X-omic
response patterns (e.g. Ontology-based pattern identifica-
tion – OPI – following the guilt-by-association principle;
[66]). In the last section of this article, improvements with
information obtained from multiple alignments are also
presented (see below).

Genome-scale assessment of malaria molecular phylogenies.
The amino acid compositional bias and high insert con-
tent of malaria proteins is also a disturbing factor when
attempting to reconstruct phylogenies. Conventional
methods used for phylogeny reconstructions based on
multiple alignments can be used in conjunction with vis-
ual judgment,- [67], with qualitative decisions on how
protein segments "align well". However, such manual pre-
treatment cannot be undertaken for all known genes.
Alternatively, high throughput molecular phylogenies can
be derived from massive all-against-all comparisons,
based on pairwise alignments [68]. The questions of the
statistical accuracy and maintenance of high throughput
phylogenetic reconstruction are critical when including
compositionally atypical and high insert containing
sequences.

The output of an all-by-all comparison of n protein
sequences is an n × n table. According to the output table
processing, it can be either totally recomputed at each
database update, or stored and updated by computing
complementary tables. Information is extracted from the
output table to help reduce complexity and diversity at the
sequence level. Sets of sequences sharing features are
named "clusters" [69].

A first massive comparison project, OrthoMCL, was
designed to cluster malaria genes based on their sequence
similarity with genes of 55 other genomes (> 600,000
sequences), using the BlastP algorithm and Karlin-Alts-
chul E-value statistics to build the all-against-all compari-
son table [46,70]. As mentioned above, and discussed
recently [68] for massive comparisons based on BlastP/E-
values, i.e. COG [71], Tribe [72], ProtoMap [73], ProtNet
[74], SIMAP [75] and SYSTERS release 4 [76], there is no
theoretical support to justify that an E-value table can be
converted into a rigorous and stable metric. The handling
of the output n × n table of E-values requires pragmatic
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post-processing normalization, including asymmetric cor-
rections of E-values obtained after permutation of the two
aligned sequences or consensus E-value computation after
alignment with different algorithms. The E-value table can
be converted into a Markov matrix (e.g. Tribe, SIMAP,
OrthoMCL), or a close graphic equivalent, i.e. graphs con-
necting protein entries with E-values as weights for graph
edges (e.g. COG, ProtoMap, SYSTERS), a representation
that has been exploited in the OrthoMCL project. The pro-
tein sets are organized either by detecting graphs and sub-
graphs following pragmatic rules, with granularities
depending on E-value thresholds, or by distance clustering
using E-value as a pseudo-metrics, or by Markov-random-
field clustering. None of the organization of the protein
sequences obtained through these methods can be named
a spatial projection, and none of the obtained clusters can
be represented as a phylogenetic reconstruction. Eventu-
ally, the economy of computing E-values in an all-by-all
comparison experiment is lost in the updating process
that requires a complete re-calculation. In spite of these
drawbacks, massive comparisons based on BlastP/E-values
have been undertaken because they were less CPU-
demanding than other methods. The OrthoMCL cluster-
ing method based on BlastP/E-value represents therefore a
pragmatic reduction of the protein diversity, and phylog-
eny reconstruction require post treatments within each
clusters. OrthoMCL flags probable orthologous pairs
identified by BlastP as reciprocal best hits across genomes.
Access to OrthoMCL groups is linked to the PlasmoDB
GUS underlying database, allowing multiple queries with
other PlasmoDB data and information, and allowing
additional cross-species/cross-phylum profiling of the
BlastP/E-value-supported orthologues.

A more CPU-demanding alternative method for massive
all-against-all protein sequence comparison uses Smith-
Waterman/Z-values rather than BlastP/E-values. This
method has been initiated for the ClusTR protein
sequence clustering, underlying the UniProt/Integr8
knowledge base at the European Bioinformatics Institute,
EBI [77]. Because of the properties of the Z-value statistics
detailed above, it is the solution of choice when compar-
ing compositionally biased and high-insert containing
sequences. Additionally, for any set of homologous pro-
teins, it is possible to measure a table of pair-wise diver-
gence times and build phylogenetic trees using distance
methods [47]. These trees are called TULIP trees. TULIP
trees were compared to phylogenetic trees built using con-
ventional methods, for instance the popular PHYLIP [78]
or PUZZLE [79] methods based of multiple sequence
alignments. TULIP trees proved to perform as well in any
unbiased sets of proteins. Moreover, some phylogenetic
inconsistencies in trees built with multiple-alignment
based methods, particularly including subsets of compo-
sitionally biased sequences, or with low bootstrapping

values, could be spectacularly solved with the TULIP tree
[47]. An advantage of the phylogenetic inference from the
CSHP over that obtained from multiple alignments lies
precisely in the TULIP tree construction from pair-wise
alignments. Whereas the addition or removal of a
sequence can deeply alter the multiple alignment result,
and the deduced phylogeny, the Z-value and divergence
time tables that serve to reconstruct the TULIP trees are the
result of a Monte Carlo simulation, which is a convergent
process at the level of the pair-wise comparison and is not
altered by database updates. As a result, whereas a phylo-
genetic database computed from multiple alignments
would require a complete and increasing computation for
any update, the TULIP tree calculation simply requires the
calculation of the {new}-by-{old} and {new}-by-{new}
Z-values and divergence times. A mapping of each Plasmo-
dium sequence can be obtained and updated following
all-against-all pairwise comparisons based on Z-value sta-
tistics. The CPU-cost required by the Smith-Waterman
comparison method and by the Monte-Carlo simulation
used to compute Z-values will be compensated in the
future by implementing Z-values on the BlastP heuristics.
A high-throughput assessment of molecular phylogenies
of Plasmodium genes based on BlastP/Z-value, including all
recorded genes in public databases, will therefore be feasi-
ble and upgraded at the pace of public database updates.

User access to molecular phylogenies, which has been
designed in the OrthoMCL project in a very practical and
user-friendly way, is essential to mine the genome for
clues to therapeutic opportunities. The most obvious
approach is to detect protein sequences that are excluded
or diverge strongly from the mammalian proteome. More
subtly, the question of the plant/algal sub-genome of Api-
complexans has been demonstrated to be a source of ther-
apeutic targets for herbicidal drugs (e.g. apicoplast lipid –
fatty acid, isoprenoid -syntheses, plant-like targets local-
ized outside plastids – folate metabolism, tubulin -, etc.).
Criteria for confirmation of a plant/algal sub-genome in
P. falciparum include molecular similarities with plant
genes, and will therefore benefit from future progress in
high-throughput molecular phylogenies. Information on
sequence and sequence similarity are not sufficient to
highlight functions that are, for instance, unique to
plants: they have to be linked to appropriate knowledge
representation of the biological function of each gene and
each process in which gene products play their roles.

Knowledge representations of the biological function
Having in hand a table of gene entries, with summarized
annotations is not sufficient to handle genomic informa-
tion. Data can be organized based on biological principles
so as to reflect current knowledge at best, and to be viewed
at a glance in global X-omic experiments, or for compara-
tive purposes. The question of knowledge representation
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in reductionist terms (i.e. based on the fact that some lev-
els of knowledge can be reconstructed by the integration
of parts of knowledge of lower levels) is a difficult episte-
mological question and can hardly be debated here. Cur-
rent data integration strategies are dependent on available
consensus methods, with their compromises and imper-
fections that have been slowly adopted by the scientific
communities. Biological (and chemical) knowledge is pri-
marily produced in the form of research publications,
books, patents and other un-structured texts, and since
two decades in structured databases (biologists are used to
fill Genbank forms prior to paper submissions). Data and
information can be organized as semantic networks, fol-
lowing combinations of ontologic hierarchies and praxe-
ologic schemes [80]. In brief, an ontological hierarchy is
designed to organize entities (here biological or chemical
entities) following inclusion/subsumption principles
("A" is part of, is a component of, etc. "B"). Best known
examples are the taxonomic trees ("species" is part of
"genus", etc.) or the Gene Ontology, or GO [31], although
this later was built from a lose definition of the ontology
(see below). A praxeologic scheme allows a representation
of the activity or function (praxis) (for instance enzymatic
activities caused by proteins, assembly of molecular struc-
tures, biological effects caused by drugs, etc.) based on the
transformation or alteration of an entity into another,
through time ("C" is converted into "D"). By contrast with
ontologies, which should be stable and non-conflicting
hierarchies, praxeologies can describe cyclic processes and
can vary over time. Best know examples are metabolic
graphs and fluxes, and their variations in different physi-
ological conditions. Interestingly, the enzymatic activities
can be organized following hierarchical principles (e.g.
the EC numbers proposed by the Enzyme Commission):
a praxeologic scheme such as a metabolic pathway is
therefore linked to one or more ontologies for the metab-
olites (hierarchical categorization of molecules) and for
enzymes (hierarchy following the GO, the EC, etc.). In
practice, although they are of very distinct nature, onto-
logic hierarchies and praxeologic schemes are handled by
bioinformaticians as "semantic networks" and relational
graphs senso lato.

Following recommendations of the Gene Ontology (GO)
consortium [31], malaria gene function was defined using
a semantic network organized in three hierarchical axes,
i.e. "molecular function", "biological process" and "cellu-
lar component", according to a controlled hierarchical
vocabulary. The GO-based annotation circumvents the
problems raised by heterogeneous key word annotations,
allowing subsequently a cross-species comparison with
genomes annotated similarly, and complies with in silico
management requirements. Genes thus annotated can
further be embraced in higher order representations of
biological knowledge.

Concerning enzymes, entries can be linked to graphical
representations of the metabolic reactions they catalyze.
To that end, in the same way genes were defined following
the GO procedure, enzyme substrates and products are
defined following a chemical ontology (CO), and the
reaction itself has to be defined following an enzymatic
reaction ontology. A reaction can be viewed as a small
graph in which the enzyme is associated with the line that
connects the nodes corresponding to the substrates and
products. Metabolic pathways are connected by shared
nodes, and can be viewed at different scales. Current rep-
resentations of malaria metabolism have been made
available using generic methods, i.e. KEGG [48,81] or
MetaCyc [49,82,83], or specifically designed for Plasmo-
dium, i.e. the Malaria Parasite Metabolic Pathways
(MPMP) coordinated by Hagai Ginsburg at the Hebrew
University of Jerusalem [50,51].

The Kyoto Encyclopedia of Genes and Genomes (KEGG)
resource provides a set reference of metabolic schemes,
manually designed so as to represent all possible primary
metabolic reactions, and formatted with the KEGG
Markup Language (KGML) [48]. These reference schemes
can be explored on the KEGG web portal, with a very clear
view of the global metabolic map, connecting all path-
ways. Organism-specific schemes are generated, based on
sequence similarities (using the KEGG Orthology, or KO
orthologue identifier) with references to the KEGG Gene
catalogs. Thus 79 metabolic schemes have been generated
for P. falciparum. Each scheme provides links to metabo-
lite (substrates, products, co-substrates) information, and
enzyme descriptions following the Enzyme Commission
(EC) classification. EC numbers give access to multiple
sequence alignments, protein motifs, genomic mapping,
links to Genbank, UniProt, PDB, etc. Tilling KEGG
schemes from different organisms highlights metabolic
similarities and differences, and could be of help for anti-
malarial purposes, highlighting for instance metabolic
reactions occurring in Plasmodium and not in humans.
However, the maps are designed based on the enzymatic
reactions and, for instance, the fatty acid synthesis due to
the type 1 fatty acid synthase (FASI, a multiprotein com-
plex) from the human cell cytosol, strictly overlaps with
the type 2 fatty acid synthase (FASII dissociated enzymes)
from the Plasmodium apicoplast. Information on the pro-
tein structure and cell compartmentalization of the
enzymes would have been sufficient to distinguish
between FASI and FASII. Furthermore, metabolites that
are generated in one compartment (i.e. diacylglycerol gen-
erated in one of the numerous cell membranes) may not
be available for an apparent downstream reaction occur-
ring in another compartment. Thus, used without caution,
the KEGG schemes may seem to be fully valid for the
entire living world, with a misleadingly clear and fully
cross-connected global overview of metabolism, and can
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lead to unrealistic representations. The missing enzymes,
which have been experimentally assayed, are not shown,
and it is unclear whether gaps within pathways are due to
absent enzymes or to incomplete data. Additionally, the
KEGG representation is not intended for the design of
schemes other than those pre-defined. KEGG outputs
need to be reexamined for accuracy of interpretation (see
below).

As an alternative, the design of MetaCyc schemes for Plas-
modium, called PlasmoCyc, has been initiated [49,82]. As
for KEGG, a reference of the complete metabolic pathways
has been designed manually and loaded in a MetaCyc
database. In contrast with the fully connected overview of
the KEGG metabolic map that can make the user overcon-
fident, the MetaCyc global view of metabolism is frag-
mented, reflecting knowledge gaps, incomplete design of
some pathways (such as the tricky pathways for lipid syn-
theses), and the versatility of the MetaCyc tool for imple-
mentation of new schemes. Using P. falciparum gene
annotation and information of the MetaCyc reference
database, the PathoLogic module of the Pathway Tool
Software [84] allows the generation of a Pathway/
Genome Database (PGDB). A total of 113 metabolic
pathways (complete or fragmented) have been generated
for P. falciparum. As in KEGG, each graph gives access to
metabolite, reaction and enzyme information. The Gene-
Reaction Schematic (GRS) representation allows a visual-
ization of the relation between the genes, the enzymes,
the catalyzed reactions, even in the case of complex or
multienzymatic proteins. This model is useful to distin-
guish for instance FASI and FASII proteins. It is further
useful for Plasmodium proteins that are often multienzy-
matic. For each reference pathway, the occurrence or
absence of enzyme homologues in the Plasmodium
genome is documented. As in the case of KEGG, compart-
mentalization information is missing from the pathway
model, in spite of some effort to highlight some specific
pathways (for instance the apicoplast fatty acid synthesis).

A synthetic representation of Plasmodium biological proc-
esses can further be viewed at the Malaria Parasite Meta-
bolic Pathways web portal [50]. Among 120 schemes
representing numerous cellular processes, half represent
metabolic pathways and were fully designed for malaria
researchers. All schemes were built using KEGG pathways,
cleaned of irrelevant information and curated by interna-
tional experts. The quality of each representation is very
high and specialized, and benefits from a sustained effort
in biological and molecular investigation and validation.
Missing data are concisely documented. Most impor-
tantly, enzyme subcellular localization is shown. Graphs
are not automatically generated, but drawn by experts.
While MetaCyc graphs are self generated taking into
account all information of the underlying database, the

MPMP scheme are not self generated: in particular, the
subcellular localization representation is not generated
automatically from a subcellular attribute filled in the
underlying database. Thus, although the MPMP represen-
tations are of higher quality, their update is not dynamic
and cannot be used for in silico graph-based treatments.

From this short overview, it is clear that metabolic repre-
sentations should be carefully used. On one hand, generic
approaches (KEGG, MetaCyc) do not include cell com-
partmentalization data and the chemical ontology for lip-
ids is not finished. On the other hand, the curated MPMP
representations are based on high-quality data but they
are static, with no graph management tools, giving click-
access to remote information. Future challenge will be to
design underlying models for building graphs from
genomic data (following the GO), metabolite data (fol-
lowing a stable Chemical Ontology), reaction connec-
tions and compartmentalization information for both
gene products and metabolites. Construction of Plasmo-
Cyc benefited from information of the MPMP [50,82],
and MPMP was designed after cleaning KEGG schemes.
Models for other knowledge bases and graphs should ben-
efit from the important effort of the MPMP in defining
metabolic and other biological processes.

Connecting functional schemes and ontologies with post-
genomic global functional analyses
The application of functional genomics strategies to
assign functionality to each gene product of an organism
has recently attained increased attention in the field of
post-genomics research of Plasmodia, includes the under-
standing of the transcriptome, proteome and interactome
of the parasite to elucidate mode-of-action of inhibitory
compounds, allow optimization of such inhibitor activi-
ties, explain resistance mechanisms to known drugs,
chemically validate potential drug targets and ultimately
identify and/or functionally describe new drug targets
(Figure 1). Some malaria X-omic studies did not meet the
initial expectations, such as transcriptome analyses of P.
falciparum in which the modification of the transcriptomic
pattern to different treatments was particularly low. Some
others were technically highly biased, such as interactome
analyses in which results from protein fragments are
recorded together with results from intact proteins, and
raise imperfect, but interesting sets of data. In this part, an
overview of malaria X-omic analyses is given, with some
insights on the current strategies for in silico integration of
their functional outputs with genomic knowledge.

The P. falciparum transcriptome has been extensively
investigated resulting in comprehensive profiles of tran-
script expression throughout the complete life cycle of the
parasite [85,86]. The overall conclusions demonstrated
that the majority (~87%) of the predicted genes are
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actively transcribed during the lifecycle but that 20% are
specific of the intraerythrocytic developmental cycle and
are produced in a periodic nature in a 'just-in-time' fash-
ion. These early reports have been followed by investiga-
tions designed to answer numerous biological questions,
including transcription and post-transcription specific
aspects of the regulation of protein expression, transcrip-
tional machinery and inheritance, interstrain conserv-
ancy, gametocytogenesis and antigenic variation control
mechanisms [87-91]. A high degree of correlation exists
between the in vitro and in vivo transcriptomes of P. falci-
parum with an overexpression seen for genes encoding a
sexual stage antigen as well as gene families that encode
surface proteins, providing interesting new vaccine candi-
dates [92,93].

Proteomics studies are essential to conclusively prove
mechanistic changes and explain global protein expres-

sion profiles, differential protein expression, posttran-
scriptional control, posttranslational regulation and
modifications, alternative splicing and processing, subcel-
lular localization and host-pathogen interactions (Figure
1). Reassuringly, there is a good correlation between the
abundance of transcripts and the proteins encoded by
these during the P. falciparum lifecycle [87,88] with a
majority of discrepancies attributed to a delay between
transcript production and protein accumulation. Analysis
of the P. falciparum proteome [94] and a comprehensive
and integrated analyses of the genome, transcriptome and
proteome of P. berghei and P. chabaudi chabaudi, which
represents the state-of-the-art of functional genomics
applied to the lifecycles of Plasmodia [95,96], indicated
that over half of the proteins in these parasites were
detected solely in one stage of the lifecycle. This implies a
considerable degree of specialization at the molecular
level to support the demanding developmental pro-

Malaria functional genomics (X-omics) strategies in the context of target and drug characterizationFigure 1
Malaria functional genomics (X-omics) strategies in the context of target and drug characterization. Selected 
questions that could be addressed by the application of functional genomics are listed, including those specific to the transcrip-
tome, proteome or interactome (X-omes). Highlighted is the particular focus on the application of this type of strategies to 
drug(s) and target(s) characterization.
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gramme and suggested a highly coordinated expression of
Plasmodium genes involved in common biological proc-
esses.

In-depth understanding of the protein-protein interaction
network (defined as interactome) can provide insights
into the function of proteins, regulatory mechanisms and
functional relationships of these (Figure 1). An extensive
protein-interaction study of P. falciparum (nearing global-
type analysis) combining interaction information with
co-expression data and GO annotations indicated unique
interactions, identified groups of interacting proteins
implicated in various biological processes, and predicted
novel functions to previously uncharacterized proteins
[97]. Interestingly, comparison of the Plasmodium interac-
tome with that from other organisms indicated a marked
divergence with very little conservation with other protein
complexes [98].

The abovementioned X-ome datasets are therefore now
available for in silico data mining approaches. As such,
data mining of the transcriptome using an extensive
sequence similarity search identified 92 putative proteases
in the P. falciparum genome, 88 of which are actively tran-
scribed [99]. This strategy has also been applied to the
kinase family [100]. The transcriptome datasets are nowa-
days extensively utilized in PlasmoDB, MPMP and other
specialized sites [101]. PlasmoDB additionally has links
to proteome data and also allows access to the interac-
tome data. Proteome experiments based on 2D-gel elec-
trophoresis can furthermore be aided by Plasmo2D
software to allow the identification of proteins in such
platforms [102].

An important question in mining different global X-omic
datasets is how they can be compared. Draghici et al.
[103] made clear that the inconsistencies between the var-
ious microarray platforms (in situ synthesized short oli-
gos, longer oligos, spotted oligos or cDNAs) are so high
that it is almost impossible for the moment to compare
results from different platforms. How can a transcrip-
tomic profile be compared to a proteomic profile, given
the errors, the linearity of signals and the magnitude of
variations of each method, and the biological stability and
turnover of RNA transcripts and of proteins? Is the
enzyme profile correlated with the metabolite profile
[104]? A pragmatic solution is to avoid the multiplicity of
methods and by agreeing on some standards [103,105-
107]. Although "global" invariant references might not
exist, it is nevertheless worth trying to find in large gene
expression matrices the most invariant (or less variant)
genes [106]. This quest is of general concern and is cur-
rently one of the challenges proposed by the European
Conferences on Machine Learning and the European Con-
ferences on Principles and Practice of Knowledge Discov-

ery in Databases [106,109]. In the absence of absolute
references and standards, outputs from malaria X-omic
experiments should be analysed and compared with cau-
tion, particularly when obtained with platforms that are
distinct from those used to feed the public data repositor-
ies. Consequently, in addition to referential public repos-
itories for functional genomics, versatile software for local
analyses are strongly needed.

Various tools aim to provide biological interpretation of
gene clusters but these mostly specialize in only one or
two types of analyses. FatiGO [110], GeneLynx [111] and
Gostat [112] are powerful tools for Gene Ontology min-
ing; GoMiner [113], MAPPFinder [114] and DAVID [115]
use GO and metabolic pathway interpretation whereas
GeneXPress [116] and MiCoViTo [117] use metabolic
pathways and incorporate transcription regulation visual-
ization. Improvements on these include a web interface
called MADIBA (MicroArray Data Interface for Biological
Annotation, [118]) that has been initially designed for
malaria transcriptomics (Dr. C. Claudel-Renard, personal
communication). This interface links a relational data-
base of various data sets to a series of analysis tools
designed to facilitate investigations of possible reasons for
co-expression of clusters of genes (e.g. from gene expres-
sion data) and to deduce possible underlying biological
mechanisms. Clusters of co-expressed genes are automat-
ically subjected to five different analytical modules
including 1) search for over-represented GO terms in clus-
ters, 2) visualization of related metabolic graphs with
KEGG representations, 3) chromosomal localization, 4)
search for motifs in the upstream sequences of the genes
and finally 5) Plasmodium-specific genes without human
homologues. MADIBA analysis of the transcriptome data-
set from Le Roch et al. [85] resulted in an improved anno-
tation of the Plasmodium genes (41% vs. 37%) and
characterization of 6 additional clusters with GO annota-
tions, of which one exclusively contained glycolysis in its
entirety (except for fructose-bisphosphate aldolase) and
another identifying gene as potential as drug targets due to
their Plasmodium-specific characteristics. Therefore,
MADIBA allows versatile analyses of a vast variety of tran-
scriptomic profiles. These analyses can highlight potential
drug targets by providing functionality to co-clustered
expressed genes in a guilt-by-association manner, includ-
ing those of un-annotated proteins, by predicting co-regu-
lated expression via chromosomal localization as well as
the identification of motifs for cis-regulatory elements and
lastly by identifying unique Plasmodium-specific genes
involved in specific biological mechanisms.

With the advent of integrative investigations of datasets
from the transcriptome, proteome, interactome etc. new
analysis tools are being developed including a Partial
Least Squares (Projection to Latent Structures-PLS)
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method which has been used to integrate yeast transcrip-
tome and metabolome data [119]. Linear modelling was
used to investigate the changes in the transcriptome due
to environmental perturbations and, assuming that the
metabolome is a function of the transcriptome, the meta-
bolic variables were modeled with PLS. A genome-wide
investigation of protein function was recently performed
by computationally modelling the P. falciparum interac-
tome [120] to elucidate local and global functional rela-
tionships between gene products. This novel approach
entailed an integration of in silico and experimental func-
tional genomics data within a Bayesian framework to cre-
ate the network of pairwise functional linkages. This
resulted in predicting functionality based on associations
between characterized and uncharacterized proteins for
95% of the currently annotated hypothetical proteins in
the P. falciparum proteome. Only 107 hypothetical pro-
teins show interaction with other hypothetical proteins
potentially representing new pathways or previously
uncharacterized components of known pathways.

This overview shows that the integration and mining of
global functional genomic experiments are in the front-
line in drug discovery processes [121,122]. Malaria X-
omics data provide comprehensive information to,
amongst others, understand the mode-of-action of inhib-
itory compounds, allow optimization of drug action, val-
idate drug targets (chemical validation strategies), identify
families of genes/gene products that are more amenable
as drug targets ('druggable genes'), annotate the function
of hypothetical proteins by 'guilt-by-association' and
point out specialized gene expression regulation systems
(Figure 1) [123].

In the case of drug treatments, the sought effects on the
metabolism of targeted tissues or organisms include up-
or downregulation of the protein target(s), the upregula-
tion of detoxification pathways (cytotoxic responses) and
the upregulation of alternative or compensatory pathways
of the affected organism that can be reflected in changes
in the transcriptome/proteome of the organism. The char-
acterization of the transcriptional response induced by
drug challenge has been applied with success in the anti-
bacterial field, creating reference compendia of expression
profiles after drug challenge that provide insight into a
drugs' MOA [123-125]. Transcriptional profiling of drug
challenged malaria parasites has been limited to only a
few studies to date including Serial analysis of gene
expression (SAGE) of chloroquine treated parasites [126],
a high-density short-oligonucleotide array study on para-
sites treated with phosphatidylcholine biosynthesis inhib-
itors [88] and custom arrays originating from
suppression, subtractive hybridisation (SSH) libraries on
parasites treated with polyamine biosynthesis inhibitors
[127]. Drug-specific transcriptional responses were seen

in the chloroquine and polyamine inhibition studies indi-
cating the presence of a feedback signaling mechanism. Le
Roch et al. [88] compared transcriptional responses with
proteome analyses and showed that more pronounced
changes were induced at the protein level after drug chal-
lenge. This is also true for antifolate inhibited parasites
where a marked increase were seen in folate biosynthesis
protein levels upon treatment with inhibitors against
DHRF-TS [128]. Global-level proteome response analysis
of the combination of artemether and lumefantrine also
revealed drug-specific changes in the proteome [129].
Subproteomic investigations have additionally become
particularly important to determine the molecular bind-
ing partner/target protein of an inhibitory compound
and/or to describe the mode-of-action of such com-
pounds. This has been applied to ferriprotoporphyrin IX
were identified [130], kinase inhibitors [131] and the qui-
noline family of compounds [132].

Any of the above-mentioned strategies are potential start-
ing points to the discovery of unsuspected drug targets in
P. falciparum, whether it is a new/additional functionality
that is ascribed to a known protein or the characterization
of novel function of a previously 'unknown' protein. As
the hypothetical proteins represent more than half
(~60%) of the malarial proteome (see above), these are
some of the most attractive areas to the drug target discov-
ery effort. The basic rationale behind using expression
profiles to assign functionality to genes is based on the
principle of guilt-by-association [133,134] in which genes
coding for proteins with similar functionality often
exhibit the same expression profiles and protein-interact-
ing partners. Coincidentally, the expression profiles of
genes specific to a given organelle also display similar
expression patterns. This principle has been applied with
unsupervised robust k-means clustering [85]. Improve-
ments on this clustering approach were proposed using a
semi-supervised clustering method called ontology-based
pattern identification (OPI) [135]. OPI uses previous gene
annotation data to generate clusters with greater specifi-
city and confidence whose members then additionally
share the same expression profiles. However, Llinás and
del Portillo [136] warns against using only classical guilt-
by-association methods, showing that many genes that
are functionally unrelated show similar expression pro-
files during the asexual development of P. falciparum.

Malaria protein structures and virtual ligand screening on 
candidate targets
Vital malaria proteins may have no counterpart in
humans or sequence dissimilarity with their human
homologues that may be sufficient to become a therapeu-
tical target without disturbing essential function in the
human host. The literature on potential protein targets for
anti-malaria treatments is already crowded, and will
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hopefully be enriched and better documented in the
future. Once a target has been identified, an important
decision is whether or not to enter into costly drug- or vac-
cine-development programmes. Determination or predic-
tion of the target three-dimensional structure and in silico
experiments can be achieved to connect these biological
targets with the pharmacological space of small com-
pounds [137], and assist this decision and provide initial
clues on possible therapeutical strategies.

Malaria protein structures
The rationalized identification of new inhibitors depends
on possession of structural information. As for any other
organism, the primary problem is obtaining high and
pure protein yields for crystallization trials. Recombinant
expression of malarial proteins in E. coli is notoriously dif-
ficult, however. A number of problems are typically
encountered. The A+T richness results in substantially dif-
ferent codon usage compared to E. coli. Plasmodium genes
are also typically much longer than their homologues in
other organisms, as are the resulting proteins. Increased
protein size is due mostly to long protein inserts with gen-
erally little homology to cognate enzymes. These inserts
tend to be disordered and of low complexity, resulting in
proteins that are not amenable to expression and crystal-
lization. Further problems include sporadic mutations of
low complexity sequences introduced by E. coli, and cryp-
tic prokaryotic translation start sites within malarial
genes. Some level of protein expression may be obtained
by fine control of expression conditions, often a change of
strain or of complete expression system, addition of rare
codon tRNAs, and more and more often by production of
synthetic genes coding for identical protein sequences but
with a codon usage optimized for bacteria [138-142].
Mehlin et al. [143] recently attempted a wholesale expres-
sion of 1000 malarial genes and obtained soluble expres-
sion for only 63 genes. High predicted disorder, molecular
weight, pI and lack of homology to E. coli proteins were all
negatively correlated with soluble expression.

The difficulty of expressing malarial proteins is reflected
by the paucity of structures in the Protein Data Bank
[144]. At the time of writing there are only 64 non-redun-
dant Plasmodium protein structures in the PDB [see Addi-
tional file 1]. In contrast, querying the PDB for human
entries (excluding > 90% sequence identity) reveals more
than 1700 structures. The advent of structural genomics
programmes (the Structural Genomics Consortium,
[145]; the Structural Genomics of Pathogenic Protozoa,
[146]) has increased the throughput of new malarial
structures. Since 2003, 56 depositions of Plasmodium
structures have been made. Whether this trend will con-
tinue beyond the "low hanging fruit" remains to be seen.

In lieu of crystal structures for malarial proteins many
groups have resorted to homology modelling. This
approach depends critically on the alignment with tem-
plate structures. Unfortunately the biased nucleotide and
amino acid composition (see above and [58]) and Plasmo-
dium-specific inserts make it difficult to correctly identify
core-conserved regions. The presence of inserts often con-
fuses multiple and structural-alignment programmes. A
number of techniques have been used to circumvent this
problem (Figure 2). From a first pass alignment, approxi-
mate insert positions can be determined. Sequences can
then be split according to long inserts and re-aligned.
Inserts can vary considerably across different Plasmodium
species ([147] and C. Claudel-Renard, personal commu-
nication). While adjusting an alignment for modelling, it
is useful to refer to phylogenetically diverse multiple
alignments including as many Plasmodium sequences as
possible (see above, [148]). As an adjunct to alignment,
independent motif identification (e.g. the MEME system;
[149,150]) can be used to fix mistakes that alignment pro-
grammes frequently make when aligning long Plasmodium
proteins with homologues [148,151]. Further improve-
ments can be made by using hydrophobic cluster analysis
[61] and secondary structure predictions to align homol-
ogous regions within inserts. Once an alignment has been
decided on, based on visual assessment, a series of models
can be built. Because of the high degree of uncertainty that
often accompanies alignments used for modelling malar-
ial proteins, it is usually not feasible to rectify all structural
anomalies. But by performing standard quality checks on
a large sample of models and summarizing the results, it
is possible to identify parts of the alignment causing most
problems. Refined alignments might benefit from species-
specific matrices that take into account the differences of
amino acid distribution between the aligned proteins
[60,152].

Despite the difficulties with homology modelling of
malarial proteins there have been some notable successes.
Malarial DHFR forms part of a bifunctional protein that
also carries thymidylate synthase. A number of existing
drugs such as cycloguanil and pyrimethamine target the
DHFR domain, and have been used effectively in the past.
However drug resistance has evolved that reduces the use-
fulness of this important class of drugs. Hence malarial
DHFR has been a popular target for homology modelling
efforts [153-158]. Toyoda et al. [153] were able to identify
new inhibitors in the micromolar range. McKie et al. [154]
and Lemcke et al. [155] could rationalise the pyrimeth-
amine resistance caused by the S108N mutation. One of
these models was further used to identify new inhibitors
acting in the nano- and micromolar ranges [154]. Delfino
et al. [158] in turn used their model to investigate a large
number of antifolate resistant mutants. Rastelli et al.
[156] further explained the cycloguanil resistance/
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Current pipeline for the homology-based modelling of malaria protein 3D-structuresFigure 2
Current pipeline for the homology-based modelling of malaria protein 3D-structures. This scheme emphasizes on 
the currently available methods to overcome amino acid bias, low sequence identity, protein inserts etc. Future upgrades 
include the refinement of each of these methods, for instance implementing asymmetric substitution matrices discussed in the 
text, that take into account the different amino acid distributions of malarial and non-malarial proteins for pairwise alignments.
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pyrimethamine sensitivity conferred by A16V+S108T, as
well as the ability for WR99210 to inhibit both pyrimeth-
amine and cycloguanil resistant mutants. A number of
new inhibitors were also successfully designed. The high
accuracy of the alignment used for modelling meant that
predicted dockings were subsequently confirmed with the
crystal structure of the complete bifunctional enzyme
[159]. Considerable work has also gone into modelling
malarial proteases essential to the parasite's intra-erythro-
cytic life stage. A number of these models have been used
to identify new inhibitors [160-163], although the
increasing number of crystal structures for these proteases
is likely to gradually replace the need for homology mod-
els [see Additional file 1].

Apart from the PDB, there is currently no resource that
includes all Plasmodium protein structures. Both publicly
available versions of PlasmoDB (4.4 and 5) are still
incomplete in this regard. PlasmoDB 4.4 only lists P. fal-
ciparum structures, and there is incomplete overlap
between versions 4.4 and 5. PlasmoDB 4.4 includes a sec-
tion for >440 modeled structures based on a wholesale
modelling attempt of >5,000 open reading frames docu-
mented at [164]. However, at the time of writing the
actual structures were not available. Furthermore, Plas-
moDB 5 also lists non-Plasmodium structures therefore
requires some curating. A dedicated resource for deposi-
tion of structures from the Plasmodium structural commu-
nity would be useful. The resource should also include
model structures subjected to the same rigor as experi-
mental structures in the PDB, including quality criteria
and scoring. Thus "experimental" details for modelling
(alignments, software methods etc) should be included.
This resource should also allow easy comparison with cor-
responding solved structures enabling evaluation of the
communities' ability to model this difficult organism.

Protein structures provide invaluable information for
drug or vaccine discovery. First, compliance of the struc-
ture with known properties of recorded pharmaceutical
targets (termed "druggable" genes) [165-167] or predic-
tion of the occurrence of immunogenic epitopes (termed
"immunizable" genes) [168,169], can be investigated.
Second, having a protein structure in hand is a very early,
but necessary step, for the in silico prediction of the fami-
lies of ligands that can interfere with protein function.

Virtual ligand screening
Advances in combinatorial chemistry have broken limits
in organic synthetic chemistry and accelerated the produc-
tion throughput. Thus, millions of chemical compounds
are currently available in private and academic laborato-
ries and recorded in 2D or 3D electronic databases. It is
often technically impossible and very expensive to screen
such a high number of compounds using wet high

throughput screening techniques. An alternative is high
throughput virtual screening by molecular docking, a
technique which can screen millions of compounds rap-
idly and cost effectively. Molecular docking is a computer-
based method which predicts the ligand conformations
inside the active site of the target as well as an estimate of
the binding affinity between protein and ligand. It also
gives insight about the interactions between protein and
ligand and allows to generate mode-of-action hypotheses.
Screening each compound, depending on its structural
complexity, requires from a few seconds to hours of com-
putation time on a standard PC workstation depending
on the chosen docking algorithm. Consequently, screen-
ing all compounds in a single database would require
years. However, the problem is embarrassingly parallel
and the computation time can be reduced very signifi-
cantly by distributing data to process over a grid gathering
thousands of computers [170,171].

Recently, virtual screening projects on grids have emerged
with the purpose of reducing cost and time. They focused
on the development of an in silico docking pipeline on
grids of clusters [172] but also on the optimization of
molecular modelling [173]. Pharmaceutical laboratories
have also become interested by the grid concept; Novartis
deployed the first automated modelling and docking
pipeline on an internal grid [174]. Other projects focused
on virtual screening deployment on a pervasive grid, or
desktop grid, to analyse specific targets [175].

In mid-2005, the WISDOM (World-wide In Silico Dock-
ing On Malaria) initiative successfully deployed large
scale in silico docking on the European public EGEE grid
infrastructure [176]. The biological targets were plasmep-
sins, aspartic proteases of Plasmodium responsible for the
initial cleavage of human haemoglobin [177]. There are
ten different plasmepsins coded by ten different genes in
P. falciparum (Plm I, II, IV, V, VI, VII, VIII, IX, X and HAP)
[178]. High levels of sequence homology are observed
between different plasmepsins (65–70%). Simultane-
ously they share only 35% sequence homology with their
nearest human aspartic protease, Cathepsin D4 [179].
This and the presence of accurate X crystallographic data
made plasmepsin an ideal target for rational drug design
against malaria.

The main goal of the WISDOM project has been to make
use of the EGEE grid infrastructure to set up an in silico
experimentation environment. Having the necessary com-
puting power at hands, scientists from a virtual organiza-
tion can design new large-scale test systems for generating
new hypotheses. The benefit is that a large number of tar-
gets can be combined with a very large number of poten-
tial hit molecules, using different docking algorithms and
allowing to chose different parameter settings. As dis-
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cussed above for the X-omic experiments in post-genomic
platforms, in silico methods pose the same important
question in order to mine the data, i.e. how they can be
compared. The careful input data preparation is a crucial
step in the process, which has to be performed by experts
and be made available for the whole scientific commu-
nity. By sharing the results of virtual screenings in a com-
mon knowledge space, different experts coming from
different fields can jointly derive a rational for selecting
appropriate combinations of targets, ligands and virtual
screening methods.

The WISDOM large scale in silico docking deployment saw
over 46 million docked ligand-protein solutions, resulting
from two docking tools, five targets, one million com-
pounds and four parameter settings, the equivalent of 80
years on a single PC in about six weeks. Up to 1,700 com-
puters were simultaneously used in 15 countries around
the world. Post-processing of the huge amount of data
generated was a very demanding task as millions of dock-
ing scores had to be compared. At the end of the large
scale docking deployment, the best compounds were
selected based on the docking score, the binding mode of
the compound inside the binding pocket and the interac-
tions of the compounds to key residues of the protein.

Several promising scaffolds have been identified among
the 100 compounds selected for post processing. Among
the most significant ones are urea-, thiourea-, and guanid-
ino analogs, as these scaffolds are most repeatedly identi-
fied in the top 1,000 compounds (Figure 3). Validating
this approach, some of the compounds identified were
similar to already known plasmepsin inhibitors, like urea
analogs from the Walter Reed chemical database, which
were previously established as micro molar inhibitors for
plasmepsins [180]. This indicates that the overall
approach is sensible and large scale docking on computa-
tional grids has real potential to identify new inhibitors.
In addition, guanidino analogs appeared very promising
and most likely to become a novel class of plasmepsin
inhibitors.

The developed and established protocols can be used for
coming scenarios. Several teams have expressed interest to
propose targets for a second computing challenge called
WISDOM II that should be carried out in late 2006. While
docking methods have been significantly improved in the
last years, docking results need to be post-processed with
more accurate modelling tools before biological tests are
undertaken. The major challenges for docking methods
are prediction and scoring. Molecular dynamics (MD) has
great potential at this stage: firstly, it enables a flexible
treatment of the ligand/target complexes at room temper-
ature for a given simulation time, and therefore is able to
refine ligand orientations by finding more stable com-

plexes; secondly, it partially solves conformation and ori-
entation search deficiencies which might arise from
docking; thirdly, it allows the re-ranking of molecules
based on more accurate scoring functions. Efforts are now
devoted to deploy on the grid both docking and Molecu-
lar Dynamics calculations to further accelerate in silico vir-
tual screening before in vitro testing.

Conclusions: toward a chemogenomic knowledge space
In this paper, five aspects of the in silico storage, organiza-
tion and mining of data from malaria genomics and post-
genomics, were examined in the context of the prediction
and characterization of targets and drugs: 1) the compari-
son of protein sequences including compositionally atyp-
ical malaria sequences, 2) the high throughput
reconstruction of molecular phylogeny, 3) the representa-
tion of biological processes particularly metabolic path-
ways, 4) the versatile methods to integrate genomic data,
biological representations and functional profiling
obtained from X-omic experiments after drug treatments,
5) the determination and prediction of protein structures
and their virtual docking with drug candidate structures.
Data management that should be at the genomic scale,
including multiple species, and should therefore be as
reliable as possible. A "biological space" should be for-
matted so as to represent scientific knowledge and to con-
nect genomic data and post-genomic functional profiles
in the most versatile way, allowing the mining of informa-
tion with diverse methods (Figure 4a–e). This "biological
space" should be linked to a "chemical space" that con-
tains all small molecules stored in chemolibraries (mil-
lions of compounds) including known drugs (Figure 4f–
h). Thus, progresses toward a chemogenomic knowledge
space will benefit on the referential public repositories
and particularly UniProt and PlasmoDB, on recent theo-
retical advances in genomics and post-genomics data
management and mining and on the power of computer
grids (Figure 4).

Genomic data (Figure 4a), i.e. protein sequences, can be
organized based on sequence similarity (Figure 4b). This
projection of protein sequences should allow the high
throughput reconstruction of molecular phylogenies both
at the intraspecific (connecting paralogs and alleles) and
interspecific (connecting homologues among which
orthologs) levels, following statistically accurate methods
(Figure 4b). This task is difficult because of the composi-
tional bias and high insert content of malaria sequences.
Statistically valid protein sequence comparisons are now
available to allow genome scale alignment and high
throughput phylogeny reconstruction (named TULIP),
including malaria atypical sequences, and providing qual-
ity scores on which one can rely after automatic genome
scale treatments. Benefits from the TULIP method include
an easy upgrade and update of the obtained protein spa-
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In silico screening for protein ligands based on structural dockingFigure 3
In silico screening for protein ligands based on structural docking. A urea analog inhibiting malaria plasmepsins was 
identified with good score from the first WISDOM (World-wide In Silico Docking On Malaria) campaign. The WISDOM initia-
tive successfully deployed large scale in silico docking on the European public EGEE grid infrastructure. The ligand shown here 
docks inside the binding pocket of plasmepsin, and interacts with key protein residues. The developed and established proto-
cols can be used for new targets, and particularly a second computing challenge, WISDOM II.
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Malaria chemogenomics: organization and treatment of genomic, post-genomic and chemical information for the prediction and characterization of target and drug candidatesFigure 4
Malaria chemogenomics: organization and treatment of genomic, post-genomic and chemical information for the pre-
diction and characterization of target and drug candidates. Genomic data from Plasmodium and other species (a), i.e. protein 
sequences, should be organized based on sequence similarity (b). This projection should allow the high throughput reconstruction of 
molecular phylogenies both at the intraspecific (connecting paralogs and alleles) and interspecific (connecting homologues among which 
orthologs) levels following statistically accurate methods e.g. the TULIP method. Another substantial side of the biological space is 
designed by representing the knowledge of the biological processes, using stable ontologies e.g. the GO, and dynamic graph representa-
tion, e.g. PlasmoCyc (c). Versatile tools should allow the integration of genomic data, biological process representations and global func-
tional profiles obtained with diverse X-omic approaches (4). These tools should comply with the large diversity of technologies and 
mining methods. The collection of information on the biological response to drugs is one of the doors to connect the biological space 
with the chemical space, following the "reverse chemical genetic" way, i.e. "from known drugs to biological response" (toxicity, mode of 
action). The other door to connect the chemical space and the biological space follows the "direct chemical genetic" way, i.e. "from 
known biological target to drug candidates". In addition to malaria protein structures obtained from crystals, the automated structural 
annotation of the malaria proteome should be initiated with quality scores (e). Based on protein structure information, virtual docking 
campaigns such as the WISDOM challenges can be achieved using the power of computer grids. The in silico organization of the small mol-
ecules stored in chemolibraries (f) follows similar principles, in particular the determination of three-dimensional structures of small mol-
ecules (g) and a clustering of small molecular structures based on drug properties and descriptors (h). Sharing and mining of 
chemogenomic information, completed with knowledge harvested in unstructured scientific literature, would benefit of the advances in 
knowledge space design and deployment on knowledge grids.
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tial projection. Another substantial side of a biological
space contains representations of the knowledge of bio-
logical processes, using stable ontologies, and dynamic
graph representation (Figure 4c). Here, efforts are still
needed to improve existing representations of the metab-
olism and numerous projects are under progress, most
importantly PlasmoCyc and PMPM. The PlasmoCyc exist-
ing metabolic graphs have the advantage of being more
easily updated and usable for in silico mining methods, as
long as the output is examined by biological experts. In a
brief overview of malaria X-omic profiling, some tools
allowing a linkage between genomic data, biological proc-
ess representations and global functional profiles have
been introduced (Figure 4d). There is still a large diversity
of data treatment and mining strategies, reflecting the
diversity of technologies and mining methods. This step is
one of the doors to connect the biological space with the
chemical space, following the "reverse chemical genetic"
way, i.e. "from known drugs to biological response" (tox-
icity, mode of action). Basic analytical tools like MADIBA
and sophisticated mining approaches will be needed to
understand and compare the biological responses to anti-
malarial drugs. The other door to connect the biological
space and the chemical space follows the "direct chemical
genetic" way, i.e. "from known biological target to drug
candidate". In addition to crystal structures of malaria
proteins, the automated structural annotation of the
malaria proteome should be initiated (Figure 4e). Based
on protein structure information, virtual docking cam-
paigns such as the WISDOM challenges can be achieved
using the power of computer grids.

This paper did not review the "chemical" side for chemog-
enomics space. By numerous aspects the in silico organiza-
tion of the small molecules stored in chemolibraries
(Figure 4f) was not achieved the way biological informa-
tion was. Clustering of small molecular structures based
on properties is highly debated (Figure 4h). Collections of
small molecules are generally designed to obey the prag-
matic Lipinski's "rule of five" [181] making them likely
candidates for drug discovery. Numerous studies are
under progress in order to identify which small molecule
descriptors can comply with chemogenomic approaches
(e.g. the Accamba project for the analysis of chemolibrar-
ies and the building of bioactivity models; [182]). A
chemical ontology (CO) has been recently introduced
[183], but it has not yet been used and validated by the
scientific community the way the GO was. A database for
Chemical Entities of Biological Interest (ChEBI) has also
been launched [184]. The modelling of the three-dimen-
sional structures of small molecules (Figure 4g) can be
predicted by numerous public or commercial methods
which should be examined with attention (see the WIS-
DOM challenges). PubChem, a repository for molecules
acting on biological targets was recently launched

[183,185] and the UniProt protein knowledge base was
recently upgraded to report toxic doses of small molecules
on proteins [186,187], however these initiatives are just
starting points. Access to an ocean of small molecular
structures and to a deluge of biological sequences raises an
enthusiastic challenge: "The goal for the coming decades
will be to explore the overlap between chemistry space
and protein space" [188]. Is this prediction exuberant?
From the methodological survey summarized in this
paper, this next milestone for malaria research is not out
of reach.

Beyond virtual screening, the grid technology provides the
collaborative IT environment to enable the coupling
between molecular biology research and goal-oriented
field work [189]. It proposes a new paradigm for the col-
lection and analysis of distributed information where data
do no longer need to be centralized in one single reposi-
tory. On a grid, data can be stored anywhere and still be
transparently accessed by any authorized user. The com-
puting resources of a grid are also shared and can be mobi-
lized on demand so as to enable very large-scale genomics
comparative analysis and virtual screening. A longer term
perspective is, therefore, to enhance the ability to share
diverse, complex and distributed information on a given
disease for collaborative exploration and mutual benefit.
The concept of a knowledge space is to organize the infor-
mation so that it can be reached in a few clicks. This con-
cept is already successfully used internally by
pharmaceutical laboratories to store knowledge [175].
The grid permits the building of a distributed knowledge
space so that each participant is able to keep the informa-
tion he owns on his/her local computer. A set of grid serv-
ices would particularly take advantage of the
developments in the area of semantic text analysis for
extraction of information in biology and genome
research. (Figure 4, lower part). The literature on malaria
biology, physiopathology and medicinal chemistry is, at
least in significant parts, stored as unstructured texts that
make an invaluable source of knowledge which access
depends on advances in terminology analysis and term
extraction methods. A first attempt at using terminology
analysis for the "harvesting" of relevant concepts in a
defined disease area has been undertaken in another bio-
medical grid project, the recently started EU Integrated
Project @neuRIST [190]. In this project, terminology
analysis lead to the refinement of a disease-specific text
corpus and provided a shortlist of relevant terms. Moreo-
ver, not only the genes associated with the defined disease
area could be identified by automated methods, but also
single nucleotide polymorphisms (SNPs) published for
these disease-associated genes, could be automatically
identified (Dr. Laura Furlong, IMIM, Barcelona, personal
communication). An important focus of future activities
in this project is the construction and validation of fine-
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granular disease-specific ontologies. This concept can eas-
ily be adopted for a knowledge base on any disease,
including malaria. Existing databases can be comple-
mented by this automatically generated semantic layer,
which subsequently would also be helpful for data medi-
ation. Moreover, a structured knowledge space would pro-
duce grid services for indexing of distributed data
resources and thus improve navigation through knowl-
edge and retrieval of relevant information.

Finally, present and future in silico information must be
supported and validated by data gathered in vitro and in
vivo. As other X-omic strategies approach, the necessity of
in silico mining is unquestionable; it is also susceptible to
generate a huge amount of theoretical data that will need
years to be confronted to the experimentation. The chal-
lenges in this domain remain severe. Difficulties of clon-
ing and expressing parasite proteins in heterologous
systems, the validation of druggable targets using siRNA
etc, and the experimental assignment of functionality to
the many hypothetical proteins, will occupy scientists in
parallel for some time to come. Data generated from in sil-
ico analysis leads to a need for further laboratory work,
such as the in vitro testing of ligands identified as potential
drug leads through the WISDOM project. A strong linkage
between scientists undertaking in vitro research and in sil-
ico researchers is therefore essential to support an iterative
approach to knowledge generation and analysis, in the
context of malaria chemogenomics.
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