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Voxelisation in the 3-D Fly Algorithm for PET
F.P. Vidal 1, and P.-F. Villard 2

1 School of Computer Science, Bangor University, LL57 1UT, United Kingdom
2 LORIA, University of Lorraine, France

Abstract

The Fly Algorithm was initially developed for 3-D robot vision applications. It consists in solving the
inverse problem of shape reconstruction from projections by evolving a population of 3-D points in space
(the ‘flies’), using an evolutionary optimisation strategy. Here, in its version dedicated to tomographic
reconstruction in medical imaging, the flies are mimicking radioactive photon sources. Evolution is
controlled using a fitness function based on the discrepancy of the projections simulated by the flies
with the actual pattern received by the sensors. The reconstructed radioactive concentration is derived
from the population of flies, i.e. a collection of points in the 3-D Euclidean space, after convergence.
‘Good’ flies were previously binned into voxels. In this paper, we study which flies to include in the
final solution and how this information can be sampled to provide more accurate datasets in a reduced
computation time. We investigate the use of density fields, based on Metaballs and on Gaussian
functions respectively, to obtain a realistic output. The spread of each Gaussian kernel is modulated
in function of the corresponding fly fitness. The resulting volumes are compared with previous work in
terms of normalised-cross correlation. In our test-cases, data fidelity increases by more than 10% when
density fields are used instead of binning. Our method also provides reconstructions comparable to those
obtained using well-established techniques used in medicine (filtered back-projection and ordered subset
expectation-maximisation)

Keywords: Fly algorithm, Evolutionary computation, tomography, reconstruction algorithms,
iterative algorithms, inverse problems, iterative reconstruction, co-operative co-evolution.

1 Introduction
This research deals with tomographic reconstruction in nuclear medicine, more particularly positron emission
tomography (PET). An unknown radioactive concentration (f) is recovered from known observations (Y =
P [f ]) by solving an ill-posed inverse problem (see Figure 1). In this paper, we exploit the output of a
Cooperative Co-evolution algorithm (CCEA), the Fly Algorithm, based on the Parisian Approach to improve
quantitative results in reconstructed images. The Fly Algorithm is an evolutionary 3-D image analysis
method, which was first developed in the context of robot vision applications [13]. It evolves a population of
‘flies’, according to the Evolutionary Strategy paradigm. A fly is a 3-D point in the object space. Each fly
is used to create projection data (the way this data is generated is problem dependant). The fitness value of
each fly, i.e. a quality measurement optimised by the algorithm, is based on the consistency of its calculated
projections in the images. This approach has been extended to 3-D tomographic reconstruction in medical
imaging (‘medical flies’) [6, 20, 21, 22].

The problem we address in this paper is related to the extraction of the solution for PET reconstruction
using the Fly algorithm (see the last main step in Figure 1). The manuscript particularly focuses on how to
voxelise and display the point cloud generated by the final fly population to produce quantatively accurate
results. This step is necessary as most medical imaging software use this data representation to store and
process tomographic volumes. The voxelisation problem has been overlooked in the previous work mentioned
above. The 3-D space was discretised into a regular grid of volume elements (voxels). The intensity of each
voxel was proportional to the number of flies located into them. To produce sharper images, only good flies
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Figure 1: Evolutionary reconstruction using the Fly algorithm. The real radioactive concentration (f)
is unknown. P is a projection operator. The projections of f are the known observations (Y = P [f ]).
Individuals of the evolutionary algorithm correspond to 3-D points. The population corresponds to an
estimated radioactive concentration

(
f̂
)
. Each individual has its own projection data. Together, they

produce simulate projections
(
Ŷ = P

[
f̂
])

. The position of individuals is iteratively optimised using genetic
operators to minimise E

(
Y, Ŷ

)
the difference between Y and Ŷ . After convergence the concentration of

individuals is an estimate of the radioactive concentration.

were considered during the voxelisation. In this paper, we study the collective impact of including ‘margin-
ally negative’ individuals in the final solution and compare evolutionary reconstructions with those obtained
using classical algorithms. The aim is to formally determine which flies are necessary in the final solution to
produce a volume that is more similar to the real radioactive concentration. We also investigate and compare
methods based on implicit modelling to display the fly population in order to properly minimise the difference
between the reconstructed pattern and the ground-truth, and get visually realistic rendering. Our method
takes advantage of the Fly Algorithm’s internal data to efficiently employ implicit modelling. In particular,
we investigate how to take advantage of the individual knowledge of each fly after the evolution process to
modulate their own appearance in the final image of the whole population. The aim is to reduce the noise
level and to retain edges between regions. To ascertain the validity of our new approach, evolutionary recon-
structions on two numerical phantoms are eventually compared with those obtained using two of the most
popular tomographic reconstruction algorithms in nuclear medicine research, namely filtered backprojection
(FBP) and ordered-subset expectation-maximisation (OSEM).

The next section presents the background information necessary to apprehend this paper. It focuses
on classical tomographic reconstruction (see Section 2.1), Parisian Evolution (see Section 2.2), and early
work on evolutionary reconstruction (see Section 2.3). Section 3 studies how to extract the solution of the
optimisation problem in this co-operative co-evolution scheme, i.e. which individuals should be considered
during the voxelisation. Section 4 focuses on a technique called Implicit Modelling. An overview is given in
Section 4.1. Section 4.2 shows how to apply this technique during the voxelisation and Section 4.3 shows how
to exploit the marginal fitness of each fly during the final voxelisation to produce high fidelity reconstructed
volumes. In Section 5, we analyze the results obtained using controlled test cases of increasing complexity. We
compare the evolutionary reconstruction with classical algorithms used in the nuclear medicine community
(FBP and OSEM). The final section provides a discussion and concluding remarks.
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2 Background
2.1 Tomographic Reconstruction in PET

from the unknown f
Build the acquired data Y

Model (Radon transform) Model-1 (Inverse Radon transform)

Build the estimate f̂
from the known Y

f(x, y)
Unknown data Estimated data

f̂(x, y)

Known projection data
(sinogram)
Y = P [f ]

r

θ

Figure 2: Tomography principle. In emission tomography f(x, y) is an unknown radioactive concentration.
Y corresponds to the projections measured by the scanner. It represents integral quantities along straight
lines at different angles. Y is inverted analytically (e.g. with FBP) or iteratively (e.g. with MLEM, OSEM
or the Fly algorithm): It is the tomographic reconstruction.

Tomography begins with a multi-angular data acquisition followed by a mathematical reconstruction (see
Figure 2). Tomographic reconstruction is an inverse problem that aims at producing cross-sectional images
from projection data at successive angles [9]. Various tomography techniques exist in medicine, mainly with
modalities using radiations. They include computed tomography (CT), cone-beam computed tomography
(CBCT), single-photon emission computed tomography (SPECT), and PET. This paper focuses on PET
reconstruction. CT is intensively used in radiology department for examination of any part of the body.
It provides anatomical information. The voxel intensity in Figure 3a corresponds to the X-ray attenuation
property of tissues (in black air, in grey soft tissues, and in white bones). CBCT is a more recent 3-D technique
providing a high spatial resolution useful in radiotherapy or for head examination in dentistry. SPECT and
PET are specific to nuclear medicine departments. They are called emission tomography (ET). In this case
the source is made of radioactive molecules located within the patient, by means of injection, and rarely
by inhalation or ingestion. The reconstruction process aims at providing an estimation of the radioactive
distribution within the patient in relation to the uptake of those radioactive molecules and depending on
a physiological process (e.g. tumour gross or bone fracture). Figure 3c is displayed in negative: white for
low radioactivity concentration and black for high radioactivity concentration. Reconstructed images have
a much lower resolution and a poorer signal-to-noise ratio (SNR) than CT and CBCT. SPECT and PET
are often combined with CT to provide physiological information co-located with anatomical information.
In Figures 3b and 3d the PET data is overlaid in colour onto the CT data. In this example, the red colour
of the lookup table (LUT) corresponds to a high concentration and green to a medium concentration. Low
concentration is transparent and does not appear.

After obtaining many projections at different angles, the image system produces an image called “sino-
gram”. It is a visual representation of the Radon transform produced by the concatenation of the successive
projections (see middle image in Figure 2). The projections correspond to integral quantities along straight
lines from the source to the detector.

Tomographic reconstruction is a mathematical process that consists in inversing the Radon transform
by back-projecting the measurement data into the object space. This process is an inverse problem, with
ill-conditioned data due to the noise affecting those data (noise is a major concern in emission tomography).
It is usual to describe two classes of reconstruction algorithms:

• Analytic reconstruction methods,

• Iterative reconstruction methods (including algebraic based methods and statistical based methods).

Analytic reconstruction is the mainstream one in CT, while statistical reconstruction has become a standard
in emission tomography. Analytic reconstruction methods are based on continuous modelling. They inverse
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(a) CT. (b) PET+CT. (c) PET. (d) Visualisation.

Figure 3: PET-CT scan of the lungs: CT provides anatomical information, PET physiological information.
CT and PET are complementary. They are often displayed side-by-side as well as superimposed. The gross
of a tumour, black mark in (c), is highlighted in red in (b). Images created using Osirix [16].

projections
Compute Projections

(
P
[
f̂
])

computed from f̂

(
f̂
)Estimated image

E
(
P [f ] , P

[
f̂
])Error metrics

CompareInitial guess

Correct for errors

(P [f ])
Measured projections

Figure 4: Iterative algorithm principles: Projection data
(
P
[
f̂
])

is generated from an estimated image (f̂).
It is iteratively corrected to minimise the discrepencies between its projections and the known observations
(P [f ]).

the Radon transform using the Fourier slice theorem: the 1-D Fourier transform of a projection is equal to
a slice of the 2-D Fourier transform of the original image. The complete 2-D Fourier transform of the image
is reconstructed from these 1-D Fourier transforms. Then, the image is obtained by inverting its Fourier
transform. The most frequently used method is the filtered backprojection (FBP) algorithm. Before the
back-projection, the sinogram is initially filtered in the Fourier domain to produce sharper images.

Iterative reconstruction techniques are based on iterative correction algorithms. They usually follow the
general scheme presented in Figure 4. It consists in estimating a new image (f̂) at a certain step by combining
the image estimated at the previous step and the projection data

(
P
[
f̂
])

generated from this estimate to
minimise the error between these estimated projections and the projections measured by the scanner (P [f ]).
The process is repeated until a given criterion is satisfied.

In SPECT and PET, maximum-likelihood expectation-maximisation (MLEM) [17] and its derivatives are
now more popular than the analytic reconstruction methods [15]. The main reason is that they take into
account Poisson noise in the measured photon count. MLEM is known to be a very slow algorithm, and
alternatives have been proposed to obviate this drawback. This is why OSEM has become the reference
reconstruction method in PET [8]. Its principle is to reduce the amount of projections used at each iteration
of the EM algorithm by dividing the projections in K sub-groups. One of the main issues with MLEM and
its derivatives, including OSEM, is the difficulty to chose a good stopping criterion [4]: they are known to be
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relying on a non-converging algorithm. MLEM provides an acceptable estimation of tracer distribution with
a few iterations. Then, when the number of iterations increases the reconstruction offers a better resolution
but becomes noisier.

2.2 Parisian Approach and Fly Algorithm
Our evolutionary reconstruction algorithm follows the iterative scheme presented above. Our method heavily
relies on the Fly algorithm, which follows the Parisian Approach. Whereas classical evolutionary algorithms
(EAs) evolve a population in order to keep only the best individual of the final population as the optimal
solution of the problem, in the Parisian Approach the solution is the whole population itself. We thus refer
to the Cooperative Co-evolution (CoCo) family of algorithms. The aim is to take advantage of an EA to help
its best individual of the population towards the global optimum and the other individuals into attractive
areas of the search space [7]. The population is considered as a society of individuals who are collaborating
to build something, whatever it may be. To achieve this goal the fitness landscape is designed so that the
solution to the optimisation problem is given by a set of individuals or the whole population.

A Parisian EA usually contains all the usual components of an EA (e.g. selection, mutation, recombination,
etc.) and includes some optional ingredients:

Global fitness function: calculated on the whole population.

Local fitness function(s): measuring each individual’s contribution to the global solution.

Diversity mechanism: To avoid solutions where most individuals gather in a few areas of the search space.

A special case of Parisian EA is the Fly algorithm. It was initially developed for 3-D image analysis in the
context of robot vision applications [13]. While classical stereo-vision algorithms build a 3-D representation
of the scene by matching 2-D primitives previously extracted from image segmentation, the Fly Algorithm
works directly in the 3-D space. A fly is relatively simple: It is a 3-D point in the object space. A population
of ‘flies’ evolves using the repetitive application of genetic operators according to the Evolutionary Strategy
scheme. Each fly is used to create projection data in a way that depends on the problem being solved. The
fitness value of each fly is a quality measurement optimised by the algorithm. It is usually based on the
consistency of its calculated projections in the images.

CoCo and particle swarm optimisation (PSO) share many similarities. PSO is inspired by the social
behaviour of bird flocking or fish schooling [10, 18], where every particle somehow follows its own random
path biased toward the best particle of the swarm. Both are search methods that start with a set of random
solutions, which are iteratively corrected toward a global optimum. In the Fly algorithm, the solution of
the optimisation problem is the population (or a subset of the population): The flies collaborate to build
the solution. In PSO the solution is a single particle, the one with the best fitness. A typical volume in
nuclear medicine includes 128 × 128 × 128 voxels. In other medical modalities, it is not uncommon to have
volumes of 512 × 512 × 512 voxels. The final solution is therefore an array of several millions of numerical
values. This is an extremely complex search space that cannot be solved in an acceptable computing time by
a classic EA or PSO. Also small regions of low, medium or high concentrations should not be missed in the
reconstruction. It is therefore necessary to keep a level of diversity and ensure that the new individuals are
not forced to follow the best one(s). Having diversity built-in and having many individuals who collaborate
to build the estimate of the radioactive concentration are therefore attractive features of the Fly algorithm
for the tomographic reconstruction problem. Due to the intrinsic following behaviour of the particles toward
the current best solution, it is not practical to adapt PSO for tomographic reconstruction.

2.3 Early Evolutionary Reconstruction
The Fly algorithm has been extended more recently to 3-D reconstruction in medical imaging (‘medical
flies’) [6, 20, 21, 22]. Figure 5 illustrates how the Fly algorithm works in this case. Here, each fly emulates
a radioactive emitter and has its own illumination pattern. The projection data they create can be stored
as a sinogram. It is 2-D image made of a set of 1-D projections at successive angles. Figure 6 shows how
the flies are orthogonally projected to generate parts of a sinogram. The data created by all the flies

(
f̂
)
is
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Figure 5: The Fly algorithm is an iterative method (as described in Figure 4). Here genetic operators
(new blood and mutations) are applied to correct the position of flies and minimise the error between the
known observations (P [f ]) and the projection data (P

[
f̂
]
) generated by the population of flies (f̂). After

convergence the concentration of flies is an estimate of the radioactive concentration.

aggregated to build the sinogram simulated by the population
(
P
[
f̂
])

. It is used to compute a metrics useful
in the calculation of the fitness functions. At the start of the reconstruction, flies are randomly scattered in
the search space (see Initial population in Figure 5). The evolutionary algorithm optimises their positions
to minimise the global fitness function. After convergence, the sum of illumination patterns of all the flies
closely matches the input data and the final population of flies gives an estimate of the unknown radioactive
concentration (f).

To optimise the flies’ position, our algorithm relies on mutation and new blood operators (see Select
genetic operator in Figure 5). No cross-over is used as it is not particularly useful in the Fly algorithm for
image reconstruction. Let us consider two flies that are well positioned. If there are in two separate areas,
then it does not make sense to create a new fly in between as it would probably lead to a bad fly. The new
blood operator aims at maintaining some diversity in the population. This is particularly important at the
early stages of the reconstruction to make sure no small object of low intensity are missed. Its principle is
relatively simple (see Replace bad fly by random fly in Figure 5):

1. a bad fly is randomly selected using our Threshold selection (see below for an explanation)

2. its projections are removed from P
[
f̂
]

3. the fly is replaced a new fly randomly positioned in the search space, and

4. the projections of the new fly are added to P
[
f̂
]
.

For mutation (see Copy good fly into bad fly and Random alteration of new fly in Figure 5),

1. a bad fly is selected using the Threshold selection,

2. its projections are removed from P
[
f̂
]
,
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Figure 6: From a population of flies (f̂) to an estimated sinogram
(
P
[
f̂
])

. Each fly has it own projection
data at different angles. Put together, they produce the estimated sinogram.

3. a good fly is selected using the Threshold selection,

4. the bad fly is replaced by the good fly,

5. all the genes of the newly created fly are altered by some small random changes, and

6. the projections of the mutated fly are added to P
[
f̂
]
.

To control the amount of random changes during the mutation, we favour adaptive schemes to limit user
inputs. In our implementation the probability of all the operators is encoded in the genome of each fly. In our
previous work, only one type of mutation operator was used, the Dual-mutation [22]. Here we have several
types of mutation operators:
Basic: A mutation variance is included in the genome of each fly. At the beginning of the reconstruction,

all the flies have the same value. The mutation variance is subject to an adaptive pressure itself and is
self-adapted [2, 3].

Dual: In [22], we proposed to use two alternative mutation variances, one being greater than the other one.
The algorithm keeps track of which variance provides the best results in term of global fitness. At
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regular intervals, the performance of each variance is assessed. If the biggest value is the best, then
both variances are multiplied a constant value. If the smallest value is the best, then both variances
are divided the constant value.

Adaptive: In [23], we use stress mutation to take into account the local fitness value of the individual
being mutated. When the local fitness value of the fly is low, the amount of changes is large to favour
exploration. When the local fitness value of the fly is high, the amount of changes is small to refine the
results.

To evaluate the performance of successive populations toward more realistic images, we use a distance
measurement (E) between global images

(
P
[
f̂
])

resulting from the photon emissions of the population of
flies

(
f̂
)
and the real images (Y = P [f ]) obtained from the sensors. It is the global fitness of the population

(see Aggregate solution in Figure 5):

fitness = E
(
f̂
)

= 1
w × h

∥∥∥Y − P [f̂]∥∥∥2

2
(1)

with E based on the `2-norm (also known as the Euclidean distance) between the observations (Y ) and the
data simulated

(
P
[
f̂
])

by the flies; w and h the number of pixels in Y and P
[
f̂
]
along the horizontal and

vertical axis respectively; f̂ the fly population (i.e. an estimate of the unknown f), which corresponds to
the population of flies; P is the projection operator, which projects flies to simulate an estimate of Y . The
algorithm minimises the fitness as follows:

f̂ = arg min
f∈R2

(
1

w × h

∥∥∥Y − P [f̂]∥∥∥2

2

)
(2)

E measures the discrepancies between the observations and the data simulated from flies. Lower values of E
correspond to lower errors in the data simulated by the flies, i.e. an image of the population f̂ that better
matches the observations.

The fitness of each individual fly is calculated as its (positive or negative) contribution to the collective
fitness of the population (which is called ‘marginal fitness evaluation’) [6]. It is based on the “leave-one-out-
cross-validation” principle. In practice, we measure the population’s performance twice: once taking into
account all the individuals (i.e. the global fitness); and once without the fly (i) that is being assessed. The
two values are then compared. This way, we know if a fly helps the population improve its performance or
not:

Fm(i) = E
(
f̂ − {i}

)
− E

(
f̂
)

(3)

where: Fm(i) the marginal fitness of Fly i,
(
f̂ − {i}

)
is the population without Fly i. The marginal fitness

makes it possible to detect if a fly is positively or negatively contributing to the population’s performance:

• If the local fitness is positive, then the fly improves the population;

• If it is negative, then the fly reduces the population’s performance;

• If it is null, then the fly has no impact on the population’s performance.

The population of flies is then evolved based on this marginal fitness calculation using a steady state
evolution strategy [20], in which at each loop one individual (fly) has to be eliminated and replaced with a
new fly. In the evolution process, flies are picked up randomly. We developed a specific selection process
called ‘Threshold Selection’ [21] that matches the definition of marginal fitness: If the fly’s fitness is above the
threshold, the fly will survive; otherwise, it will die and be replaced using the genetic operators (mutation,
or new blood). The selection process gradually eliminates flies with a negative fitness (see Kill bad fly in
Figure 5). As this process tends to generate more and more good flies (see Copy good fly into bad fly in
Figure 5), there are less and less ‘bad’ flies to replace: The Threshold Selection will get stuck when the
algorithm converges (‘stagnation’). This provides an excellent stopping criterion.

We are using this feature to introduce progressive multi-resolution processing [22] (see Enough flies? in
Figure 5). The evolution starts with a relatively low number of flies (see Mitosis in Figure 5). Each time
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(a) Known observations (Y = P [f ]). (b) Estimation with all the flies(
P
[
f̂
])

(NCC with (a): 99.19%).
(c) Estimation with the good flies only(

P
[
f̂+
])

(NCC with (a): 90.97%).

Figure 7: Sinograms with 185 pixels per projection, 1st angle: 0°, angular step: 1°, and last angle: 179°.
Corresponding radioactive concentrations are given in Figure 8. The geometrical relationship link between
the simulated sinogram

(
P
[
f̂
])

from the position of flies (f̂) is given in Figure 6.

stagnation is detected, evolution is paused and a mitosis process is launched. Similar to biological mitosis,
for each fly a new fly is created by mutation and added to the population: This doubles the population size.
Evolution eventually resumes after the mitosis. The whole evolution-mitosis process is stopped when after
two successive mitosis the global fitness does not improve anymore.

Once the optimisation loop ends, the solution has to be extracted and encoded (see Extract solution and
Voxelisation in Figure 5). Contrary to mainstream tomographic reconstruction algorithms whose output is
a 3-D rectilinear grid of voxels, our Fly-based approach delivers a set of 3-D points as an output. Deciding
which type of representation is more legible to the user is another story. [19] shows the advantages of a
representation based on discrete 3-D points. In order to enable a genuine (/trusty) comparison between the
outputs of the Fly algorithms and mainstream methods, we show in this paper how to do the opposite way
and build a continuous representation of the Fly output. It also makes it possible to use a multitude of image
processing and visualisation tools developed for voxelised data.

To date, only the sub-population of flies with a positive fitness
(
f̂+
)

was taken into account to build
the final estimate of the distribution of 3-D points [21]. It is sampled into voxels. Data binning, also called
bucketing, has been used so far to produce the voxel map. The 3-D space is divided into a regular grid. Each
element of the grid is called a voxel. With data binning, the value of a voxel is given by the number of flies
that it contains. In this paper, we study which flies have to be included in the final result to improve accuracy,
and how to best voxelise the fly data using implicit modelling to further improve quantitative results.

3 Extraction of the Solution
Traditionally, the answer to an optimisation problem modelled using artificial evolution is the best individual
of the whole population after convergence. Using the cooperative co-evolution scheme of the Fly algorithm,
the solution of the optimisation problem is embedded within the population [13]. We use tomographic
reconstruction as an application example of the Fly algorithm but other applications could be considered.
As a proof-of-concept, below we will consider the 2-D case only. However, note that the algorithm is actually
developed for 3-D and the notations can be extended to account for the Z-dimension. Figure 7a shows the
input data. It is the known observations stored as a sinogram. The projection operator P is designed to
project the population of flies

(
f̂
)
in order to simulate the sinogram

(
P
[
f̂
])

according to the illustration in
Figure 6. Figure 7b shows the corresponding simulated sinogram after convergence of 12,800 flies. Figure 7c
shows the sinogram generated by flies

(
f̂+
)
with a positive fitness only. We can observe that the sinogram

produced by all the flies is visually closer to the ground-thruth than the sinogram simulated by good flies

9



(a) Ground-truth (f). It is unknown. (b) Concentration estimation with all
the flies

(
f̂
)
(NCC with (a): 82.74%).

(c) Concentration estimation with the
good flies only

(
f̂+
)
(NCC with (a):

82.24%).

Figure 8: Tomographic reconstruction using 12,800 flies. Corresponding sinograms are given in Figure 7.
The geometrical relationship link between the position of flies (f̂) and the simulated sinogram (P

[
f̂
]
) is

illustrated in Figure 6.

only.
To measure the level of similarity between two images I1 and I2, we use the normalised cross-correlation

(NCC):

NCC(I1, I2) = 1
m× n

i<m∑
i=0

j<n∑
j=0

(
I1(i, j)− Ī1

) (
I2(i, j)− Ī2

)
σ1σ2

(4)

with Ī1 and Ī2 the average values of all the pixels in I1 and I2 respectively, such as

Ī = 1
m× n

i<m∑
i=0

j<n∑
j=0

[I(i, j)] (5)

and σ1 and σ2 the standard deviations of all the pixel values in I1 and I2 respectively, such as:

σ =

√√√√ 1
m× n

i<m∑
i=0

j<n∑
j=0

[
I(i, j)− Ī

]2 (6)

Due to the stochastic nature of the algorithm, 15 evolutionary reconstructions have been performed in
total to provide statistically meaningful results. The image simulated using both good and bad flies leads to
a NCC of 99.27% ±0.06%. The image simulated by the good flies only has a NCC of 91.40% ±0.75%. In
other words, keeping the marginally negative flies leads to more accurate and more stable results.

The concentration of flies is then sampled into voxels to generate the tomography volume. For data
binning, we considered a fly as a Dirac delta function (δ): The value of each voxel is incremented for each
fly it contains. Figure 8 shows the ground-truth image and the corresponding reconstructions (qualitative
validation). Figure 9 presents the NCC between the ground-truth and the reconstructed images (quantitative
validation). Both figures complement each other and show that reconstructions including flies with negative
fitness generally produce images that are visually and numerically closer to the ground-truth. In past papers,
we usually kept good flies only as it resulted into visually sharper reconstructed images.

In order to measure how sharp images are, we compute the sum of gradient magnitudes for each recon-
struction:

Sharpness(I) =
w−1∑
i=0

h−1∑
j=0
|∇I| (i, j) (7)

10



82

84

86

88

90

92

94

δ
(all the flies)

δ
(good flies only)

Metaballs
(all the flies)

Gaussian kernels
(all the flies)

N
C
C

(i
n
%
)

Figure 9: Similarity metrics (NCC) between the ground-truth (f) and the images of the fly population (f̂)
using different voxelisation methods. Due to the stochastic nature of the evolutionary reconstruction, the
reconstruction is performed 15 times for each voxelisation method to produce statistically meaningful results.

It is 4120 ±320 with good flies only; 4088 ±497 with all the flies. Removing negative flies leads to sharper
reconstructions. Note that we use other metrics below to ascertain this assumption as Eq. 7 is sensitive to
noise.

Removing all the flies with a negative fitness is wrong as the Fly algorithm is based on a co-operative
scheme. When a fly is killed, i) its contribution to the population is removed, ii) the global fitness changes,
iii) which also modifies the local fitness of every other fly. In other words, when any fly is killed, a good fly
may become bad, and vice versa, a bad fly may become good. Because of this phenomenon, we can eventually
say that bad flies have to be included in the final solution. This is why the NCC of the whole population
(including bad and good flies) is better on average than the sub-population of good flies only.

Figure 10 corresponds to profiles (also known as intensity profiles) extracted from white lines in Figure 8.
In the imaging context, a profile corresponds to a set of intensity values taken from regularly spaced points
along an arbitrary line segment within the image. It is often plotted as a 1-D function. We quantify how
steep edges are using the rise time from 10% to 90% and fall time from 90% to 10%. These metrics assess
how many pixels are required to change from the minimum to maximum values and vice versa. We limit the
values to 10% to 90% of the whole interval to account for noise. The values for each edge of every profile
are summarised in Table 1. Edges are usually steeper for the ground-truth and the reconstruction using the
good flies only. The transition from extreme values is twice as large for the reconstruction with all the flies
than the ground-truth.

In addition we check the total sum of values of each profile. It is: 29.33 for the ground-truth; 29.09
±4.34 for all the flies; 21.88 ±4.34 for the good flies only. It indicates that there is approximately as much
information in the profiles of the ground-truth and all the flies, and some information is missing in the profile
of the good flies only.

The results above can be summarised as follows:

1. Edges are much more blurred when bad flies are included.
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Figure 10: Intensity profiles corresponding to the white lines in Figures 8a, 8b and 8c.

2. Gaps appear when bad flies are not included.

It could be seen as a dilemma,

• Bad flies should be excluded to preserve edges;

• Bad flies should be included to avoid holes in the data.

In the next section of this paper, we demonstrate how to solve this dilemma: How to include bad flies to
produce a more accurate image, whilst still retaining its sharpness.

4 Voxelisation using Implicit Modelling
We saw in the previous section that the solution that is extracted should contain all the flies, including the
ones with a negative marginal fitness. Previously the contribution of each fly in the final volume was one
and it was assigned to a single voxel. It could lead to noise. It is not uncommon to post-process tomographic
images with a low-pass convolution filter. However, with our pixel/voxel-less approach it is possible to use
the internal data of the Fly algorithm, here the flies’ position, to remove the need for a smoothing filter.
Below we demonstrate how to spread this contribution over several voxels using implicit modelling.

4.1 Definition
It is a computer graphics (CG) technique used to defined the surface of geometric objects using control
primitives (e.g. points or line segments) and a few equations [5]. Blobby Molecules, Metaballs and Soft
Objects are well known types of implicit modelling techniques. In computer graphics, it consists of the steps
below:
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Table 1: Image and profile comparison between the ground-truth (Figure 8a) and the evolutionary recon-
structions (Figures 8b, 8c, 15, and 17). Numerical values in bold characters are the ones closest to the
ground-truth.

NCC Sharpness Rise time Fall time
∑

Profile
Ground-truth N/A% 9443 2.22 2.35 29.33
All the flies 82.74% 3857 4.17 3.44 32.13

Good flies only 82.24% 3931 3.15 3.08 14.34
Metaballs 89.69% 5150 3.90 3.90 31.96
Gaussian 92.79% 6303 3.57 3.36 31.63

1. Positioning control primitives (usually points or line segments) in the 3-D space;

2. Computing the corresponding density field using a given equation (e.g. Eqs. 8 or 9) (see Figures 11a
and 11c);

3. Selecting a threshold value (see Figures 11b and 11d);

4. Reconstructing the isosurface corresponding to the threshold using either raycasting [11] or marching
cubes [12] (see Figure 12).

Blobby Molecules [5] uses the electron density distribution of the hydrogen atoms (Gaussian Distribution):

f(r) = ae−br2
(8)

b is related to the standard deviation of a Gaussian curve, a is the height of the curve, and r is the distance
to the atom centre (see Figure 13).

For Metaballs [14], the density field is modelled using a piecewise function:

f(r) =


a
(

1− 3r2

b2

)
∀r ∈ [0; b/3]

3a
2
(
1− r

b

)2 ∀r ∈ [b/3; b]
0 otherwise

(9)

Figure 14 illustrates how the three sub-functions from Eq. 9 are combined to produce a smooth falling
curve. The influence of the parameters a and b are presented in Fig 13. a is a scaling factor, and b is the
maximum distance that a control primitive contributes to the field.

The value of the density field at a any point [x, y, z] is given by:

F (x, y, z) =
N∑

i=1
f(
√

(x− xi)2 + (y − yi)2 + (z − zi)2) (10)

with N the number of control points and [xi, yi, zi] the position of the i-th control point. When two particles
are close to each other, their density fields are merging in a smooth manner (see Figure 11c). When they
are sufficiently far apart, their density fields stay separated. Evaluating F (x, y, z) becomes computationally
expensive when the number of control primitives increases. To limit this effect, the field function in Eq. 9
does not make use of the exponential and it is bounded as f(r) does not contribute much to the field when
r increases. It makes density fields using Metaballs faster to compute than those with Blobby molecules.

Other field functions, such as Soft Objects [24], are of course possible but will not be investigated in this
paper. We focus here on Blobby Molecules as they rely on Gaussian kernels; and on Metaballs as they are
well known in the CG community.
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Figure 11: 3-D density field using 15 points as control primitives using Eq. 9. When the particles are
in close proximity, their density fields are joining each other smoothly without discontinuity. (a) and (c):
cross-sections of the density field at different heights. (b) and (d) corresponding isolines. See Figure 12 for
corresponding 3-D isosurfaces.

4.2 Voxelisation using Metaball as Density Field Function
The stochastic nature of the evolutionary algorithm leads to noisy PET volumes (see Figures 8 and 10).
To limit noise, i) voxelised volume could be post-processed by a low-pass filter, it would lead to a loss of
information, or ii) more flies can be used in the reconstruction, the computing time will significantly increase.

The aim of the Fly algorithm is to estimate the radioactive concentration. As an output it produces a
‘point cloud’. This point cloud can be described as a density field. Instead of the δ function, an implicit
function (f(r)) is used: Here, a fly corresponds to a particle surrounded by a density field. Using Equations 9
and 10, the influence of the particle decreases with the distance from the particle location.

Figure 15 shows the reconstruction results when Metaballs are used. The NCC with the ground-truth is
89.69% in this case. In Figure 9, we can see that the NCC with 12,800 flies used to generate a density field is
now much better than using our previous voxelisation method based on binning. Corresponding profiles are
in Figure 16. The total sum of values of the profile for metaballs is 31.76 ±3.44, which is relatively close to
the corresponding value in the ground-truth (29.33). The average rise time and fall time between 10% and
90% are both 3.9 pixels. It indicates that the sharpness around large objects is still not well recovered. It is
because a fly is spread over several voxels. As a consequence, flies leak at edges, which leads to unsharpness.
However, the overall sharpness metrics (see Eq. 7) is 4964 ±429. This is because smaller structures are
recovered.
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(a) t = 1 (b) t = 1.5 (c) t = 3

(d) t = 5 (e) t = 7 (f) t = 9

Figure 12: Implicit surfaces corresponding to the density field defined with the 15 metaballs of Figure 11.
Triangle meshes are extracted from the density field using the Marching Cubes algorithm [12] with various
threshold (t) values.

4.3 Adaptive Gaussian kernels to Exploit the Fly’s Individual Knowledge
Although the images produced using Metaballs are quantitatively much better than using a naïve approach
based on binning (e.g. noise reduction), the final output could be better if edges between areas of different
concentrations could be preserved. In this section, we will used Gaussian kernels instead of Metaballs. For
each fly, the spread of the Gaussian function will depend on the fly’s marginal fitness. This is because we
can consider this numerical value as a level of confidence in the fly’s position. We chose Gaussian kernels as
the Gaussian function is very well known and it is used for Blobby Molecules [5] (see Eq. 8).

The total contribution of every fly to the final volume is 1. When we were using (δ), each fly was embedded
into one voxel only. Using metaballs, it was spread over several voxels. In this case it is not straightforward
to normalise the fly’s contribution to account for its performance by modulating a and b in Eq. 9 depending
on Fm. It would require to compute for each fly:∫ b

0
f(r) dr ∀ a& b (11)

As an alternative, we consider each fly as a Gaussian kernel whose standard deviation is linearly propor-
tional to Fm. The greater Fm, the more accurate the fly position. The lower Fm, the lower the trust in the
fly position.

fi(r) in Eq. 10 becomes:

fi(x, y, z, σi) = 1
Vi

exp
(
−
(

(x− xi)2

2σ2
i

+ (y − yi)2

2σ2
i

+ (z − zi)2

2σ2
i

))
(12)

with
Vi = 2πσ3

i ×
√

2π (13)

and

σi =σm + (σM − σm)×
(

1− Fm(i)−min(Fm)
max(Fm)−minFm

)
(14)

where (x, y, z) is the position of the voxel in the object space, (xi, yi, zi) is the position of Fly i in the
object space, σi is the standard deviation for Fly i, σm and σM are the lowest and largest possible standard
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Figure 13: Density field control functions from Eqs. 8 and 9. Parameters a and b are used to control the
height and the width of the curve. For a given value of b, the shape of the curve can be more or less wide
depending on the density field function used.
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Figure 14: Decomposition of f(r) from Eq. 9 with a = 1 and b = 3. Eq. 9 is a piecewise function with
3 sub-functions that join each other in b/3 and b to produce a smooth falling curve.

deviations, and min(Fm) and max(Fm) the smallest and biggest marginal fitness of flies. Vi is used to ensure
that the total contribution of each fly to the final volume is 1.

We can see the corresponding reconstruction in Figure 17. In this case the NCC with the ground-truth
is 92.79%. It looks visually closer to the ground-truth than any of the previous reconstructions. Figure 9
shows that the NCC between the new reconstruction and the ground-thruth is further improved. It is 10%
higher than our previous method. The average rise time and fall time in the profile are 3.57 and 3.36 pixels
respectively (see Figure 18). The overall sharpness metrics is 5710 ±309, which is better than any of the
previous values. The total sum of values of the profile for Gaussian kernels is 32.18 ±2.36, which is also close
to the corresponding value in the ground-truth.

One of our main aims in this paper was to demonstrate that more sophisticated voxelisation in the Fly
algorithm could lead to better reconstructions. In the test-case considered so far, the final reconstruction is
closer to the ground-truth and edges have been preserved. The fly population is now considered as a density
field. The spread of Gaussian kernels is individually modulated depending on the marginal fitness of each fly.
The outcome is a resolution-free model that is truly scalable, e.g. for a given reconstruction the noise level
does not increase with the number of voxels.

5 Evaluation and Comparative Study
In this section, we evaluate our method in several ways. The first step is to compare our various voxelisation
methods in term of speed and accuracy. The second step is to reconstruct volumes using a degraded sinogram
from the same phantom to increase the problem’s complexity. We also compare our reconstructions with
those obtained with FBP and OSEM. Finally, we try the reconstruction methods on a more anatomically
realistic phantom.

Figure 19 is an illustration of the reconstructions obtained at different stages of the algorithm with the
sampling techniques presented above. It can be seen that using the local fitness to adapt the width and
height of Gaussian kernels for each fly provide the most visually realistic results and also the most accurate
results in term of NCC. Computations were performed on HPC Wales’ supercomputer using a single node
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Figure 15: Voxelisation of the fly population (f̂) using 12,800 metaballs (NCC with ground-truth: 89.69%)
(see Figure 8a for the corresponding ground-truth). The same fly population as in Figure 8b was used.
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Figure 16: Intensity profiles corresponding to the white lines in Figures 8a, 8b and 15.

with an Intel Xeon Westmere X5650 @ 2.67 GHz processor. A quick succession of mitosis happens in less
than 5 minutes, when the NCC reaches a threshold. Optimal results were obtained in 8:41 minutes using
6,400 flies (NCC of 92.76%). More processing time did not yield to better results. In fact, using 12,800 flies
(17:57 minutes) leads to results that are comparable to using 3,200 flies (4:50 minutes): NCC of 91.67% and
91.33% respectively.

Using our naive approach as in [22, 21], the NCC would have been limited to 78.27% or 84.75% only. By
exploiting the local fitness of flies to adapt Gaussian kernels, the image quality improves by about 10%. At
similar levels of quality, the computing time is significantly reduced. For example, with our initial voxelisation
method 17:57 minutes were required to obtain 82.59%. Only 2:12 minutes are needed to reach an even better
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Figure 17: Voxelisation of the fly population (f̂) using 12,800 gaussian kernels (NCC with ground-truth:
92.79%) (see Figure 8a for the corresponding ground-truth). The same fly population as in Figures 8b and 15
was used.

Table 2: NCC between the ground-truth (Figure 8a) and the reconstructions of Figure 21. Numerical values
in bold characters are the ones closest to the ground-truth.

Reconstruction type NCC
All flies 79.79% ± 1.13%

Good flies only 78.94% ± 1.26%
Metaballs 83.82% ± 1.06%
Gaussian 85.92% ± 0.60%
FBP 72.39%
OSEM 78.50%

NCC with adaptive Gaussian kernels.
To assess the algorithm in more difficult conditions, the number of angles in the sinogram is lowered

and noise is included (see Figures 20 and 21a). The initial sinogram in Figure 7a was made of 180 rows
with an angular step of 1°. The new sinogram contains 37 rows and the angular step is 5°. The sinogram
estimated by the final population of flies (Figure 20b) is almost perfect (NCC of 99.63%). Figure 21 shows the
corresponding reconstructions. Table 2 summarises the NCC values between the ground-truth (see Figure 8a)
and the reconstructions of Figure 21. It shows that the Fly algorithm with density fields, both with Metaballs
and Gaussian kernels, outperforms the traditional FBP and OSEM algorithms when the input data is of low
resolution and noisy. One of the reasons of the outstanding performance of the Fly algorithm in the presence
of noise is the stochastic nature of artificial evolution.

In Figure 22a, we use another numerical phantom that is more anatomically realistic. It corresponds to
cardiac PET data. Noise is included in the phantom (see Figure 22b) to produce the sinogram of Figure 23a.
Again, the sinogram estimated by the final population of flies (Figure 23b) is almost perfect (NCC of 99.87%).
FBP, OSEM and an evolutionary reconstruction are given in Figure 22. In this test case, the NCCs of all
the reconstructions are within less that 2% from each other (see Table 3).

6 Conclusion
In the research presented here, we addressed the complex problem of medical tomographic reconstruction
using evolutionary computing, by transposing the Fly Algorithm technique originally developed in a stereo-
vision context for robotics. In classical EAs at the end of the algorithm the best individual is extracted and
considered the solution of the optimisation problem, while all the rest of the population is discarded. The
Fly Algorithm, which is a Cooperative Co-evolution algorithm relies on a different philosophy, where each
individual is a part of the solution. An individual corresponds to a 3-D point. The whole population is a
representation of the reconstructed tomographic images. The evaluation of the performance of each individual
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Figure 18: Intensity profiles corresponding to the white lines in Figures 8a, 8b and 17.

is performed using a fitness function based on the leave-one-out-cross-validation method. If the fitness is
positive, then the fly is improving the performance of the population; if it is negative, it is deteriorating
the performance of the population. In the nuclear medicine context, the concentration of flies will be an
estimation of the radioactive concentration.

In our previous developments we were only keeping the flies with a positive fitness. Binning (also call
‘bucketing’) was used to convert this point cloud into a discrete 3-D volume made of voxels: The space was
divided in a regular 3-D grid and the voxel intensity corresponded to the number of good flies located into
it. The local fitness of flies was not exploited during the voxelisation. No or very little comparison with
traditional tomographic reconstruction algorithms in nuclear medicine was provided.

We saw in this paper that keeping the good flies only does not necessarily lead to the best quantitative
results: Retaining the flies with a negative fitness yields more accurate results. The natural output of the
Fly algorithm is a population of 3-D points. Here, we also exploit the point cloud one step further and use

Table 3: NCC between the ground-truth and the reconstructions in the case of the cardiac example (Fig-
ure 22). Numerical values in bold characters are the ones closest to the ground-truth.

Reconstruction type NCC
All flies 90.75% ± 0.92%

Good flies only 86.78% ± 1.63%
Metaballs 93.97% ± 0.68%
Gaussian 95.39% ± 0.45%
FBP 96.81%
OSEM 97.07%
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All the flies Good flies only Metaballs Gaussians

N=50
TS=00:02 NCC=4.5% NCC=4.5% NCC=6.5% NCC=4.7%

N=100
TS=00:06 NCC=16.29% NCC=16.57% NCC=23.37% NCC=17.57%

N=200
TS=00:13 NCC=16.9% NCC=17.63% NCC=24.16% NCC=22.79%

N=400
TS=00:31 NCC=27.68% NCC=30.92% NCC=40.78% NCC=41.17%

N=800
TS=00:52 NCC=42.62% NCC=54.72% NCC=64.45% NCC=68.9%

N=1600
TS=02:12 NCC=60.69% NCC=75.23% NCC=81.17% NCC=85.93%

N=3200
TS=04:50 NCC=71.95% NCC=85.78% NCC=88.52% NCC=91.67%

N=6400
TS=08:41 NCC=78.27% NCC=84.75% NCC=90.39% NCC=92.76%

N=12800
TS=17:57 NCC=79.43% NCC=82.59% NCC=88.33% NCC=91.33%

Figure 19: Evolutionary reconstructions at successive resolutions (with N the number of flies and TS the
time-stamp in minutes) using an Intel Xeon Westmere X5650 @ 2.67 GHz processor.
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(a) Observations (known data). (b) Estimation (data simulated with
all the flies) (NCC with (a): 99.63%).

Figure 20: Sinograms from Figure 21a corresponding to the hot rode phantom with a low resolution and
with noise. Images with 185 pixels per projection, 1st angle: 0°, angular step: 5°, and last angle: 175°.

(a) Actual noisy phantom
(NCC with ground-truth:
73.97%).

(b) Reconstruction with
Gaussians (NCC with
ground-truth: 85.92%).

(c) Reconstruction with
FBP (NCC with ground-
truth: 72.39%).

(d) Reconstruction with
OSEM using 18 iterations
and 2 subsets (NCC with
ground-truth: 78.50%).

Figure 21: Tomographic reconstructions of the sinogram in Figure 20a corresponding to the hot rod example
with a low number of angles and noise (see Figure 8a for the corresponding ground-truth).

implicit modelling to voxelise the data from a density field. To this end, this paper has investigated the
use of Metaballs and Gaussian kernels - where the height and width of each Gaussian is computed to take
into account the corresponding fly’s performance. During the evolution, flies are discrete (from a numerical
point of view) particle emitters: Flies are trying to replicate the observed data (what actually happened).
At the end of the reconstruction, i.e. after convergence and during the extraction of the solution, each fly
is considered as a given realisation of a stochastic process: A fly is an approximation of a random variable
and, as such, can be modelled as a density field. It is actually intuitive to prefer implicit modelling over
data binning as this is these stochastic events that we are actually trying to estimate. The marginal fitness
can be considered as a confidence level in the fly’s position. We demonstrate here that it is possible to take
advantage of the fitness of each individual after the optimisation process to modulate the spread of flies
depending on their respective performance. It improves quantitative results in all our test-cases by more
than 10% in term of NCC compared to binning. A more accurate reconstruction is also achieved using less
computational power. In this paper, our reconstructions are also compared with those of FBP and OSEM,
which are traditionally used in nuclear medicine. Results show that density fields using Gaussian kernels lead
to similar, if not better, reconstructions depending on the input data.

Future work will include testing our methods using more clinically realistic data and investigating the use
of the latest advances in signal processing such as compressed sensing (also known as compressive sensing,
compressive sampling, or sparse sampling).
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(a) Ground-truth. (b) Actual noisy phantom (NCC with
(a): 91.12%).

(c) Binning with all the flies (NCC
with (a): 91.44%).

(d) Reconstruction with Gaussians
(NCC with (a): 96.14%).

(e) Reconstruction with FBP (NCC
with (a): 96.81%).

(f) Reconstruction with OSEM using
7 iterations and 4 subsets (NCC with
(a): 97.07%).

Figure 22: Tomographic reconstructions of the sinogram in Figure 23a corresponding to the cardiac example,
i.e. a more anatomically realistic sinogram with noise.

Acronyms
AE artificial evolution.

CBCT cone-beam computed tomography.

CCEA Cooperative Co-evolution algorithm.

CG computer graphics.

CoCo Cooperative Co-evolution.

CT computed tomography.

EA evolutionary algorithm.

EM expectation-maximisation.

ET emission tomography.

FBP filtered backprojection.
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(a) Observations (known data). (b) Estimation (data simulated with all the flies) (NCC
with (a): 99.87%).

Figure 23: Sinograms of the cardiac example from Figure 22a. Images with 185 pixels per projection, 1st

angle: 0°, angular step: 1°, and last angle: 179°

LUT lookup table.

MLEM maximum-likelihood expectation-maximisation.

NCC normalised cross-correlation.

OSEM ordered-subset expectation-maximisation.

PET positron emission tomography.

PSO particle swarm optimisation.

SNR signal-to-noise ratio.

SPECT single-photon emission computed tomography.

voxel volume element.
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