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Abstract 

Mapping ecosystem services (ES) over large scales is important for environmental monitoring but is often 

prohibitively expensive and difficult.  We test a hybrid, low-cost method of mapping ES indicators over large scales 

in Pará State, Brazil.  Four ES indicators (vegetation carbon stocks, biodiversity index, soil chemical quality index 
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and rates of water infiltration into soil) were measured in the field and then summarized spatially for regional land-

cover classes derived from satellite imagery.  The regionally mapped ES values correlated strongly with independent 

and local measures of ES.  For example, regional estimates of the vegetation carbon stocks are strongly correlated 

with actual measures derived from field samples and validation data (significant anova test - p-value = 4.51e-9) and 

differed on average by only 20 Mg/ha from the field data. Our spatially-nested approach provides reliable and 

accurate maps of ES at both local and regional scales.  Local maps account for the specificities of an area while 

regional maps provide an accurate generalization of a ES’ state.  Such up-scaling methods infuse large-scale ES 

maps with localized data and enable the estimation of uncertainty of at regional scales.  Our approach is first step 

towards the spatial characterization of ES at large and potentially global scales.   

 

 

Keywords: Ecosystem services mapping; Up-scaling; Remote sensing; Soil chemical quality; 

Soil infiltrability; Biodiversity; Carbon stocks; Brazilian Amazon 

  



1. Introduction 
 
Ecosystem services (ES) has become a key concept in environmental governance following the 
Millennium Ecosystem Assessment (MEA) in 2005 (Millennium Ecosystem Assessment 2005; 
Andriamahefazafy et al. 2012; Roche et al. 2016).  Quantifying and mapping ES are increasingly 
important goals of environmental decision making seeking to conserve and enhance ES (Daily 
and Matson 2008), as by targeting policy in strategic geographical areas or evaluating potential 
ES impacts of alternative policies (European Commission and Directorate-General for the 
Environment 2013; McInerny et al. 2014; Grêt-Regamey et al. 2015).  To this end, decision 
makers need reliable and accurate spatial information on the state of various ES at different 
scales.  Local-scale maps of ES provision can be relatively reliable because they can be based on 
detailed field observations of ecosystem services. Such maps can help facilitate knowledge 
transfers amongst ES stakeholders, as by facilitating dialogue over the factors and implications of 
spatial patterns of ES supply (Pagella and Sinclair 2014).  The spatial heterogeneity of 
environmental factors underlying ES provision, such as land use or soil type, makes complex the 
extrapolation of local ES patterns to regional scales, particularly as the large-scale spatial 
representations of environmental parameters inevitably entail a diminishment of fidelity 
(Wilbanks, 2006).  However, regional ES maps are required to inform state, national, and global 
ES targets and environmental-management policies, e.g., The Convention on Biological 
Diversity.  To clarify the uncertainty and utility of regional-scale maps of ES provision, we 
elaborate and validate a cost-effective regional approach to ES mapping in Brazil. 
 
The spatialization of ES at large scales leads to a loss of information due to three main factors 
(Wilbanks 2006). First, even if ES are manifest at regional scales (Hein et al. 2006), underlying 
biophysical processes rely heavily on local processes and practices.  Therefore, there is a 
mismatch between the local scale of the biophysical processes that provide ES and the regional 
scale of representation, necessitating an approximation with a potentially unknown error 
component.  Such error may arise equally from a coarse resolution of regional observation, as 
from regional generalizations of finer-resolution observations.  For example, the use of satellite 
imagery with 1-km² resolution may underestimate ES such as the those related to biodiversity 
conservation insofar as this approach may discount forest fragmentation and/or linear habitats 
such as along rivers and wetlands (Di Sabatino et al. 2013).  Second, the larger the territory of 
interest, the more difficult and expensive it is to obtain representative, local-scale samples of ES 
provision over its extent (Sant et al. 2014).  Larger territories may therefore rely more on limited 
local sample data or, alternatively, on coarser regional data, incurring approximation errors in 
both instances, as noted above.  Third, ES mapping approaches tend to greatly simplify 
underlying local specificities that in turn distort regional depictions of ES, often without 
understanding of the underlying influencing factors (Fisher et al. 2011).  Further, such regional 
depictions of ES are rarely validated – only 7% of regional ES estimates were validated 
according to our review of the literature of 104 peer-reviewed studies entailing regional ES 
mapping published between 1990 and 2016.  These studies were identified within the Web of 



Science database via search criteria requiring the presentation of at least one ES map and that 
keywords “mapping”, “maps” or “ecosystem services” appear in the title, abstract or text of the 
study. According to this review, 85% present regional ES maps encompassed study sites of at 
least 250 km².    
 
‘Up-scaling’ processes that transfer existing information from local to regional scales (Pelgrum 
2000; Wu and Li 2009) offer a relatively unexplored alternative approach to regional-scale ES 
mapping.  Up-scaling approaches promise relatively low costs and straightforward 
implementation.  Their promise has been highlighted accordingly (Liang 2004; Liu et al. 2016), 
especially in regards to facilitating environmental management and decision-making (Bierkens, 
Finke, and Willigeb 2000; Finke, Bierkens, and Willigen 2002; Li et al. 2016).  The approach 
offers several advantages for regional environmental assessments (Lacoste 1976), including a 
comprehensive survey of the region via nested, spatially- variable ES estimates; reduced 
mismatch between the scale of biophysical processes underlying ES and the scale at which 
decisions concerning ES are made; cost-effectiveness; and the possibility of validating regional 
ES representations.  Moreover, one output of up-scaling approach is available information at 
multiple spatial scales.  Yet, the interests of possessing such information are often highlighted 
(Millennium Ecosystem Assessment 2005; van Jaarsveld et al. 2005).  The fidelity of any up-
scaling approach ultimately depends on the density and quality of local data but also critically on 
the spatial variability of ES supply.   
 
Here we outline a methodology that describe potential ES supply at the regional scale despite the 
limited availability of local-scale ES data.  Specifically, for Pará State, Brazil, we elaborate and 
validate an ‘up-scaling’ approach that extrapolates information on ES supply from local to 
regional scales in order to map and quantify ES regionally.  Section two outlines our 
methodology.  Section three assesses our approach by comparing regional ES estimates with 
independent, local measures across Pará.  It especially presents a three-fold validation of our 
regional maps: a field data-based validation, a local map-based validation and a calculation and 
map of the variability of ES values within the land-cover classes. Section four discusses the 
implications of our results. 
 
 

2. Methodology 
 
2.1 Overview 
We tested the reliability of an up-scaling approach by comparing its regional-scale estimates of 
ES potential supply against independent local ES measures.  We based our approach on the land-
cover classification because the MEA (2005) assured that land-cover changes greatly impact ES 
supply in general.  Previous studies confirmed this tendency for the ES that are studied in this 
paper (Le Clec’h et al. 2017). 
 



Our methodology is characterized by three major steps (Figure 1) based on field measures of four 
key indicators of ES supply (forest carbon stocks [ES of climate regulation], rates of water 
infiltration into soil [water regulation], soil chemical quality index [soil conservation], and 
species richness index [biodiversity]) from 135 plots across Pará State, Brazil (within AMAZ 
research programs).  First, we spatially summarized (average and standard deviation) the plot-
level ES data according to coincident land-cover classes derived from localized Landsat imagery 
classifications.  Second, we integrated these summary values (average value for the ES 
assessment and standard deviation for the uncertainty assessment) with a regional MODIS land-
cover classification.  Local field measures of the four ES were thus fused with consistent local 
and regional land-cover classifications to spatially extrapolate field measures to the regional 
level.  Third, we validated the resultant regional ES maps by comparing their values to 
independent as well as locally-predicted ES datasets. 
 
Figure 1 
 
2.2 Study Context 
 
Pará State of the Brazilian Amazon forest is a global hotspot of ES provision (Fearnside 2005) 
(Figure 2).  Pará spans 1.25 million km2, which are partly covered by tropical forest.  Extensive 
forests, high biodiversity and rapid deforestation qualify Pará as indicative of contexts in which 
rapid, large-scale ES surveys are most urgently required. Forests in Pará have experienced rapid 
deforestation over recent decades, mainly for timber and cattle (Fearnside 2008; Godar, Tizado, 
and Pokorny 2012), with 1887 km2 deforested in 2014 (INPE Prodes 2014).  While deforestation 
has been slowing, the area deforested in Pará in 2013 still accounted for almost half of total 
deforestation in Brazil (INPE Prodes 2014). 
 
Figure 2 
 
Within Pará we undertook field measures of ES within three study sites indicative of regional 
variations in socio-economics, deforestation histories, and ES change (Figure 2).  The first site, 
Maçaranduba, covers 220 km² in the municipality of Nova Ipixuna.  Deforestation there began 
relatively early in the 1970s.  Although largely deforested, its remaining forest is relatively well 
preserved.  The second site, Pacajá, is located on one of the major arterial ‘fishbone’ roads 
(Traverssão 338 South) of the Trans-Amazon highway.  It spans 175 km² and is 60 km from 
Pacajá urban center of Pacajá.  Spontaneous agricultural colonization commenced there in 1990 
and converted the landscape to pasture as well as annual and perennial crops.  Forest cover 
occupied 63% of this site as of 2007.  The third site, Palmares II, is an assentamento (settlement) 
of 160 km² near the Carajas iron mine.  This site, emblematic of the agrarian reform, was 
established following conflict between Landless Workers’ Movement, the federal government 
and the Vale mining company.  After the land was conceded to the workers it was distributed as 



lots, provoking considerable forest fragmentation.  In 2007, forest cover occupied 23% of the 
site.   
 
As described below, field data from these three sites were sampled to either calibrate or validate 
our regional ES estimates.  Additional validation data from a fourth site, Benfica, was also used.  
This site is geographically very close to Maçaranduba.  It belongs to the municipio of Itupiranga, 
70 km from the Transamazonian highway.  Its climate and vegetation are comparable to those of 
the other sites.  Its landscape, composed of a mosaic of forests and pastures, is mostly grazed 
(Coelho, Miranda, and Mitja 2012). 
 
2.3 Ecosystem Service Data and Regional Mapping 
2.3.1 Field Data: Indicators of Ecosystem Services Potential Supply 
Field data on the potential provision of the four key ES were collected over 135 sample plots 
between 2008 and 2011 in the four sites described previously.  These sample plots spanned 27 
farms, with nine farms in each of the three study sites.  In each farm five sample plots were 
spaced in equal distances along a transect corresponding either to the longest diagonal of the farm 
or to a north-south axis.  Transects intersected all major land covers in the region, including 
disturbed and intact forests, and had an average length of 1 km (min= 815m, max = 1163 and sd 
= 76.8m). 
 
Each sample plot entailed measures of four biophysical measures indicative of ES provision 
(Table 1).  Measures of vegetation carbon stock, soil water infiltration rate, soil chemical 
composition, and species richness are respectively taken as indicative of atmospheric carbon 
density (historic sequestration), water provision, soil conservation, and biodiversity.  The 
indicators were calculated as follows (for more details, see Grimaldi et al. (2014): 
 
Vegetation Carbon Stocks: Aboveground dry plant biomass of trees [BT: diameter at breast 
height (dbh) ≥ 10 cm)] and bushes (BB: dbh < 10 cm and height > 2 m) was estimated by 
applying allometric equations for forests (Gerwing 2002; Higuchi et al. 1998) and fallows 
(Nelson et al. 1999) after identifying species and measuring the diameter and height of 
individuals on plots of 50×10 m2 and 50×5 m2, respectively. Water content was calculated at 
70oC with corresponding biomass aliquots (all individuals with dbh < 5 cm), or otherwise (dbh > 
5 cm) applying the factor 0.603 according to Higuchi et al. (1998).  In the absence of carbon 
analysis of plant samples, carbon mass was estimated as 50% of dry plant biomass (Markewitz et 
al. 2004). 
 
Soil Water Infiltration Rate: Using the infiltration Beerkan test (Lassabatere et al. 2006), we 
calculated the infiltration rate of a water volume of 250 cm3 poured into a ring of 20 cm diameter 
inserted 1 cm into the soil surface.  This infiltration test was repeated four times and the average 
value was taken as the datum for analysis. 
 



Soil Chemical Quality: Soil chemical properties of the 0-10 cm soil horizon were determined as a 
composite from two pits per plot.  Eight chemical properties were surveyed : pH, H2O, cation 
exchange capacity (CEC) at soil pH, exchangeable Al3+, Ca2+, Mg2+ and K+, exchangeable NH4

+ 
and extractable phosphorus using standard methods (Pansu and Gautheyrou 2006).  A normalized 
PCA implemented on these properties allowed the determination of a soil chemical quality index 
as the first principal component (Grimaldi et al. 2014; Marichal et al. 2014; Velasquez, Lavelle, 
and Andrade 2007). 
 
Species Richness: At each plot we recorded the number of species for 12 different groups of 
fauna and flora (moths, birds, bees, fruit flies, ground spiders, ants, termites, earthworms, other 
soil macro-invertebrates, and vegetation at lower, middle and upper canopy strata).  The species 
richness of each group was normalized as a proportion of the highest richness observed for that 
group across the 135 sample plots.  A generalized index of species richness per plot was in turn 
calculated as the mean of the normalized proportions across the 12 groups.  The generalized 
index ranges from 0 (species richness in each group is nil) to 1 (species richness in each group is 
the maximum observed).    
 
Table 1 
 
2.3.2 Remote-Sensing Data: Extrapolations of Field Measures to the Regional Scale 
To map ES regionally we employed a two-stage spatial extrapolation uniting the plot-level 
measures with local, high-resolution Landsat satellite imagery and subsequently with regional, 
moderate-resolution MODIS satellite imagery (Figure 1).  The local high-resolution imagery was 
used in a previous study to map the four ES indicators considered  here (Le Clec'h et al. 2017).  
In the first stage, we measured the average and standard deviation of plot-level ES measures for 
our three main field sites (Maçaranbuda, Pacajá and Palmares II) according to coincident land-
cover classes of three localized, Landsat TM classifications (30-m resolution).  The Landsat 
classifications were produced by supervised maximum-likelihood classifications of six land-
cover classes (forest, burned forest, fallow lands, grasslands with trees, clean grasslands and bare 
soils) as of 2007.  Training data used for the supervised classification were sampled during field 
campaigns.  Landsat images were radiometrically and geometrically corrected prior to 
classification to ensure comparability across Para.   
 
In the second stage, we transferred ES measures for the Landsat land-cover classes to 
corresponding land-cover classes of the regional moderate-resolution MODIS classification for 
2007 spanning Pará.  Our regional classification was based on MODIS Enhanced Vegetation 
Index (EVI) 16-day composite images (MOD13Q1c5).  To reduce noise associated with 
atmospheric effects, MODIS EVI images for 2006 and 2007 were averaged (Pennec et al., 2011).  
An unsupervised ISODATA classification method (Ball and Hall, 1965) was applied to the 
averaged EVI data, resulting in three general land-cover classes (forest; mosaics dominated by 
degraded forests and secondary vegetation, hereafter termed transition areas; and mosaics 



dominated by agricultural areas hereafter termed agricultural areas).  Other land-cover classes 
could not be readily discriminated since their spectral signals were insufficiently distinct or their 
spatial footprints too minor.  In addition, Pará State has more land-cover types than our local field 
study sites (e.g. savannas or wetlands). Thus, our regional classification present also includes four 
additional, relatively spatially-confined mosaic land-cover classes for which we cannot associate 
an ES value, namely wetlands, hydromorphic soils and mosaics of low vegetation and bare soil.  
The six classes of the Landsat classification were collapsed into the three classes of interest of the 
MODIS classification. Landsat forest areas were collapsed into forest areas. Landsat burned 
forests and fallow lands were collapsed into “transition areas”. Pastures with trees, cleaned 
pastures and bare soils that were discriminated with Landsat were collapsed into “agricultural 
areas”. The ES values of the original Landsat classes were averaged for the corresponding 
MODIS classes, resulting in our regional ES maps. 
 
The MODIS land-cover classification was tested through visual and statistical analyses of 150 
random points at which the agreement between this classification and the three local (Landsat) 
land-cover maps was assessed.  A chi-square test of agreement was significant (χ² = 266 and p-
value < 0.001), as corroborated a ‘class confusion matrix’ integrating the MODIS and Landsat 
classifications (Table 2). 
 
Table 2 
 
2.4 Regional ES Map Validation  
We assessed the regional maps of our four key ES by comparing their ultimate regional values 
against independent as well as locally-predicted, spatially-explicit measures of ES provision.  
Three such comparisons were undertaken, detailed below. 
 
In the first, we compared the regionally-mapped ES values to those of various, independent 
datasets of ES potential supply (Table 3).  Specifically, for vegetation carbon stocks we evaluated 
the agreement between our regional values and the estimated values of Baccini et al. (2012), 
which entailed locally-intensive LiDAR observations linked with field measurements.  For 
regional soil water infiltration rates and our biodiversity index, we randomly split our 135 sample 
plots into training and validation datasets.  The training dataset was used to generate regional ES 
maps as detailed above, while the validation dataset was used to evaluate their agreement with 
locally-observed values.  For regional soil chemical quality index, we compared our regionally-
mapped values to 47 sample plots from our fourth field site of Benfica, Pará (Figure 2), which 
was not used to generate the regional ES estimates. 
 
Table 3 
 
In the second comparison, we compared our regional ES estimates to maps of locally-modelled  
values of the corresponding ES indicators for the Maçaranduba, Pacajá, and Palmares II sites (Le 



Clec'h et al. 2017). These local ES values were predicted using competitive statistical models that 
linked the sample ES data from the 135 plots with various high-resolution remote-sensing data, 
e.g., vegetation cover, topography.  In this previous study, we based the validation of the map on 
a confrontation between the ES observed values (135 sampling points) and the values predicted 
by the regression models. We thus used the R2 to assess the goodness of fit of our models. To 
observe the agreement between these locally-predicted values and our regional estimates of ES 
supply, we randomly selected 180 MODIS pixels from across the three study sites, compared 
their regional ES value to the locally-predicted values (Le Clec’h et al. (2017), and calculated a 
Chi-Square statistic to test for significant differences between them. 
 
Finally, we calculated the variability of plot-level measures of each of the four ES within the 
regional land-cover classes.  To do so, for each regional land-cover class, we calculated the 
standard deviation of all coincident plot-level ES measures.  Since, the standard deviation value 
of a metric is dependent on its unit of measure, we standardized the standard deviation to 
facilitate comparison of the variability amongst the four ES indicators.  This analysis indicates 
the variability and thus the predictive uncertainty associated with the regional ES maps. 
 
3. Results 
3.1 Validation of Regional ES Maps Against Independent ES Datasets 
Comparisons of the regionally-estimated ES values against the independent datasets (Table 3) are 
favourable but mixed.  Of the four ES indicators, three (vegetation carbon stocks, soil water 
infiltration rates, and the soil chemical quality index) show similar trends between the regionally-
estimated values and values from the independent validation datasets (Figure 3).  For these three 
ES indicators, average discrepancies with these validation data are 83 Mg/ha, 66 mm/h and 0.1, 
respectively.  In contrast, regional estimates for the species richness ES indicator validated poorly 
against the local, independent measures (Figure 3).  The separation of the species richness index 
values between our regional ‘transition’ and ‘forest’ land-cover classes was much less for the 
regional estimates than for the plot-level data (Figure 3). For all four ES indicators, separate 
ANOVA tests confirmed significant differences (p<0.001) between the means and standard 
deviations amongst our regional land-cover classes. 
 
Figure 3 
 

3.2 Validation of Regional ES Maps Against Local ES Maps 
For the same three of our four ES indicators (vegetation carbon stocks, soil water infiltration 
rates, and the soil chemical quality index), we also observed a strong agreement between 
regionally-estimated ES values and those predicted locally according to models referencing plot-
level data (Le Clec'h et al. (2017) – χ2 test, p < 0.01 - Figure 4.a).  As for the comparisons 
between regionally-estimated ES values and our independent ES measures of Figure 3, estimates 
for the species richness index exhibited a lack of consistency between the regional and local maps 
(visual interpretation of Figure 4.b.).  The uncertainty of locally-predicted ES values resulting 



field measures and models present a degree of uncertainty to these comparisons.  This uncertainty 
is approximated by the R2 coefficient of the accuracy of locally-predicted ES values, which varies 
amongst the ES indicators.  For example, the locally-predicted soil water infiltration rates have a 
R² of 0.57, compared to vegetation carbon stocks map at R² = 0.75.  Nonetheless, as the R2 value 
for the species richness index is reasonably high, at 0.71, the assertion that the regional estimates 
of species richness capture locally-modelled patterns poorly can be made with some confidence. 
 
 
Despite the agreement between the ES maps between regional and local scales, the regional maps 
inevitably entail a simplification of ES patterns compared to local-scale maps (Figures 4; Le 
Clec'h et al. 2017).  The number of regionally-estimated ES values (three per ES indicator) is 
less, and sometimes much less, than for locally-predicted values (five in the case of the indicator 
with the smallest number - Figures 4).  Correspondingly, for three ES indicators (species richness 
index, soil water infiltration rates, and soil chemical quality index), the range of regional values is 
also less than at the local scale, largely because the maximal regional values are ‘averaged down’ 
at the expense of local specificities, including those specific to individual field sites (maximal 
regional values respectively 24%, 25% and 41% lower than the maximal local values - Figures 3 
and 4).  Therefore, although the magnitudes of regionally-estimated values correspond with the 
locally-predicted values on a class-by-class basis (Figures 4), there remain discrepancies not only 
between these class values but also and perhaps especially between locally-extreme and 
regionally-observed values.  For all ES indicators, differences between regional values and 
locally-predicted values were significant (ANOVA tests).  Hence, regionally-estimated values 
should be considered as orders of magnitude, not as precise measures. 
 
Figure 4.a 
 
 
Figure 4.b 
 
According these preliminary results, we mapped three out of the four ES indicators (vegetation 
carbon stocks, soil water infiltration rates, the soil chemical quality index) across the entire state 
of Pará (Figures 5.a. and 5b.).  The distribution of ES values across the regional land-cover 
classes is generally as expected, with ES values typically highest for forest, intermediate for 
transition areas, and lowest for grasslands.  However, it is noteworthy that both local and regional 
estimates of the soil quality index reflect an inverse pattern (Figure 3, 5b) since soils are 
chemically poorer under forest cover and become richer when area is deforested (Grimaldi et al. 
2014).   
  
Figure 5.a. 
 
Figure 5.b. 



 
4. Discussion  
We mapped three ES indicators (vegetation carbon stocks, rates of water infiltration into soil and 
soil chemical quality) at a local and a regional spatial scale to assess the reliability of regional ES 
mapping approaches extrapolating localized ES field data.  In general, our results cautiously 
recommend this approach to regional ES mapping, finding for example a strong agreement 
between regionally-estimated, locally-predicted and independent measures of ES for three of our 
four key ES indicators (Figures 3, 4 and 5).  Up-scaling approaches such as the one outlined here 
offer ready solutions to many of the issues that typically beset large-scale spatially-explicit 
estimates of environmental values.  Firstly, such approaches afford opportunity of enhancing 
regional-scale representations of ES spatial distributions via local-scale maps capturing local 
variations in ES supply.  Second, such approaches enable tests of the reliability of regional ES 
estimates using statistical analyses linked to local data.  Thus, our regional estimates stand in 
contrast to other common, multi-scale approaches such as InVEST, based on globally-calibrated 
data of dubious relevance for any given regional application (Swetnam et al. 2011).   
 
However, our results also highlight a markedly unequal amenity towards reliable regional 
extrapolation amongst our ES indicators. This unequal amenity is attributable to two factors.  On 
the one hand, for our species richness index poor agreement was observed between regional ES 
estimates and the independent local data (Figure 3). This suggests a loss of fidelity of ES 
representations as they were scaled to regional levels; however, the simple possibility of 
incompatibility of our regional data and the independent local estimates cannot be discounted.  
On the other hand, unequal amenity is also reflected in the locally-predicted ES values, as 
indicated by the considerably greater reliability of ES values for carbon stock (R2=0.75) and soil 
chemical quality index (R2=0.67) than for soil water infiltration (R2=0.57). Accordingly, our 
validation of regional-scale map of soil water infiltration rates using locally-predicted-ES 
estimates may be relatively less reliable.  This highlights how the best practice for up-scaling 
approaches such as ours must entail not only validations of the regional estimates, but also 
assessments of the local-scale ES data by which regional estimates are derived and validated.  
 
One strength of our study rely on the three-fold validation of our regional maps (Table 4).  The 
field data-based validation allows us to get information about the general accuracy of our 
regional assessment.  The local map-based validation allows us relies on a visual verification of 
the agreement, in terms of values and spatial structures, of our regional maps with local maps 
based on more data and on data-driven methods.  Finally, the calculation and map of the 
variability (standard deviation) highlights the needs for further research, for it underlines the 
limitation of the use of our land-cover data to extrapolate ES values.  As this last validation only 
presents the variability of each ES indicator within the land-cover classes and do not give 
information about the reliability of the map, it has to be completed with an assessment of the 
general accuracy. 
 



One limitation of our study, underlined by the variable ability to scale-up field and locally-
estimated ES data, is attributable to the presumed relationship between each indicator and land-
use change.  Upon summarizing local ES variations by coincident land-cover classes, first locally 
and then regionally, we implicitly but necessarily conflated variations in local ES supply with 
spatial variations in land-cover classes.  Although land-cover change may underlie spatial 
variations for some ES indicators, it is possible, even likely, that this is not the case for other ES 
indicators. Variations in soil chemical quality index or soil water infiltration into soil rates are for 
example not particularly related to specific land-cover classes, at least in our study area.  The 
species richness index, while impacted by land-cover change, is also influenced by other, related 
factors, such as landscape fragmentation.  Soil carbon stocks were not meaningfully influenced 
by land cover changes in our study area (Le Clec'h et al. 2017) and would therefore prove very 
challenging to up-scale along lines explored here.   
 
Moreover, a thematically detailed land cover classification is difficult to obtain at the regional 
level, provoking simplifications of the regional landscape and, ultimately, regional ES 
distributions.  Tropical forest cover, for example, is highly  heterogeneous  in terms of structure, 
composition, and operation (Tuomisto, Linna, and Kalliola 1994; Guitet, Brunaux, et al. 2014).  
This is particularly true where anthropogenic forest cover such as woodlots, plantations, and 
fallows are conflated within a general ‘forest’ class, as they are by most global-scale land-cover 
classifications whose use might be attractive in the absence of regional land-cover maps.  As a 
case in point, the GlobCover land-cover classification generically depicts much of Sumatra as 
‘closed broadleafed forest’ (Bontemps et al. 2011), whereas much, perhaps most, of this cover is 
agroforestry, oil palm, or forest-agricultural mosaics not typically understood as ‘forest’ in the 
ecological sense (Dong et al. 2012; Miettinen, Shi, and Liew 2016).  Such simplifications must be 
born in mind for any consideration of up-scaling approaches of the sort described here. 
Notwithstanding the unequal capacity to access reliable local spatial data for several ES 
indicators, at least three out of the four ES indicators considered here are coherent between 
regional and local scales.    
 
We proposed a low-cost, reproducible method to map various ES indicators at regional scales.  
Our approach is a first step towards the systematic spatial characterization of ES at the regional 
scale.  This was however only possible due to the ready availability of local-scale ES data to the 
authors.  The replication and improvement of our approach in Brazil and elsewhere will 
ultimately depend on the support of scientific communities in providing localized, ideally 
systematically-gathered ES data.  For instance, including more study sites with additional land-
cover types such as wetland or savannas and their associated ES values could help to improve our 
current maps.  Also, a cooperation with as geomorphologists could help to data on forest diversity 
(Guitet et al. 2013; Guitet, Sabatier, et al. 2014).  Such collaboration should help to refine the 
land-cover typology and improve our understanding of ES supply.  Some international networks 
already monitor certain ES indicators, such as biomass (e.g., TmFO network, which monitors 
biomass change globally via 28 sites) or stored carbon (e.g., TEAM network, which estimates 



forest carbon for tropical forests).  However, the large-scale monitoring of most ES indicators is 
arguably highly deficient (Skidmore et al. 2015).  Such cooperation will almost certainly require 
a coordinating role by scientific institutions, such as herbaria or geographical societies, having 
interests in both local field work on the one hand and regional environmental change on the other. 
 
 
5. Conclusion 
 
Our study addresses four indicators of ES regulation and support in the Brazilian Amazon. This 
area is a rich ES hotspot but deforestation and forest degradation dynamics dramatically threaten 
most of these ES.  To improve ES monitoring, protection, and management, maps of ES 
indicators at different spatial scales are required. Up-scaling approaches as presented here can 
bridge the gap between local and regional spatial scales, facilitating ES assessments at 
municipality or state levels.  They may support conservation actions by efficiently identifying 
areas of diminishing ES provision, as well as by highlighting covariations amongst ES indicators. 
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Table 1. Ecosystem services metrics used in this study 

ES Indicator 
Unit or 

measurement range 
Ecosystem service

Summary Statistics from Field Sites 

Minimum Maximum Mean 
Standard 
deviation 

Vegetation 
carbon stocks 

Mg.ha-1 Carbon density 0 576 96 131 

Soil water 
infiltration rate 

mm.h-1 
Water cycle 

regulation and soil-
erosion control 

17 8862 1797 1888 

Soil chemical 
quality index 

0.1 to 1 
Soil stabilization 
and agricultural 

production 
0.1 1 0.4 0.16 

Species Richness 0.1 to 1 
Biodiversity 

maintenance and 
conservation 

0.2 0.6 0.4 0.09 

Note: Summary statistics are for the three main field sites (Maçaranbuda, Pacajá and Palmares II)  
 
 
Table 2: Confusion matrix of local (Landsat TM) and regional (MODIS) land-cover 
classifications.  

MODIS   
Landsat TM Forest Transition area Agricultural area 
Forest 25 0 0 
Burned forest 0 27 0 
Fallow land 0 31 0 
Pasture with trees 0 0 19 
Clean pasture 0 0 17 
Bare soil 0 0 14 

Note: values in the table represent 150 random points 
 
Table 3: Independent measures of local ES provision used for validating regional ES estimates.       

Regional ES indicator Independent dataset 

Vegetation carbon stocks  
Estimates by Baccini et al. (2012) combining co-located field measurements, 
LiDAR observations, and MODIS imagery. 

Rates of water infiltration 
into the soil  

Cross validation of plot-level data for three main field sites (Maçaranduba, 
Pacajá and Palmares II), with a random 90% of plots generating regional 
estimates (training data) and 10% serving as the plot-level validation dataset. 

Soil chemical quality index 
Field data (Benfica, Pará).  The sampling procedures were exactly the same 
than for the three other sites. N= plots. 

Biodiversity index  
Cross validation of plot-level data for three main field sites (Maçaranduba, 
Pacajá and Palmares II), with a random 90% of plots generating regional 
estimates (training data) and 10% serving as the plot-level validation dataset. 

 



 
Table 4. Summary of advantages and disadvantages of each of the validation approaches used in 

this study 

Validation approach Advantages Disadvantages 

Field data-based validation 
Information about the general accuracy of 
the map 

No detailed information about the 
sources of uncertainties 

Local map-based validation 
Visual validation of the spatial structure 
and overview of its simplification 

Validation based on modeled data 

Validation based on the 
variability within the land-cover 

classes 

Spatial information about the uncertainty 
that should help to direct further research 
(e.g. highlights needs for new 
extrapolation data, more field data) 

Disconnected from the general 
accuracy of the map. 

 
  



 
Figure 1.  The three-stage methodological approach of for the regional representation of ES indicators. The local 
maps and the methodology used to produced them are presented in Le Clec’h et al. 2017 
  



 

 
Figure 2.  The State of Pará and local research sites.  A: Pará State and its three local sites of Maçaranduba (MC), 
Pacajá (PC) and Palmares II (PR) and additional validation site, Benfica (BF).  B: Land cover in in 2007 by site 
(Landsat TM).  
  



 
Figure 3 – Agreement between the regional ES values and those of the independent datasets.  The values for the 
validation data are displayed (y-axes) against the regional ES estimates for each class (x-axes).  The center of each 
circle corresponds to the mean values, for the validation data and regional estimates separately per regional land 
cover class.  The circles around each mean correspond to the variability of the validation data within the land cover 
classes.  The size of a circle is proportional to the standard deviation.  The outer circles describe the range of two 
standard deviations.    
  



 
Figure 4.a.  (A) Zoom of vegetation carbon stocks in Maçaranduba from the regional map based on MODIS land 
cover classification and (B) map resulting from the local model. Because Pará State has more land cover types than 
the local study sites (e.g. savannas or wetlands), we could not associate an ES value to the following land-cover 
types: mosaics of low vegetation and mosaics of bare soil, hydromorphic soils or wetlands.   
  



 

 
Figure 4.b (A) Zoom of the species richness index in Maçaranduba according to regional estimates based on MODIS 
land cover classification and (B) and locally-predicted estimates according to the local model. 
  



 
 
 

 
Figure 5.a. (A). Regionally-estimated vegetation carbon stocks in 2007 in Pará State, and (B). Variability 
(standardized standard deviation) of regionally-estimated vegetation carbon stocks within MODIS land-cover 
classes. A higher standard deviation means that vegetation carbon stocks are relatively variable within a land-cover 
class. 
  



 
 

Figure 5.b. A. Regionally-estimated of soil water infiltration rate in 2007 in Pará State B. Regionally-estimated soil 
chemical quality index in 2007 in Pará State 
 


