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Designing cropping systems that are well-adapted to water-limited conditions is one challenge of adapting
agriculture to climate change. It requires estimating impacts of current and future cropping practices on crop
water use and water resource availability in agricultural areas. Crop models such as AqYield are useful tools for
evaluating effects of climate, soil and crop practices on evapotranspiration (ET) and drainage that directly
impact soil available water (AW). AqYield is a simple model with few input data that has already been sa-
tisfactory evaluated for spring crops in southwestern France. Our main objective was to evaluate the ability of
AqYield to predict components of soil water balance at the field level for crop rotations. First, we calibrated and
evaluated AqYield predictions for winter wheat in France under a wide range of contrasting climatic and soil
conditions. Fifty experimental situations (site× year×management) were chosen for calibration. AqYield was
evaluated (i) for winter wheat in nine experimental situations, using daily drainage and ET data, and (ii) for two
crop rotations on two fields with 7-years of continuous measurements of daily ET flux. During calibration,
AqYield predicted soil AW in the contrasting situations with a model efficiency of 0.83, in the same range of
accuracy as those of other widely published models. AqYield also predicted ET accurately from calibration and
validation datasets, with a model efficiency of 0.84 and 0.69, respectively, for monthly ET. AqYield predicted
daily and monthly drainage less accurately, although the range of drainage during the cropping period was
predicted well. At the crop-rotation scale, AqYield yielded acceptable predictions of ET for contrasting climate
conditions and crops. Whereas AqYield is simple and requires only a few input data, it accurately predicted ET of
cropping systems. It therefore could be useful as a module in more complex modeling approaches.

1. Introduction

Southern Europe is subject to global changes that will affect the
future of available water resources for agriculture. Climate change is
expected to decrease annual precipitation and increase its inter-annual
as well as its inter-seasonal variability. This will increase water stress
caused by a combination of decreased water resource availability
(lower precipitation and increased evapotranspiration (ET)) and in-
creased water use pressure resulting from economic growth and urban
expansion (García-Ruiz et al., 2011). Baseline evapotranspiration is
expected to increase, especially in winter and spring, which may have
higher temperatures (Moratiel et al., 2011; Saadi et al., 2015). This will
result in increased water demand and consumption, soil evaporation

and crop transpiration, which will affect surface water balance and the
partitioning of rainfall between ET, runoff, and groundwater fluxes
(García-Ruiz et al., 2011). The latter is a particularly concerning issue
since drought is already relatively severe in several areas, inducing
limited irrigation (Mishra and Singh, 2010). The response of agri-
cultural systems to water scarcity depends on the management prac-
tices adopted, such as crop rotations, which directly impact the amount
and availability of soil water (Tubiello et al., 2000). The ability to es-
timate the influence of current and future cropping practices on crop
water use and, in turn, on water resource availability, is a great chal-
lenge in agricultural areas (Mazzega et al., 2014; Murgue et al., 2015).
Quantifying the ET and drainage of irrigated and rainfed crops is crucial
for water resource management in areas where water is predicted to be

⁎ Corresponding author.
E-mail address: helene.tribouillois@inra.fr (H. Tribouillois).

T

1



or is already scarce. These predictions can be used to design cropping
systems better adapted to water-limited conditions.

In this context, crop models are valuable tools to predict effects of
climate, soil characteristics and crop management on the water balance
in actual and future cropping systems. Evapotranspiration, soil avail-
able water (AW), and drainage are crucial water balance components
that have a direct impact on water availability in cropping systems;
therefore, it is essential to predict them with crop models (Eitzinger
et al., 2004). Several models of crop functioning have been developed
for a variety of climatic and soil conditions with multiple levels of
complexity (Kollas et al., 2015; Palosuo et al., 2011; Rötter et al., 2012).
Most were developed and/or evaluated to predict yields. Only a few
focus on simulating water flux components or run at the fine time re-
solution of one day (needed to optimize irrigation) or at the crop-ro-
tation scale (needed for a more integrative approach to field func-
tioning).

Crop models, like AqYield, that simulate dynamic water balance
components (ET, AW) can be coupled with hydrological models to
study interactions between agricultural practices and physical char-
acteristics of watersheds (Ferrant et al., 2011; Martin et al., 2016).
Predictions at the watershed level help in monitoring aquifer depletion
and understanding changes in water use induced by land use. They also
help to optimize irrigation and, specifically, to predict impacts of water
regulation strategies. This could enable stakeholders to allocate AW
better among agricultural, urban and environmental uses (Anderson
et al., 2012; Martin et al., 2016; Mazzega et al., 2014). The MAELIA
platform, on which the AqYield soil-crop model was implemented
(Gaudou et al., 2014; Martin et al., 2016; Mazzega et al., 2014; Therond
et al., 2014), was developed to accurately spatialize and simulate water
flux components at the watershed level to assess water and land use
management strategies. It is useful for analyzing scenarios of water and
land use management strategies at the watershed level in combination
with global changes. In this platform, the AqYield crop model predicts
water fluxes in fields at the watershed level. AqYield was chosen be-
cause it is a simple model (simple equations and empirical processes),
requiring few input data. It only requires four soil properties, three
daily climate features and dates for crop managements (Constantin
et al., 2015). Consequently, it has shorter calibration and calculation
times and requires only basic input data, which are more easily col-
lected than detailed data at a watershed level. Moreover, simple
models, like AqYield, have the advantage to avoid “black box” effect
(transparency of internal structure and behavior of the model) and to
ease communication with various stakeholders (Voinov and Bousquet,
2010). AqYield was recently found to predict AW (Constantin et al.,
2015) of spring crops as accurately as a more complex crop model such
as STICS (Brisson et al., 2003). In this recent study, AqYield predictions
were evaluated for three rainfed and irrigated spring crops (sunflower,
maize, and sorghum) at four sites in a region with dry summers in
southwestern France. An evaluation of AqYield’s performance for new
crop species and at the crop-rotation scale is thus required. Extending
evaluation of model performance to the rotation scale is a priority since
crop rotation is the minimum temporal scale that makes sense for en-
vironmental assessment of cropping systems (Beaudoin et al., 2008; Yin

et al., 2017).
The objective of our study was to evaluate the ability of AqYield to

predict water balance components for crop rotations. We first calibrated
and validated the model for winter wheat under a range of contrasting
climatic and soil conditions in France. We then evaluated its ability to
reproduce the daily ET flux measured for seven contrasting climate
years for two typical crop rotations in southwestern France.

2. Materials and methods

2.1. AqYield overview

AqYield is a simple dynamic soil-crop model based on pattern
modeling (Grimm and Railsback, 2012) of field-level water fluxes and
crop yield. The model simulates water balance components (AW, eva-
poration, transpiration and drainage) at a daily time step, phenological
stages and yield. The main inputs are i) soil properties (clay content,
soil water holding capacity and soil depth), ii) climate data (daily mean
temperature, rainfall and reference ET (ET0) calculated by Penman-
Montheith formula) and iii) crop management data such as irrigation
practices (dates and amounts), sowing and harvest dates, and tillage
date and depth. The influence of crop development on water fluxes is
considered using only a crop coefficient (Kc); no biomass is simulated.
The Kc is function of degree-days, crop phenology and water stress; it
thus varies according to crop and situation. The Kc influences eva-
poration, maximum transpiration and root growth, which determine
the soil water available for the crop. Soil is represented using a classic
tipping-bucket approach and the concept of AW capacity. The equations
used to predict water balance components are given in the Appendix A
complete description of AqYield is provided in the Appendix of
Constantin et al (2015).

2.2. Compilation of databases for wheat calibration and validation

We calibrated and validated the model for winter wheat (durum
wheat and soft wheat). We selected AW, ET and/or drainage data from
14 experimental sites monitored in France to consider a wide range of
contrasting soil, climate and crop management (mainly irrigation) si-
tuations which correspond to various European climates. Situations
were distributed between calibration and validation databases to have
contrasting situations (years) in both databases. We chose sites not
limited by N (at least 110 kg N ha−1 added from fertilizers or manure),
since AqYield does not represent N stress. For calibration, a total of 50
situations (site× year×management) were simulated; these situations
had contrasting soil features, ranging from 10 to 50% clay content,
0.8–2.0m soil depth and 81–313mm of AW capacity (Table 1). Mean
monthly temperature during the wheat cropping period (November to
June) ranged from 6.7 to 11.9 °C. For each situation, water deficit (WD)
was calculated from wheat sowing to harvest dates as cumulative daily
rainfall (R) minus ET0, excluding irrigation. Mean WD during the
cropping period ranged from −187 to 132mm among sites. WD varied
among years for a given site; for example, at Fagnières it ranged from
−110 to 81mm (in 2011 and 1998, respectively). Wheat was not

Abbreviations, definitions and units of variables in water

balance equations. Units are mm unless otherwise specified

Irr Daily irrigation
PET Daily potential evapotranspiration
R Daily rainfall
Drain Daily amount of water loss by drainage
EVA Daily amount of evaporation from the soil
Kc Crop coefficient, index of foliar expansion (unitless)
RootAWC Available Water Content in the layer explored by roots on

a given day
RootAWCmax Maximum Available Water Content in the layer ex-

plored by roots on a given day
SurfAWC Available Water Content in the shallow layer on a given

day
SurfAWCmax Maximum Available Water Content in the shallow

layer
TotAWC Available Water Content in the soil on a given day
TR Daily actual crop transpiration
TRmax Daily maximum crop transpiration
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usually irrigated, but some irrigation occurred in certain experiments,
with a maximum of 286mm during wheat development at Villamblain.
The runoff was not simulated but all fields were flat, except at Auradé
(2–3% slope).

Soil available water data were available for 41 situations, for a total
of 187 observations (daily measurements of AW, ET or drainage) during
crop development. Three experimental sites provided daily drainage
and ET data. Daily drainage was measured with a lysimeter for 12 si-
tuations during the crop development period (Constantin et al., 2016),
for a total of 3320 observations (1627 for calibration and 1693 for
validation). Daily ET was measured by eddy covariance (e.g. Béziat
(2009) and Béziat et al. (2010) at Lamasquère and Auradé) for 7 si-
tuations (site× year), for a total of 1750 observations (995 for cali-
bration and 755 for validation). In total, the calibration database in-
cluded 2809 observations, and the validation database included 2448
observations.

The validation database for wheat consisted of 9 situations (site×
year) from the same three experimental sites with ET and drainage
measurements as those in the calibration database, but corresponded to
different years in order to express various climatic conditions.

2.3. Model calibration and optimization

Each simulation was initialized a few days or weeks before sowing
(1 September to 30 October, depending on the site) with the AW esti-
mated from soil water content (%) measured with soil moisture sensors
(CS615 or CS 616, Campbell Scientific Inc, Logan, UT, USA) at each site
on this date. To estimate the observed AW, we subtracted the water
content at wilting point from the soil water content measurements.
According to the site, the water content at wilting point was estimated
by i) measuring the water content with an application of a −1.5MPa
potential (especially for the main three sites Auradé, Lamasquère and
Fagnières) or ii) implementing pedotransfer functions. We converted
soil water content into an amount of water based on soil depth and bulk
density. No AW data were available at the Fagnières site to initialize the
model; consequently, we used AW predicted by STICS in several years
of continuous simulations from a previous study (Constantin et al.,
2016).

Only two crop parameters were optimized (specifically for wheat)
and only one global parameter of evaporation (one generic value for all
crops). The first step in calibrating the model for wheat was to optimize
the prediction of phenological stages by improving representation of
the interacting effects of photoperiod and cumulative temperature. In
AqYield, plant development is driven by cumulative temperature.
Specific sums of effective temperature are needed to reach phenological
stages, depending on species and cultivar. Development of winter crops
slows during winter due to decreasing day length, which AqYield re-
presents by using a photoperiod coefficient to calculate a vegetation
scale (Vscale):

= + −
−Vscale Vscale

Tm T

SumTflo
K(

( 0)
)*d d phot( ) ( 1)

where Tm is daily mean temperature, T0 is the base temperature of the
crop (0 °C for winter wheat), SumTflo is the cumulative effective tem-
perature needed to reach flowering (Constantin et al., 2015), and Kphot

is the photoperiod coefficient (active for crops growing during winter),
which is applied only during a given period (generally from sowing to
February, depending on the latitude). The end date of Kphot application
(EndKphot) is estimated as follows:

= ×End
DLindex

45 (
0.28

)K
1.5

phot

where DLindex is the day length index, calculated as:

= +DL
latitude
(

80
) 0.12index
3

By trial and error, we optimized Kphot for winter wheat to predict the
flowering dates observed in the calibration database more accurately.
The Kphot was optimized for all simulations in order to have a generic
value (K phot of winter wheat= 0.43).

In a second step, we optimized the coefficient α, which influences
soil evaporation (see Appendix for details). By trial-and-error, we op-
timized α based on measured AW, daily ET and drainage in the cali-
bration database. This coefficient is generic for all crops; we thus took
care to check that predictions for previously evaluated spring crops
(Constantin et al., 2015) were not negatively impacted by this cali-
bration.

Finally, by trial-and-error, we optimized the root-growth coefficient
(RootG, in °C mm−1), which influences root exploration in the soil, to
8.0 for durum wheat and 9.0 for soft wheat, based on measured AW,
daily ET and drainage in the calibration database.

2.4. Crop rotations and site descriptions used to evaluate ET

We evaluated predicted daily and cumulative ET at the crop-rota-
tion scale by comparing them to observed data from two of the ex-
perimental sites: Auradé and Lamasquère. These sites are part of the
Integrated Carbon Observation System (ICOS) network (Paris et al.,
2012) as FR-Aur and FR-Lam, respectively. For the evaluation, we ran
AqYield continuously from sowing of the first crop to harvest of the last
crop in each rotation. Since data from these two sites had been used to
calibrate the model from wheat sowing to harvest (dataset A, Table 1),
we excluded these calibration data when calculating statistical criteria
used to evaluate predictions of the crop rotation (dataset B, Table 2).

Auradé followed mainly a winter wheat/rapeseed rotation, sown in
September or October and harvested in June or July, with mineral
fertilization (annual average of 140 kg N ha-1), straw incorporated into
the soil and no irrigation. Sunflower was grown at this site in 2007.
Lamasquère followed a winter wheat/maize rotation, with mineral and
organic (manure or slurry) fertilizer (annual average of 277 kg N ha−1).
Irrigation was applied to maize (50–148mm year−1). The required
meteorological data at a daily time-step (temperature, ET0, rainfall)
were obtained from data initially recorded at a 30-minute time step at
each experimental site. Daily ET was calculated from 30-minute ET
fluxes recorded from 2006 to 2012, corresponding to seven cropping
years (Table 2). Eddy covariance was used to continuously monitor ET,
and included a system with a fast (20 Hz) infra-red gas analyzer
(Li7500, Licor) and a 3D sonic anemometer (CSAT, Campbell Scientific
Ltd). Filtering, quality controls and gap filling were performed fol-
lowing CarboEurope-IP recommendations (Aubinet et al., 2012). Ulti-
mately, the dataset contained 4498 observations (2455 for Auradé and
2043 for Lamasquère). No data were recorded at Lamasquère from 1
January to 15 March 2011 due to instrument failure. We also calculated
cumulative ET from sowing of a given crop until the sowing of the
subsequent crop (including the fallow period between them). WD
showed contrasting years of AW at both sites, since 2011 and 2012 were
extremely dry and 2008 was wet (Table 2).

2.5. Statistical criteria used for model calibration and evaluation

Three statistical criteria ― mean deviation (MD), relative root mean
square error (rRMSE) and model efficiency (Ef) ― were calculated to
assess the quality of model calibration and evaluation:
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where n is the number of observations, Oi and Pi are observed and
predicted values, respectively, and o is the mean of observed values.
MD provides model deviation from the line x=y. rRMSE provides the
relative absolute error and ranges from 0 to infinity, with 0 corre-
sponding to the ideal. Ef represents model accuracy relative to the mean
of observed data (ranges = -∞ to 1). As it approaches 1, the match
between observed and predicted values increases; it becomes negative
when the mean of observed values lies closer to observed values than
predicted values do. We also calculated the R² for the linear regressions
between observed and predicted data. We also calculated the median
difference between observed and predicted values in absolute value and
relative to the mean of observed values. Except for daily drainage
(which had many observed values of zero), daily, monthly (cumulative)
and cropping-period (cumulative) predictions of ET and drainage were
evaluated using the same steps.

3. Results

3.1. Water balance component predictions for wheat

3.1.1. Soil available water for wheat

During calibration (dataset A), AqYield predicted AW during the
wheat cropping period well, with Ef= 0.83, rRMSE=0.23 (corre-
sponding to 31mm) and MD=13mm (Fig. 1). Model predictions of
AW ranged from 9 to 311mm, while observations ranged from 0 to
314mm. The model predicted most situations well (median difference
of 16mm in absolute value; 13% in relative value), although it tended
to overpredict the low and medium observed AW slightly.

3.1.2. Daily, monthly and cumulative evapotranspiration for wheat

During calibration (dataset A), AqYield predicted daily ET for wheat
relatively well overall, with Ef= 0.54, rRMSE=0.55 (corresponding
to 0.7 mm) and MD = −0.1mm for the four situations combined. The
median difference between daily predicted and observed values was
0.34mm in absolute value (25% in relative value). Prediction quality
varied according to the situation, however, with Ef from 0.23–0.73,
rRMSE from 0.45-0.65 and MD from −0.3 to 0.3 (Fig. 2).

Generally, daily ET was predicted well at the beginning of wheat
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Fig. 1. Observed vs. predicted available water (AW) in the soil under wheat
after model calibration. The data came from 14 sites in dataset A (Table 1).
“MD” is the mean deviation, “rRMSE” is the relative root mean square error and
“Ef” is the model efficiency.
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growth, when ET is low in winter. Accuracy of predicted daily ET
tended to decrease in spring and summer, when daily ET was higher
and varied greatly. Consequently, for Auraudé in 2010, predicted cu-
mulative ET followed the observed value until mid-May, when it be-
came overpredicted (Fig. 2b). Conversely, AqYield tended to under-
predict cumulative ET for the other three situations. Overall,
cumulative ET during the cropping period ranged from 264 to 376mm
for predictions and 282–403mm for observations. The median differ-
ence between observed and predicted cumulative ET was 62mm in
absolute value (18% in relative value). The differences ranged from
−67mm to+63mm among the four situations.

During calibration, AqYield predicted monthly ET well, with
Ef= 0.84, rRMSE=0.31 (corresponding to 12mm) and MD =
−2.9mm (Fig. 3). Predicted monthly ET ranged from 3 to 115mm,
while observed monthly ET ranged from 4 to 119mm. The model
predicted most situations well (median difference of 7.7 mm in absolute
value, 20% in relative value).

During validation, AqYield predicted daily ET sufficiently well, with
Ef= 0.49, rRMSE=0.57 (corresponding to 0.7mm) and MD=0.0mm
(data not shown). Cumulative ET during the cropping period ranged
from 290 to 356mm for predictions and 336–470mm for observations

(data not shown). The median difference between observed and pre-
dicted cumulative ET during the cropping period was 64mm in abso-
lute value (16% in relative value). During validation, the model pre-
dicted monthly ET nearly as well as it had during calibration, with
Ef= 0.69, rRMSE=0.41 (corresponding to 16mm) and MD =
−0.6mm (Fig. 3). The median difference between observed and pre-
dicted monthly ET was 6.6 mm in absolute value (19% in relative
value).

3.1.3. Drainage for wheat

Observed cumulative drainage at Fagnières during the cropping
period ranged from 0 to 287mm, depending on the situation. During
calibration, AqYield predicted cumulative drainage well, since it pre-
dicted no drainage for the two situations (out of six in dataset A) in
which no drainage occurred during the cropping period (data not
shown). For the four situations in which drainage occurred, the model
accurately predicted the range of cumulative drainage, despite an
overprediction in 1998 (Fig. 4).

The median difference between observed and predicted cumulative
drainage during the cropping period was 6mm in absolute value (8% in
relative value) for all situations and 18mm in absolute value (16% in
relative value) for the four situations in which drainage occurred. The
differences ranged from −11mm to 61mm. The dynamics of predicted
and observed drainage differed greatly: predicted drainage occurred in
one event, while observed drainage was more spread out over several
days (Fig. 4).

During calibration, AqYield predicted monthly drainage relatively
well, with a good Ef (0.63) and a small bias (MD=1.0mm), but the
model accuracy was poor (rRMSE=1.4; corresponding to 10mm)
(Fig. 5). Of the 60months of data, only 28 recorded monthly drai-
nage>1mm, indicating that the other 32 had no drainage. Monthly
drainage ranged from 0 to 86mm for predictions and 0–85mm for
observations. When situations with no observed drainage were ex-
cluded, the median difference between observed and predicted monthly
drainage was 2.4mm in absolute value (15% in relative value). For all
situations, including those with no drainage, the difference was 0.8mm
in absolute value (9% in relative value).Fig. 2. Observed and predicted daily and cumulative evapotranspiration (ET)

during the cropping period of wheat after model calibration for four site× year
situations: a) Auradé in 2006, b) Auradé in 2010, c) Lamasquère in 2007 and d)
Lamasquère in 2011. The statistical criteria shown were calculated for daily
predictions. The data came from dataset A (Table 1). “MD” is the mean de-
viation, “rRMSE” is the relative root mean square error and “Ef” is the model
efficiency.

Fig. 3. Observed vs. predicted monthly evapotranspiration (ET) for wheat at
Lamasquère and Auradé for model calibration and validation. For calibration,
the data are black points, the regression line is the black solid line and statistical
criteria are in black. For validation, the data are crosses, the adjustment line is
gray and statistical criteria are gray. The 1:1 line is black and dashed. The data
came from dataset A (Table 1). “MD” is the mean deviation, “rRMSE” is the
relative root mean square error and “Ef” is the model efficiency.
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In the validation dataset for Fagnières, cumulative drainage during
the cropping period ranged from 0 to 121mm for predictions and
0–88mm for observations. Among the six situations at Fagnières, only
two cropping periods with drainage were recorded, which had a median
difference between observations and predictions of 20.5 mm in absolute
value (26% in relative value) and differences ranging from −13 to
54mm (data not shown). During validation, AqYield did not predict
monthly drainage at Fagnières as well, with Ef = −0.21, rRMSE=3.4
(corresponding to 9mm) and MD=0.6 (Fig. 5). The median difference
between observed and predicted monthly drainage was 0.1mm in ab-
solute value (4% in relative value) for all six situations, increasing to
14.6 mm (62% in relative value) when excluding situations with no
observed drainage.

3.2. Predicted evapotranspiration for two crop rotations

Overall, AqYield predicted daily ET during crop rotations relatively
well for fallow and cropping periods at the two sites (Lamasquère and
Auradé) (Fig. 6). However the model predictions were less accurate in
the end of cropping period when ET was high. At Auradé, ET was
overpredicted for wheat in 2010 and underpredicted for wheat in 2008
and for rapeseed in 2009. At Lamasquère, ET was underpredicted for
maize in 2010 and slightly in 2012. Nevertheless, ET was predicted well
for most other crops, such as rapeseed in 2011, sunflower in 2007 and
wheat in 2006, 2012 at Auradé (Fig. 6a) and maize in 2006 and 2008 at
Lasmaquère (Fig. 6c). Over the 7-year crop rotation at Auradé, AqYield
predicted daily ET relatively well, with Ef= 0.63, rRMSE=0.51
(corresponding to 0.7mm) and MD = −0.2mm. For Lamasquère, it
predicted daily ET less well, with Ef= 0.48, rRMSE=0.68 (corre-
sponding to 0.9 mm) and MD = −0.2mm.

For cumulative ET (from sowing of a given crop until sowing of the
subsequent crop), predictions and observations ranged from 293 to
652mm and 333–700mm at Lamasquère, respectively, and from 351 to
602mm and 348–652mm at Auradé, respectively. AqYield under-
predicted cumulative ET for all crops at Lamasquère by 44mm (median
difference), ranging from −125 to −20mm, depending on the crop
(Fig. 6d). It also tended to underpredict cumulative ET at Auradé, ex-
cept for wheat in 2010, for which it was overpredicted (Fig. 6b). The
median difference between observed and predicted cumulative ET at
Auradé was 70mm in absolute value (14% in relative value), ranging
from -164 to+ 70mm, depending on the crop and fallow period.

At the crop-rotation scale, AqYield predicted monthly ET well over
seven years (excluding wheat calibration periods) for both sites to-
gether (Ef= 0.72, rRMSE=0.36 (corresponding to 16mm) and MD =
−7.0mm) (Fig. 7) and separately (Ef= 0.76 and 0.69, rRMSE=0.38
and 0.40, and MD = −7.0 and −7.0 mm for Auradé and Lamasquère,
respectively). The model predicted the ranges of monthly ET
(9–133mm for Auradé and 10–132mm for Lamasquère) well, with a
median difference between observed and predicted values of 8.8mm in
absolute value (19% in relative value). Generally, the model tended to
underpredict monthly ET slightly, especially low values.

4. Discussion

4.1. AqYield’s ability to predict dynamics of winter wheat water flux

components

With only few input data and simple equations, AqYield accurately
predicted the amount of AW in the soil during wheat cropping periods
in a variety of contrasting situations (soil, climate and management
practices). It slightly overpredicted AW in certain situations, especially
those with low AW, which might have been due in part to uncertainty
in observed AW. Observed AW was calculated as the amount of water
available for the crop, subtracting water content at wilting point from
soil water content measurements. Determining the wilting point and its
uncertainty for each experimental field can thus influence the observed

Fig. 4. Observed and predicted daily drainage and cumulative drainage during
the cropping period of wheat after model calibration for four situations at the
Fagnières site: a) 1985, b) 1989, c) 1998 and d) 2011. The data came from
dataset A (Table 1).

Fig. 5. Observed vs. predicted monthly drainage for wheat for model calibra-
tion and validation. For calibration, the data are black points, the adjustment
line is the black solid line and statistical criteria are in black. For validation, the
data are crosses, the adjustment line is gray and statistical criteria are gray. The
1:1 line is black and dashed. “MD” is the mean deviation, “rRMSE” is the re-
lative root mean square error and “Ef” is the model efficiency.
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AW used in the model. The accuracy of AqYield’s soil water predictions
was similar to those of other widely published crop models, despite the
little information required for inputs and the simple equations used.
The STICS model, which is frequently used in agronomic research (e.g.
Beaudoin et al., 2008; Justes et al., 2009; Jégo et al., 2010; Tribouillois
et al., 2016; Yin et al., 2017), predicted soil water variables (soil water
humidity in % and amount in mm) for wheat with the same range of
model efficiency: 0.70–0.90 for STICS vs. 0.83 for AqYield (Coucheney
et al., 2015). This comparison is also consistent with results of
Constantin et al. (2015), who compared STICS and AqYield predictions
for spring crops (sunflower, maize and sorghum) and found similar
model efficiencies in predicting soil AW content (0.53 for STICS vs. 0.57
for AqYield). Moreover, AqYield seemed to predict AW slightly better
for winter crops than for spring crops. Another example is the widely
used FAO AquaCrop model, which predicted soil water content for
wheat with a MD similar to that of AqYield, albeit slightly over-
predicting low water contents (Mkhabela and Bullock, 2012). AqYield
predicted soil water content with the same range of variability as FAO

AquaCrop (RMSE=31 and 49mm, respectively; mean difference be-
tween observations and predictions= 16 and 10mm, respectively).

We focused model evaluation on water fluxes (ET and drainage)
because they are processes that directly impact soil water content. For
wheat, AqYield predicted ET accurately from the calibration and vali-
dation datasets. However, the difference between observations and
predictions increased when observed ET increased, which usually cor-
responded to the end of a cropping period. This could be due to
AqYield’s difficulty in representing processes that occur during plant
senescence and their influence on soil evaporation (Dunin et al., 1989).
AqYield predicted daily drainage less accurately, overpredicting it im-
mediately after rainfall events, because the model drains all excess
water within one day, while observed rainfall events drained over
several days. Notably, AqYield does not consider the saturated hy-
draulic conductivity of soil, a property that can decreases the rate of
vertical water flux. For cumulative drainage during the cropping
period, however, AqYield accurately distinguished situations with and
without drainage during wheat development. It accurately predicted

Fig. 6. (a, c) Daily and (b,d) cumulative observed and predicted evapotranspiration (ET) during fallow and cropping periods for two crop rotations at the (a, b)
Auradé and (c, d) Lamasquère sites from 2006-2012. Vertical dashed lines represent harvest dates. Input data used for this analysis came from dataset B (Table 2).
Gray areas represent wheat crops used for model calibration (dataset A).
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the total amount of drainage during the cropping period, which is a
concern for water management and cropping system issues at this
temporal scale. When simulating at the annual or cropping period scale,
accurate AW is required to initialize the simulation in order to predict
drainage accurately, especially the beginning of the drainage period.
Initial AW thus requires careful measurement or estimation from multi-
year simulations, even though AqYield can predict other variables ac-
curately without knowing the initial AW, as shown by Constantin et al.
(2015). However, at the crop-rotation scale, when several years are
simulated (without initialization each year), knowing the observed AW
is less necessary because AqYield predicts it accurately.

4.2. Model efficiency in predicting evapotranspiration at the crop-rotation

scale

Model evaluations of ET at the crop-rotation scale are rare and are
generally excluded in model comparison studies, especially due to in-
sufficient data (Bassu et al., 2014; Kollas et al., 2015; Rötter et al.,
2012; Salo et al., 2016; Yin et al., 2017). In our study, AqYield simu-
lated a 7-year crop rotation at two sites, predicting daily, monthly and
cropping-period ET well. It adequately reproduced intra- and inter-
annual variability in ET, and accurately predicted low and high ET for a
variety of crops and contrasting climatic years. Despite its simple
equations and empirical processes, AqYield accurately predicted water
fluxes such as ET at a fine time scale. Contrasting ET values in winter or
fallow periods (low ET) and in summer or at the end of cropping periods
(high ET) were always predicted well. Howevern ET at the end of
cropping periods was slightly underpredicted.

AqYield did not accurately simulate dynamics of the “barrier effect”
after flowering, due to soil covering or mulching, which can impact soil
evaporation (Ding et al., 2013; Dunin et al., 1989). In AqYield, soil
evaporation after flowering is reduced according to the same coefficient
as that at flowering (maximum barrier effect due to maximum soil
cover), thus assuming that the maximum barrier effect is maintained. In
reality, we assume that this effect may decrease (higher soil evapora-
tion) for some species. Senescence can decrease soil cover (if leaves do
not fall to the ground) by shrinking vegetation and decreasing the
amount of radiation it intercepts, thus increasing soil evaporation. In-
cluding this process in AqYield could substantially improve its predic-
tions, even though they are currently satisfactory.

Daily ET predictions at Auradé were as accurate or more accurate
for certain years than those of the spatially distributed TNT2 model,

which was evaluated using the same dataset from 2006 to 2010
(Ferrant et al., 2014). For example, AqYield overpredicted ET within
the same range as TNT2 for the wheat in 2010 and both models un-
derpredicted daily ET in the late sunflower cropping period in July
2007. The agreement between the two models indicates that a limiting
factor exists that was not represented by either model. Another source
of discrepancy between observations and predictions is the measure-
ment of ET itself. Béziat (2009) showed that the uncertainty in ET
measurements increases with ET intensity when using eddy covariance.
It is difficult to obtain accurate daily ET, due to the use of heavy in-
struments that are subject to failure or calibration drift, the complexity
of calculating flux from data measured in the field that rely on turbu-
lence assumptions, and data filtering and processing, including filling
data gaps using statistical models that are also subject to uncertainties.
AqYield also does not consider water transfer within soil macropores,
which can influence AW and thus ET. At Lamasquère, soil anoxia was
sometimes observed due to an increase in groundwater level induced by
heavy rainfall; AqYield does not consider groundwater rise, which may
explain some differences between predictions and observations of daily
ET.

AqYield predicts the two fluxes that constitute ET: soil evaporation
and crop transpiration. We did not know, however, their relative con-
tributions to observed ET, which restricted analysis and accurate cali-
bration of ET predictions; in addition, runoff was not simulated. Despite
these limitations, AqYield predictions were sufficiently accurate to
predict ET during crop rotations.

4.3. Validity range of AqYield

Model calibration of wheat predictions was based on datasets from
several experimental sites across France. For most of these sites, several
years were used, which represent contrasting soil and climate condi-
tions. The validity range for wheat predictions is thus temperate cli-
mates with a large gradient of dryness, especially in summer, and
without strong nutrient limitations or pest impacts. Predictions of daily
ET in cropping systems were validated only for southwestern France,
which has a temperate climate with dry summers. Global radiation,
which varies by location, is not included in AqYield because the model
does not represent biomass. Low global radiation decreases crop
growth, which consequently influences water balance and fluxes.
Adding global radiation as input data for AqYield, however, would
increase the complexity of this simple model. AqYield was developed to
predict only at the species level and not at the cultivar level. It was
calibrated using several cultivars as a “mean species” to increase its
genericity. More generally, the fact that water stress is the only limiting
factor in AqYield could limit its utility for studying agroecological
practices such as low-input cropping systems. Despite its limitations
and simple and empirical equations, AqYield remains reliable for pre-
dicting water fluxes and balances in a variety of situations.

4.4. Applications for cropping system evaluation

Our results indicate that AqYield adequately predicts water balance
during crop rotations with the same accuracy as other published crop
models that are more complex and require larger amounts of input data.
A simple and accurate crop model such as AqYield, which requires only
a few input data, seems useful as a module in more complex modeling
approaches at the watershed level. For example, it can be implemented
in the modeling platform MAELIA (Gaudou et al., 2014; Martin and
Isaac, 2015; Mazzega et al., 2014; Therond et al., 2014). AqYield has
been calibrated and evaluated as sufficiently accurate for wheat (main
winter crop) and spring crops (Constantin et al., 2015). Its ability to
predict ET in crop rotations including rapeseed was also satisfactory,
although it requires more complete evaluation for this crop. Thus,
AqYield is useful for simulating several agroecological practices in a
variety of cropping system scenarios and their impacts on water

Fig. 7. Observations vs. predictions of monthly evapotranspiration (ET) for two
crop rotations at Auradé and Lamasquère for model validation. Input data came
from dataset B (Table 2). “MD” is the mean deviation, “rRMSE” is the relative
root mean square error and “Ef” is the model efficiency.

9



balance, as well as management practices under actual and future cli-
mates at the watershed level.

5. Conclusion

In the present study, the AqYield crop model was calibrated for
winter wheat, and its predictions of ET were evaluated by comparing
them to ET measured during 7-year crop rotations at each of two sites.
Although the model is simple and requires only a few input data, it was
as accurate as other more complicated crop models widely used and
evaluated in the agronomic literature, such as STICS or AquaCrop.
AqYield, whether alone or in more complex modeling approaches such
as an agro-hydrological modeling platform, could be used to predict
water fluxes during crop rotations at field and watershed levels to
support innovative cropping systems or to design water management
strategies.
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Appendix A. Equations for water balance components

Soil evaporation

Evaporation is calculated using an empirical equation based on potential evapotranspiration (PET), a crop coefficient (Kc) and Available Water
Content of the shallow soil compartment (SurfAWC). With a minimum value of 0, it is calculated as follows:

⎜ ⎟= × ⎛
⎝
− ⎞

⎠
× ⎛

⎝
⎜ × + − ⎞

⎠
⎟

− −

−

EVA PET
Kc

Kcoff

SurfAWC

SurfAWC
CoefCC CoefCC1 1d d

d d

max

α

( ) ( )
( 1) ( 1)

d( 1)

where Kcoff is the value of Kc at which evaporation stops (default value=1.2), and CoefCC is an empirical coefficient that represents evaporation
capacity of the soil (default value= 0.6). Initially a value of 3.0, the coefficient α was optimized to 2.0. This coefficient was optimized for all
simulations of wheat but also of spring crops (database coming from Constantin et al., 2015) in order to be generic. It is not site- or species-
dependent. After flowering, Kc(d-1) remains at the maximum value (that of Kc at flowering) until harvest.

Crop transpiration

Daily maximum transpiration (TRmax) is calculated as:

= − ×TR PET EVA Kc( )max d d d( ) ( ) ( )d( )

Actual transpiration is an empirical function of TRmax, available water for roots, soil clay content (%) and vegetation scale (Vscale, calculation
presented in Material and Method section):

= × ⎛

⎝
⎜ −⎛

⎝
⎜ −

−
−

⎞
⎠
⎟
⎞

⎠
⎟

+
TR TR

RootAWC SurfAWC

RootAWC SurfAWC
1 1

ˆ
d max

d d

max max d

Clay

( )

( ) ( )

( )

( 120
[ ] 15

)

d
d

Vscale

( )

( )

Drainage

Drainage is calculated as the excess amount of water above the maximum available water content (TotAWCmax) after considering all other water
flows.

+ + − − − > = + + − − −If TotAWC R Irr Eva TR TotAWC Drain TotAWC R Irr Eva TR TotAWC0 ,d d d d d max d d d d d d max( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )d( )

Irr Daily irrigation
PET Daily potential evapotranspiration
R Daily rainfall
Drain Daily amount of water loss by drainage
EVA Daily amount of evaporation from the soil
Kc Crop coefficient, index of foliar expansion (unitless)
RootAWC Available Water Content in the layer explored by roots on a given day
RootAWCmax Maximum Available Water Content in the layer explored by roots on a given day
SurfAWC Available Water Content in the shallow layer on a given day
SurfAWCmax Maximum Available Water Content in the shallow layer
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TotAWC Available Water Content in the soil on a given day
TR Daily actual crop transpiration
TRmax Daily maximum crop transpiration
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