S. Belin, Injury-induced decline of intrinsic regenerative ability revealed by quantitative proteomics, Neuron, vol.86, pp.1000-1014, 2015.

X. Duan, Subtype-specific regeneration of retinal ganglion cells following axotomy: effects of osteopontin and mTOR signaling, Neuron, vol.85, pp.1244-1256, 2015.

M. Leibinger, Boosting central nervous system axon regeneration by circumventing limitations of natural cytokine signaling, Mol Ther, vol.24, pp.1712-1725, 2016.

K. K. Park, Promoting Axon Regeneration in the Adult CNS by Modulation of the PTEN/mTOR Pathway, Science, vol.322, pp.963-966, 2008.

V. Pernet, Long-distance axonal regeneration induced by CNTF gene transfer is impaired by axonal misguidance in the injured adult optic nerve, Neurobiol Dis, vol.51, pp.202-213, 2013.

P. D. Smith, SOCS3 deletion promotes optic nerve regeneration in vivo, Neuron, vol.64, p.21, 2009.

F. Sun, Sustained axon regeneration induced by co-deletion of PTEN and SOCS3, Nature, vol.480, pp.372-125, 2011.

E. F. Trakhtenberg, Zinc chelation and Klf9 knockdown cooperatively promote axon regeneration after optic nerve injury, Exp Neurol, vol.300, pp.22-29, 2018.

X. T. Luo, Three-dimensional evaluation of retinal ganglion cell axon regeneration and pathfinding in whole mouse tissue after injury, Exp Neurol, vol.247, pp.653-662, 2013.

H. Diekmann, P. Kalbhen, and D. Fischer, Characterization of optic nerve regeneration using transgenic zebrafish, Front Cell Neurosci, vol.9, 2015.

K. Lemmens, Matrix metalloproteinases as promising regulators of axonal regrowth in the injured adult zebrafish retinotectal system, Journal of Comparative Neurology, vol.524, pp.1472-1493, 2016.

M. Kaneda, Changes of phospho-growth-associated protein 43 (phospho-GAP43) in the zebrafish retina after optic nerve injury: a long-term observation, Neurosci Res, vol.61, pp.281-288, 2008.

L. Erskine and E. Herrera, Connecting the retina to the brain, ASN Neuro, vol.6, 2014.

J. H. Skene, Axonal growth-associated proteins, Annu Rev Neurosci, vol.12, pp.127-156, 1989.

F. Elsaeidi, M. A. Bemben, X. F. Zhao, D. Goldman, and . Jak, Stat signaling stimulates zebrafish optic nerve regeneration and overcomes the inhibitory actions of Socs3 and Sfpq, J Neurosci, vol.34, pp.2632-2644, 2014.

R. R. Bernhardt, E. Tongiorgi, P. Anzini, and M. Schachner, Increased expression of specific recognition molecules by retinal ganglion cells and by optic pathway glia accompanies the successful regeneration of retinal axons in adult zebrafish, J Comp Neurol, vol.376, pp.253-264, 1996.

M. B. Veldman, M. A. Bemben, R. C. Thompson, and D. Goldman, Gene expression analysis of zebrafish retinal ganglion cells during optic nerve regeneration identifies KLF6a and KLF7a as important regulators of axon regeneration, Dev Biol, vol.312, pp.596-612, 2007.

B. W. Kusik, D. R. Hammond, and A. J. Udvadia, Transcriptional regulatory regions of gap43 needed in developing and regenerating retinal ganglion cells, Dev Dyn, vol.239, pp.482-495, 2010.

M. C. Senut, A. Gulati-leekha, and D. Goldman, An element in the alpha1-tubulin promoter is necessary for retinal expression during optic nerve regeneration but not after eye injury in the adult zebrafish, J Neurosci, vol.24, pp.7663-7673, 2004.

A. J. Udvadia, R. W. Koster, and J. H. Skene, GAP-43 promoter elements in transgenic zebrafish reveal a difference in signals for axon growth during CNS development and regeneration, Development, vol.128, pp.1175-1182, 2001.

P. Bormann, V. M. Zumsteg, L. W. Roth, and E. Reinhard, Target contact regulates GAP-43 and alpha-tubulin mRNA levels in regenerating retinal ganglion cells, J Neurosci Res, vol.52, pp.405-419, 1998.

A. Beckers, An Antagonistic Axon-Dendrite Interplay Enables Efficient Neuronal Repair in the Adult Zebrafish Central Nervous System, Mol Neurobiol, vol.56, pp.3175-3192, 2019.

H. Diekmann, P. Kalbhen, and D. Fischer, Active mechanistic target of rapamycin plays an ancillary rather than essential role in zebrafish CNS axon regeneration, Front Cell Neurosci, vol.9, p.251, 2015.

J. D. Buenrostro, P. G. Giresi, L. C. Zaba, H. Y. Chang, and W. J. Greenleaf, Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position, Nat Methods, vol.10, pp.1213-1218, 2013.

A. J. Udvadia, 3.6 kb Genomic sequence from Takifugu capable of promoting axon growth-associated gene expression in developing and regenerating zebrafish neurons, Gene Expr Patterns, vol.8, pp.382-388, 2008.

A. C. Daugherty, Chromatin accessibility dynamics reveal novel functional enhancers in C. elegans, Genome Res, vol.27, pp.2096-2107, 2017.

S. A. Lambert, The Human Transcription Factors, Cell, vol.172, pp.650-665, 2018.

A. Khan, 2018: update of the open-access database of transcription factor binding profiles and its web framework, Nucleic Acids Res, vol.46, pp.260-266, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01980416

M. T. Weirauch, Determination and Inference of Eukaryotic Transcription Factor Sequence Specificity, Cell, vol.158, pp.1431-1443, 2014.

R. C. Mcleay and T. L. Bailey, Motif Enrichment Analysis: a unified framework and an evaluation on ChIP data, BMC Bioinformatics, vol.11, 2010.

Q. Miao, Tcf3 promotes cell migration and wound repair through regulation of lipocalin 2, Nat Commun, vol.5, 2014.

K. D. Wagner, The Wilms' tumor gene Wt1 is required for normal development of the retina, EMBO J, vol.21, pp.1398-1405, 2002.

C. E. Grant, T. L. Bailey, and W. S. Noble, FIMO: scanning for occurrences of a given motif, Bioinformatics, vol.27, pp.1017-1018, 2011.

V. Chandran, A Systems-Level Analysis of the Peripheral Nerve Intrinsic Axonal Growth Program, Neuron, vol.89, pp.956-970, 2016.

T. Herdegen, Expression of JUN, KROX, and CREB transcription factors in goldfish and rat retinal ganglion cells following optic nerve lesion is related to axonal sprouting, J Neurobiol, vol.24, pp.528-543, 1993.

T. Herdegen, T. R. Tolle, R. Bravo, W. Zieglgansberger, and M. Zimmermann, Sequential expression of JUN B, JUN D and FOS B proteins in rat spinal neurons: cascade of transcriptional operations during nociception, Neurosci Lett, vol.129, pp.221-224, 1991.

P. E. Herman, Highly conserved molecular pathways, including Wnt signaling, promote functional recovery from spinal cord injury in lampreys, Sci Rep, vol.8, 2018.

A. M. Kenney and J. D. Kocsis, Peripheral axotomy induces long-term c-Jun amino-terminal kinase-1 activation and activator protein-1 binding activity by c-Jun and junD in adult rat dorsal root ganglia In vivo, J Neurosci, vol.18, pp.1318-1328, 1998.

J. D. Leah, T. Herdegen, and R. Bravo, Selective expression of Jun proteins following axotomy and axonal transport block in peripheral nerves in the rat: evidence for a role in the regeneration process, Brain Res, vol.566, issue.91, pp.91699-91701, 1991.

C. A. Ruff, Neuronal c-Jun is required for successful axonal regeneration, but the effects of phosphorylation of its N-terminus are moderate, Journal of neurochemistry, vol.121, pp.607-618, 2012.

M. Mahar and V. Cavalli, Intrinsic mechanisms of neuronal axon regeneration, Nat Rev Neurosci, vol.19, pp.323-337, 2018.

J. R. Dixon, Topological domains in mammalian genomes identified by analysis of chromatin interactions, Nature, vol.485, pp.376-380, 2012.

S. Velasco, A Multi-step Transcriptional and Chromatin State Cascade Underlies Motor Neuron Programming from Embryonic Stem Cells, Cell Stem Cell, vol.20, pp.205-217, 2017.

A. Rau, S. P. Dhara, A. J. Udvadia, and P. L. Auer, Regeneration Rosetta: An interactive web application to explore regenerationassociated gene expression and chromatin accessibility, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02625234

N. L. Bray, H. Pimentel, P. Melsted, and L. Pachter, Near-optimal probabilistic RNA-seq quantification, Nature Biotechnology, vol.34, pp.525-527, 2016.

J. D. Buenrostro, B. Wu, H. Y. Chang, and W. J. Greenleaf, ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide, Curr Protoc Mol Biol, vol.109, pp.29-50, 2015.

H. Li and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, vol.25, pp.1754-1760, 2009.

H. Li, The Sequence Alignment/Map format and SAMtools, Bioinformatics, vol.25, pp.2078-2079, 2009.

Y. Zhang, Model-based Analysis of ChIP-Seq (MACS)

, Genome Biology, vol.9, 2008.

M. Lawrence, Software for Computing and Annotating Genomic Ranges, Plos Comput Biol, vol.9, 2013.

T. L. Bailey, J. Johnson, C. E. Grant, W. S. Noble, . The et al., Nucleic Acids Res, vol.43, pp.39-49, 2015.

H. Pimentel, N. L. Bray, S. Puente, P. Melsted, and L. Pachter, Differential analysis of RNA-seq incorporating quantification uncertainty, Nat Methods, vol.14, 2017.

Y. Benjamini and Y. Hochberg, Controlling the False Discovery Rate -a Practical and Powerful Approach to Multiple. Testing, J R Stat Soc B, vol.57, pp.289-300, 1995.

Z. Gu, R. Eils, and M. Schlesner, Complex heatmaps reveal patterns and correlations in multidimensional genomic data, Bioinformatics, vol.32, pp.2847-2849, 2016.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, 2014.

L. J. Zhu, ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data, BMC Bioinformatics, vol.11, 2010.

J. T. Robinson, Integrative genomics viewer, Nat Biotechnol, vol.29, pp.24-26, 2011.

F. Supek, M. Bosnjak, N. Skunca, and T. Smuc, REVIGO summarizes and visualizes long lists of gene ontology terms, PLoS One, vol.6, 2011.