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Reproduction is a complex and essential physiological process required by all species to produce a new generation. This process
involves strict hormonal regulation, depending on a connection between the hypothalamus-pituitary-gonadal axis and
peripheral organs. Metabolic homeostasis influences the reproductive functions, and its alteration leads to disturbances in the
reproductive functions of humans as well as animals. For a long time, adipose tissue has been recognised as an endocrine organ
but its ability to secrete and release hormones called adipokines is now emerging. Adipokines have been found to play a major
role in the regulation of metabolic and reproductive processes at both central and peripheral levels. Leptin was initially the first
adipokine that has been described to be the most involved in the metabolism/reproduction interrelation in mammals. In avian
species, the role of leptin is still under debate. Recently, three novel adipokines have been discovered: adiponectin (ADIPOQ,
ACRP30), visfatin (NAMPT, PBEF), and chemerin (RARRES2, TIG2). However, their mode of action between mammalian and
nonmammalian species is different due to the different reproductive and metabolic systems. Herein, we will provide an overview
of the structure and function related to metabolic and reproductive mechanisms of the latter three adipokines with emphasis on
avian species.

1. Introduction

Adipose tissue was initially recognised only as an energy
storage organ. Since the discovery of leptin, an increasing
number of studies have reported that adipose tissue may also
play a role as a dynamic endocrine organ by synthesising and
secreting numerous bioactive factors termed adipokines
[1–4]. In mammals, these molecules are involved in the reg-
ulation of multiple biological processes such as metabolism
(glucose and fatty acid) and reproduction (steroidogenesis,
gonadal development, and gametogenesis).

Energy homeostasis is mostly dependent on lifestyle,
including physical activity and a healthy diet (food variety
and intake), and also on hormonal regulation and a genetic
predisposition to metabolic diseases like obesity. Globally,
the number of obesity cases has almost tripled since 1975
and has become a major public human health problem. In
2016, the number of overweight (body mass index

(BMI)≥ 25 kg/m2) or obese (BMI≥ 30 kg/m2) people reached
1.9 billion people in the world (World Health Organisation
2016). People that suffer from this pathology have a high risk
of developing type 2 diabetes, insulin resistance, cardiovascu-
lar disease, and infertility [5]. One of the female reproductive
pathologies that may be associated with obesity and insulin
resistance is polycystic ovary syndrome (PCOS). PCOS is
characterised by the consensus of Rotterdam as a syndrome
of ovarian dysfunction presenting 2 of the following 3 cri-
teria: oligo- or anovulation, clinical and/or biochemical signs
of hyperandrogenism, and polycystic ovaries without any
sign of other aetiologies (congenital adrenal hyperplasia,
androgen-secreting tumours, and Cushing’s syndrome) [6].
Approximately 75% of PCOS patients are overweight and
central obesity is observed in both normal and overweight
PCOS women [7, 8]. One of the potential biochemical tools
that can be used to give an overview of the state of reproduc-
tive health is the measurement of serum adipokines. Indeed,
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adipokines have recently been shown to be increased in the
serum of overweight/obese PCOS patients compared to
normal-weight patients [9–14]. In males, obesity has been
linked to hypogonadism as well as to a reduction of sperm
quantity and quality [15, 16]. These impairments appear
when the endocrine system is altered. In fact, in obese men,
there is excessive activity of cytochrome P450-alpha, leading
to an increase in the conversion of androgen into oestrogen
and a decrease of testosterone levels [17]. Consequently, tes-
tosterone and FSH plasma levels are negatively correlated
with BMI [18] and testosterone levels increase after bariatric
surgery [19]. In addition, rising plasma levels of leptin and
chemerin are observed, while those of adiponectin are
decreased in obese men [20–22]. The relationship with other
adipokines is still obscure, even though some studies have
focused on their molecular role [23]. Metabolic diseases also
affect farm animals, especially chickens, because of the
genetic and nutritional practices used to optimise meat and
for egg production. The domestic chicken represents both a
widely used biomedical model and an important source of
high-quality protein in the human diet. Despite decades of
intensive genetic selection, the remarkable growth rate of
commercial broiler chickens is still improving but is also
accompanied by deleterious increases in body fat and skeletal
muscle and disorders in metabolism and reproduction.

In this review, we report several traits that make chicken
a viable model for studies of adipose biology, obesity, and
insulin resistance. Most metabolic genes are conserved in
humans, and a number of quantitative trait loci (QTLs) that
have been linked to fatness in chickens contain genes impli-
cated in human susceptibility to obesity or diabetes [24]. In
addition, a recent study described the differential expression
of adipokines in adipose tissue of two lines of meat-type
chickens that have been genetically selected for either high
(FL) or low (LL) visceral abdominal fatness [25]. In addi-
tion, overfeeding of hens led to reproductive deficiencies
linked to the anarchic follicular hierarchy for females and
a delay in sexual maturation in males [26, 27]. Finally, the
egg presents an opportunity to directly manipulate the
developmental milieu and study the consequences on adi-
pose metabolism via in ovo injection. These peculiarities
make chickens a good animal model to understand the rela-
tionship between adipokines, metabolism, and reproduction
and their associated mechanisms.

The most studied adipokine in mammals was leptin, but
its existence in avian species faced extensive controversies
for a long time. Nowadays, the long list of adipokines
reached more than a hundred and included adiponectin,
visfatin, and chemerin, which control glycaemia, energy,
and fertility homeostasis [23, 28]. Their structures and
physiological functions were largely described in mammals,
particularly in humans and rodents, but less is known about
their involvement in avian species. Furthermore, several
adipokines found in mammals like TNFα, resistin, and
omentin have not been mapped to the chicken genome
[29]. Recently, the chicken genes of three novel adipokines
(adiponectin, visfatin, and chemerin) were cloned and evi-
dence showed their potential role as key regulators of food
intake, muscle growth, and reproduction [30–32] in avian

species; however, knowledge of their functional activity needs
to be expanded.

In the current review, after a brief description of the met-
abolic and reproductive peculiarities of avian species and the
impact of metabolism on reproduction in this species, we
will focus on the structure and function of three adipokines
(adiponectin, visfatin, and chemerin) with regard to chicken
metabolism and reproduction.

2. Metabolic Peculiarities in Avian Species

The metabolic system of chicken is closely related to
that in mammals. Glucose is stored as glycogen in tis-
sues and used for energy production through glycolysis.
Glucose is the exclusive source of energy for the brain.
However, chickens constitutively exhibit “hyperglycaemia”
(>200mg/dL), despite rather normal levels of a hyperactive
endogenous insulin. Large doses of exogenous insulin are
required to induce hypoglycaemia; furthermore, chickens
tolerate doses of exogenous insulin that would be lethal to
mammals [33, 34]. The release of insulin by the perfused
chicken pancreas also appears unusual in response to metab-
olites, which are insulinotropic in nondiabetic mammals
[35, 36]. Therefore, chickens are constitutively hyperglycae-
mic and insulin resistant, which makes chickens mimic the
condition of type 2 diabetes in mammals [37]. Glycaemia
levels depend on the line, age, and sex of the animals [38],
and enhanced adiposity in chickens is associated with lower
fasting plasma glucose, which is in contrast to the situation
in mammals [39]. This has been observed in four experimen-
tal chicken lines that were genetically selected for fatness (FL)
versus leanness (LL) [40] or high growth (HG) versus low
growth (LG) [41], where the HG chickens are also fatter than
LG chickens. Interestingly, FL chickens are clearly not hyper-
phagic, since they eat the same amount of feed as LL
chickens. Furthermore, FL chickens are not resistant to
exogenous insulin; in fact, the FL birds are more sensitive
to the hypoglycaemic effect of insulin than LL chickens
[42]. Reciprocally, divergent selection for high or low fast-
ing plasma glucose levels induces an associated change in
adiposity, where chickens with low fasting plasma glucose
are also fatter [39, 43].

In mammals, insulin sensitivity of the various tissues is
an important factor controlling nutrient partitioning. Any
alteration of the insulin signalling cascade in one of the major
metabolic tissues (liver, muscle, or fat tissues) will alter nutri-
ent utilisation and storage and ultimately body composition.
The peculiarities exhibited by chickens for plasma glucose
levels and insulin action compared with mammals have been
described in different reviews [34, 37]. Insulin exerts pleiotro-
pic effects in chicken [44]. To date, insulin receptors, two
receptor substrates (IRS-1 and Shc), and major downstream
components of insulin signalling have been characterised
in chicken liver, muscle, and adipose tissue in different
experimental models [45–47]. Insulin signalling appears to
proceed through tissue-specific cascades in chicken meta-
bolic tissues. In the liver, insulin elicits a signalling cascade
with a similar response to those observed in mammals,
including tyrosine phosphorylation of the insulin receptor
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β-subunit (IRβ), insulin receptor substrate-1 (IRS-1), and
Src homology 2 domain-containing substrate (Shc) and acti-
vation of phosphatidylinositol 3-kinase (PI3K) [45, 46]. The
situation in skeletal muscle is very different. Tyrosine phos-
phorylation of IRβ and IRS-1 and PI3K activity are not
regulated by insulin, whereas event downstream of PI3K
(e.g., Akt and P70S6K activation) is accordingly sensitive
[46]. Furthermore, in several skeletal muscles, chickens and
ducks are not totally insensitive to exogenous insulin, which
enhances the uptake of glucose [48, 49]. Moreover, immuno-
neutralisation of insulin rapidly induces considerable
increases in plasma levels of glucose in young chickens
[44]. Insulin induces a rapid although modest increase in
glucose uptake by chicken myotubes, an uptake that is inhib-
ited by phloretin, an inhibitor of glucose transporters [50].
These findings support the existence of functional glucose
transporters in avian muscle. Nevertheless, the mechanism
of the control of plasma glucose in chickens remains to be
elucidated as immunoreactive GLUT1, but no GLUT4 has
been detected in chicken tissues. Recently, Coudert et al.
suggested that the facilitative glucose transporter protein
GLUT12 could act in chicken muscle as an insulin-
sensitive transporter that is qualitatively similar to GLUT4
in mammals [51, 52]. In chicken adipose tissue, as in muscle,
we reported that insulin also does not elicit a classical
IRβ-initiated cascade, including the downstream steps of
Akt and P70S6K activation [47].

The chicken metabolic system was submitted to large
changes since their body weight and fat are approximately
four times heavier than 50 years ago [53]. The increase in
adipose tissue mass was needed to assume the huge
requirement of meat and egg production [54]. The abdom-
inal (visceral) fat pad is the major fat tissue in chickens.
Adipose tissue growth is a combination of hyperplasia dur-
ing young age and hypertrophia in adult chickens mostly,
which contributes to fat deposition [55]. It expands rapidly
during post hatch. Chicken adipocytes increase volume by
storing fatty acids that come primarily from the liver. In
both chickens and humans, the liver serves as the primary
site of de novo lipogenesis, whereas the rate of lipogenesis
in adipose tissue is about 100 times lower. Hormonal and
nutritional control of hepatic lipogenesis is comparable
between birds and mammals. In chicken, lipogenesis is
low in adipose tissue as compared to liver. Furthermore,
the regulatory mechanisms of lipid metabolism can be dif-
ferent in these two tissues. As previously described, the
existence of the insulin-dependent glucose transporter
(GLUT4) has not been established in chickens. No direct
effect of insulin on glucose transport has been shown in
chicken adipocytes, although an increase in glucose disap-
pearance from the incubation medium of cultured chicken
adipocytes has been taken as indirect evidence of an effect
of insulin on glucose transport [56]. In isolated chicken
adipose tissue or adipocytes, insulin slightly stimulates glu-
cose oxidation and the incorporation of acetate-U-14C into
lipids in the presence of glucose. Compared to rat adipocytes,
the insulin stimulation of lipogenesis is slow (~3 hours), is
low in magnitude (30–40%), and requires very high insulin
concentrations [36].

3. Reproductive Peculiarities in Chicken Species

In all birds, the female is the heterogametic sex (ZW),
while the male is homogametic (ZZ). In contrast to mam-
mals, female chickens maintain only the left reproductive
tract (ovary plus oviduct). The ovary is typically organised
in a strict follicular hierarchy consisting of 2 to approxi-
mately 6 preovulatory follicles and ovulates at most a sin-
gle follicle per day. Physiologically, only the largest
preovulatory follicle ovulates every 26–28 h. The character-
istics of ovarian asymmetry and preovulatory follicle hier-
archy are generally believed to be at least in part
reflections of weight reduction for flight [57]. In ad libi-
tum (free access to food) fed hens, the ovarian follicular
hierarchy is disorganised by multiple ovulations resulting
in fertility deficiency and ovarian cancer [58, 59]. As in
mammals, steroidogenesis in preovulatory follicles occurs
within multiple layers of the theca. In birds, theca cells
express aromatase and synthesise oestrogens from andro-
gen precursors that are localised to the externa while preg-
nenolone, progesterone, and androgen precursors are
produced almost exclusively within the theca interna
[60]. The granulosa cells produce progesterone, de novo,
from cholesterol and pregnenolone and has the capacity
to convert progesterone to testosterone but not to oestro-
gen. In contrast to mammals, ovulation in birds is induced
by the stimulatory action of ovarian progesterone derived
predominantly from the granulosa layer of the largest pre-
ovulatory follicle and pituitary LH.

Interestingly, the ovary of the aging domestic hen has
been utilised as a model for human reproductive cancers.
This is based upon observations that the hen develops
spontaneous ovarian/oviductal tumours with high inci-
dence (estimated in 30–35% of hens by 3.5 years of
age); the tumours are associated with the accumulation
of ascites fluid; plus, they biochemically and histologically
resemble human tumours of epithelial origin [61]. Fur-
thermore, birds offer excellent models to study the mech-
anism and function of hormone-mediated maternal effects
since the embryo develops outside the mother’s body,
facilitating the measurement and manipulation of early
hormone exposure. Finally, another peculiarity in female
birds is that the oviduct is able to store sperm for a pro-
longed period. The sperm storage tubules (SST) are
located in the uterovaginal junction of the oviduct, where
sperm can be stored and survive for a few weeks after
insemination or natural mating [62]. Nowadays, the
advantage of prolonged sperm storage and survival in
the oviduct of laying hens is utilised in practical poultry
production systems. Indeed, this peculiarity enables laying
hens to produce a series of fertile eggs following a single
copulation event or artificial insemination. In the male
chicken prepubertal layer, anaerobic glycolysis in the testis
may participate in sertoli cell proliferation, which may
improve meiotic processes and consequently sperm produc-
tion [63]. Finally, unlike mammals, birds do not possess
a pampiniform complex (venous and arterial complex
which makes it possible to maintain the intratesticular
temperature constant).
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4. The Metabolic Impact on Reproductive
Performances in Chicken Species

In birds, like all other species, nutrition, more particularly
energy metabolism, influences the reproductive function.
Models of hyperphagic birds have shown the negative effect
of overfeeding in both sexes, while a dietary restriction dur-
ing their growth increases oviposition rates and the duration
of the fertile period.

4.1. Relationship between Growth, Restriction, and Fertility.
In chicken selected for meat production, the rapid growth
of selected individuals is almost always accompanied by an
impairment of maximum reproductive capacity in both sexes
[64]. The case of broiler lines is typical: the selection of fast-
growing lines for more than 60 years was accompanied, in
the males of these lines, by a very high sexual precocity. This
great “spontaneous” precocity results in the appearance of
testicular spermatozoa from the age of 11-12 weeks in
roosters. It also results in relatively low maximum testicular
development and testicular regression from the age of
43–45 weeks. In addition, an increasing proportion of these
cocks (around 40–60% of the total) showed a shorter breed-
ing season, which leads to replacing them well before the
end of the laying period in females, sometimes causing severe
problems in social behaviour. In 1990, Reddy and Sadjadi
estimated that males had a decreased ability to fertilise eggs
by about 0.5% for each new generation [65]. However, the
excessive growth of males is usually accompanied by hyper-
phagic behaviour due to the overconsumption of food in
relation to their needs. In females, the increase in weight
induces the anarchic development of follicles, which can lead
to the coexistence of several follicular hierarchies that disrupt
ovulation [66]. A relationship between the weight of chickens
at sexual maturity and the number of large follicles growing
on the ovary has been shown [67].

For both sexes, the maintenance of reproductive perfor-
mance (e.g., spawning and fertility) according to the standard
of the strain can be assured only if strict food restriction is
applied at a very young age (2-3 sem after hatching). Thus,
the control of body weight via food restriction makes it pos-
sible to preserve in males (a) a morphology and reduction of
locomotor disorders induced by overweightness, compatible
with mating [68]) and (b) an acceptable fertility at least
during the first part of the sexual season [69–71]. However,
it appears that the application of restrictions will have side
effects on behaviour, such as pecking [72].

4.2. Overfeeding-Fertility Relationship. In birds, as previously
described, liver function has some specificities compared
to mammals. During food intake, the lipids absorbed in
the intestine will first cross the liver, where they can be
collected and used before reaching the bloodstream [73].
In addition, the intake of dietary carbohydrates will stim-
ulate lipid synthesis. In birds, the liver is also the main site
of de novo lipogenesis, including triglyceride synthesis and
also, as in mammals, phospholipids and cholesterol [74].
These triglycerides produced by the liver are either incor-
porated in VLDL (very low-density lipoprotein) and then

transported by the blood to growing oocytes, adipocytes,
and muscle tissue or can be stored in the liver. In birds,
the liver also produces vitellogenin, which acts on ovarian
function. The ovary can also interact with liver activity,
since both vitellogenin and hepatic VLDL production are
stimulated by oestrogen [75].

Although there is no real obesity in poultry, unlike mam-
mals, the overweightness observed is rather associated with
fast-growing lines (strain meat) that can have a behaviour
of hyperphagia. Models of overweight birds (ad libitum food
or gavage) have provided a better understanding of the con-
sequences of overfeeding on reproductive function in both
sexes. Thus, in roosters, gavage-induced obesity decreases
sperm production by 50% and reduces egg production in
chicken. In males, this drop in fertility is the result of a
decrease in testicular weight (approximately 30% in 4 weeks),
which is accompanied by a decrease in testosterone and an
increase in intratesticular cholesterol and an internal tem-
perature of 0.3°C [76]. Thus, the increase in temperature
following the increase in energy resulting from gavage
would lead to an alteration in the functional state of the
spermatogonia stem, thereby causing a decrease in the
production of spermatozoa.

In the immature female, significant body weight is often a
consequence of excessive consumption in comparison to
their needs, which causes the accelerated development of
the reproductive system at the time of sexual maturity
[77, 78] and ovarian hyperactivity. Although the production
of an egg is a process requiring a lot of energy, an excess of
energy decreases the production of functional oocytes by
causing dysregulation of the follicular hierarchy [79]. An
increase in the frequency of multiple ovulations or close
ovulation leads to a higher incidence of abnormal eggs
(deformed, soft, etc.). Multiple ovulations lead to the appear-
ance of “double eggs” (eggs with two egg yolks), whereas
close ovulations usually lead to the appearance of a first
“normal” egg, with the second being smaller, deformed, and
presenting calcification defects [80]. Walzem et al. studied
the effect of overfeeding on hepatic lipoprotein production
using the laying hen as a model. They observed an increase
in the diameter of lipid vesicles of VLDL type, which have
the peculiarity in hens of having an identical size of approx-
imately 30nm. This alteration in physicochemical properties
modifies the blood transport to the follicle under develop-
ment [80]. Eventually, this lack of transport leads to a cessa-
tion of yolk deposition in growing follicles. In such females,
moderate quantitative restriction or a limitation of dietary
energy intake (“qualitative” restriction) is usually sufficient
to restore the optimal ovulation rate [78, 81, 82].

All together, these findings show that chickens, in the
same way as mammals, do not escape reproductive disor-
ders in the case of metabolic dysfunction. Various hor-
mones, including growth hormone, insulin-like growth
factors (IGFs), and insulin, have been proposed as potential
mediators affecting reproductive function. However, the
interactions between the reproductive endocrine axis and
the metabolic axis have not been clearly determined. Adipo-
kines represent good candidates for such reproductive-
metabolic interactions.

4 International Journal of Endocrinology



5. Leptin Controversy in Avian Species

In mammals, leptin was discovered as the first obesogenic
gene in 1994 by Zhang et al. [4]. Clinical investigations as
well as mice in vivo studies proved that leptin is a key regula-
tor of energy homeostasis and mediates satiety signals to the
central nervous system [83]. Leptin secreted from adipocytes
is clearly positively related to adipose tissue masses and is
secreted more by subcutaneous than visceral adipose tissue
[84]. In accordance with this finding, circulating leptin
remains elevated in obese patients and is associated with
reproductive functions [85, 86]. The leptin gene has also been
cloned in other mammalian species such as primates,
rodents, and porcine, ovine, bovine, and canine species
and shares a close homology with the mouse leptin gene
[87–92]. However, in chicken, subsequent studies have
brought conflicting results regarding leptin gene cloning.
First, Taouis et al. and Ashwell et al. reported avian leptin
sequences, after which Friedman-Einat et al. contradicted
their findings [93–95]. Thus, the leptin gene was consid-
ered for a decade to be missing from the avian genome.
However, 2 or 3 years ago, leptin genes were discovered in
several bird species: in zebra finch (Taeniopygia guttata),
rock dove (Columba livia), falcon (Falco peregrinus), and
quail (Coturnix japonica) [96–99]. More than 20 years after
the characterisation of leptin in mammals, Seroussi et al.
identified the leptin (LEP) genes of chicken (Gallus gallus)
and duck (Anas platyrhynchos) [100, 101]. These newly iden-
tified avian LEP proteins share only 26–30% identity with
human LEP. This group suggests an autocrine/paracrine
mode of action for bird leptin instead of it being a circulating
hormone, as in mammals. Chicken leptin mRNA was highly
correlated with leptin receptor (LEPR) expression (except in
the pituitary) and was reported to be mostly expressed in the
brain, with LEPR expressed mostly in the pituitary. Similar to
other avian species and conversely to humans, chicken leptin
mRNA is not highly expressed in adipose tissue and, similar
to zebra finch, is not expressed in the liver [97, 100]. The
intramuscular administration of leptin antibodies induces
feed intake and increases glycaemia and lipaemia, which
mimic the effect of leptin depletion in the ob/ob mouse
model, and increases the expression of the leptin receptor
in adipose tissue, the liver, and muscle [102]. Moreover, a
recent study showed no effect of a chicken leptin peptide on
food intake or behaviour, suggesting that chicken leptin is
not sufficient to mediate effects on appetite in the brain
[103]. The in vivo injection of leptin also improved the
negative effects of fasting on ovarian function by attenuating
follicular apoptosis, delaying the cessation of egg laying and
influencing ovarian steroidogenesis [104]. Thus, the role of
leptin in avian species is still unclear and chicken leptin likely
has a different physiological role in birds than in mammals.
Two independent studies report that approximately 274 to
640 protein-encoding genes that are present in the genomes
of most vertebrate lineages including humans are missing
from 60 bird genomes [105, 106]. A recent study based on
the phylogenic evolution of genome supported the hypothe-
sis that other adipokines, including TNFα, resistin, and
omentin, might be missing from the chicken genome [29].

However, Lovell et al. brought new arguments to contradict
the absence of some genes in the bird genome, especially
due to their location in GC-rich regions and the technical
limitations to identifying them [107]. Based on this hypothe-
sis, Bornelöv et al. conducted a de novo transcriptome assem-
bly and identified 191 new GC-rich genes in chickens,
including TNFα [108]. One year later, Rohde et al. reported
the identification and functional characterisation of the avian
orthologue of TNFα [109]. An additional study also indicated
that TNFα mRNA was poorly expressed in the visceral fat of
female broilers and layer chickens and was not affected by
feed deprivation [110]. These recent data open new debates
on the inexistence of other adipokines considered missing
from the chicken genome; if they are identified, more inves-
tigations will be needed to determine their potential involve-
ment in the endocrine control of metabolic and reproductive
functions in chicken.

6. Adiponectin

6.1. Structure and Expression of Adiponectin and Its
Receptors. Adiponectin cDNA was isolated from human
adipose tissue in 1996 by Maeda et al. as the adipose most
abundant gene transcript 1 (apM1) [111] and in parallel from
murine fibroblast cell lines (AdipoQ) by Hu et al. [112]. The
15.8 kb adiponectin gene encodes a 26 kDa protein that was
described for the first time by Scherer et al. and designated
as adipocyte complement-related protein (ACRP30) [113].
The adiponectin protein was also extracted from human
plasma [114], where it was considered the most abundant
adipokine, ranging between 5 and 30mg/L. Adiponectin is
secreted into the blood from adipocytes with a higher serum
level associated with the female gender and inversely related
to body weight. It is found in cells and plasma in three
major forms: trimers, hexamers, and high-molecular weight
(HMW) [115]. In addition, a smaller fragment generated by
the proteolytic cleavage of full-length adiponectin gives rise
to a globular domain of protein gAd which is secreted in
the plasma. Among them, the HMW form plays important
roles in the regulation of insulin signalling and is closely
associated with peripheral insulin sensitivity [116]. In
patients with obesity or type 2 diabetes, plasma levels of
HMW adiponectin are decreased [117, 118] and a reduction
in HMW adiponectin levels, rather than total adiponectin
levels, contributes to the aetiology of obesity-associated
diseases [119]. Adiponectin is able to bind three kinds of
receptors: AdipoR1, AdipoR2, and T-cadherin. The first
two consist of seven transmembrane domains, with the
opposite topology to G-protein-coupled receptors in which
the N-terminal region is cytoplasmic, while the C-terminal
region is extracellular [120]. The binding of adiponectin to
AdipoR1 preferentially results in the activation of AMPK
pathways, whereas the adiponectin/AdipoR2 interaction
induces the stimulation of the PPARα (peroxisome
proliferator-activated receptor alpha) signal. These receptors,
although expressed ubiquitously, have different tissue distri-
butions. AdipoR1 has a predominant location in skeletal
muscle and endothelial cells, while AdipoR2 is mainly
expressed in the liver. The third receptor is a glycosyl-
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phosphatidylinositol receptor, belonging to the cadherin
family, which lacks a transmembrane domain. The intracel-
lular signalling connected to this receptor seems to require
other unidentified coreceptors or AdipoR1/AdipoR2.

In chicken, the coding region of chicken adiponectin
shares 67% and 65% identity with human and mouse,
respectively [121]. In addition, the chicken ADIPOR1
cDNA was found to be 80–83% homologous to human,
mouse, rat, or pig ADIPOR1 cDNA, while the deduced pro-
tein sequence was 91% similar to mammalian ADIPOR1.
Similarly, the chicken ADIPOR2 cDNA was 76–78% homol-
ogous to human, mouse, or pig ADIPOR2 cDNA, while the
deduced protein sequence was 82% similar to mammalian
ADIPOR2 [122]. Adiponectin and adiponectin receptor
genes are ubiquitously expressed in various tissues (Table 1)
[123, 124], and the expression of the adiponectin system (adi-
ponectin, ADIPOR1, and ADIPOR2) in adipose tissue and
muscle depends on the gender and age of the animals [125].
In adipose tissue, adiponectin mRNA was higher in
154-day-old females than in males and ADIPOR1 mRNA
was higher in 154-day-old males than in females. Adiponec-
tin and ADIPOR2 mRNA were higher, and ADIPOR1
mRNA was lower, in thigh muscle in female compared with
male chickens. Furthermore, the adiponectin plasma levels
are lower in 8-week-old chickens which have more abdomi-
nal fat pad mass relative to body weight than 4-week-old
chickens, suggesting that adiposity or age influence the
adiponectin plasma levels in chickens [126]. In addition,
the adiponectin gene may be associated with the initiation
and growth processes of adipose tissue deposition in chickens
[127, 128]. Chicken fed ad libitum develop more abdominal
adipose tissue which is accompanied by an increase in
adiponectin mRNA expression in adipose tissue [128].

6.2. Role of Adiponectin. In mammals, basic science studies
have shown the beneficial effects of adiponectin on various
physiological functions, including glucose homeostasis, food
intake, apoptosis, oxidative stress, and atherosclerotic
processes; so, this molecule usually has been considered a
beneficial adipokine [129, 130]. For example, adiponectin
is known to play key roles as an insulin sensitiser and an
anti-inflammatory regulator, in addition to the regulation
of glucose metabolism and fatty acid breakdown [130]. In
wild-type and diabetic mice, a two- to five-fold increase in
circulating adiponectin levels can reduce plasma glucose
levels [131]. The injection of adiponectin in obese and type
1-diabetes mice models displaying hyperglycaemia and
severe hyperinsulinaemia restored normal circulating levels
of glucose [131]. Furthermore, adiponectin knockout mice
fed with a high-fat diet develop glucose intolerance and
severe hepatic insulin resistance [132]. Chronic treatment
with globular adiponectin resulted in decreased body weight
and adipocyte areas in high-fat diet-fed rats accompanied by
an increase in PPARγ expression in adipose tissue that pre-
vents the dysregulation of lipolysis [133]. There were strong
inverse associations between circulating HMW adiponectin
and intramyocellular lipid content in human skeletal muscle
[134]. Adiponectin also enhances AMPK activity in the
arcuate hypothalamus (ARH) via its receptor AdipoR1 to
stimulate food intake in mice [135]. In addition, several
reports have indicated an association between low adiponec-
tin levels and an elevated risk of various cancers (breast,
endometrial, and gastric). Concerning the reproductive func-
tions, plasma adiponectin levels were found to be 4-fold
higher in sexually mature versus sexually immature mice
[136]. In the ovary, adiponectin and its receptors appear to
be involved in steroidogenesis in a different manner

Table 1: Expression of adipokines (visfatin, adiponectin, and chemerin) and adipokine receptors (ADIPOR1, ADIPOR2, CMKLR1, GPR1,
and CCRL2) in the main metabolic and reproductive tissues in chicken.

Adipose tissue Liver Muscle Brain Ovary Testis References

Visfatin
mRNA + + + + + + [161, 162, 206, 207]

Protein nd nd + nd + + [180,185]

Adiponectin
mRNA + + + + + + [119, 144, 145, 206, 207]

Protein + + + nd + + [117, 118, 121, 145]

Chemerin
mRNA + + + nd + nd

[206, 207]
Protein nd nd nd nd nd nd

ADIPOR1
mRNA + + + + + + [119, 143, 144, 145, 206, 207]

Protein nd nd nd nd + + [118, 145]

ADIPOR2
mRNA + + + + + + [119, 144, 145, 206, 207]

Protein nd nd nd nd + + [118, 145]

CMKLR1
mRNA + + + +

[206, 207]
Protein nd nd nd nd nd nd

GPR1
mRNA + + + + nd

[206, 207]
Protein nd nd nd nd nd nd

CCRL2
mRNA + + + + nd

[206, 207]
Protein nd nd nd nd nd nd

+: detected; nd: not determined.
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depending on the species [137]. In human granulosa cells,
both FSH and hCG (as a surrogate for LH) treatment
increased AdipoR2 mRNA by more than 2-fold and stimula-
tion with adiponectin improved hCG-induced progesterone
production 3-fold [138]. In porcine follicular cells, adiponec-
tin increases steroidogenic acute regulatory protein (StAR)
transcript abundance but reduces cytochrome P450 aroma-
tase expression [139]. Similarly, adiponectin inhibits insulin-
induced progesterone and androstenedione production in
bovine theca cells [140]. In our lab, we showed that adiponec-
tin decreases insulin-induced steroidogenesis and increases
IGF1-induced proliferation of cultured bovine granulosa cells
[141]. In males, the expression of AdipoR2 appears to be
critical for testicular function since AdipoR2-deficient
knockout mice exhibit reduced testis weight characterised
by atrophy of the seminiferous tubules and aspermia, while
plasma testosterone levels remained unaffected [142]. Stim-
ulation with recombinant adiponectin also inhibited basal
and human hCG-stimulated testosterone secretion in rat-
cultured Leydig cells [143]. The role of adiponectin in
the hypothalamic-pituitary-gonadal axis and in the PCOS
pathology has been recently reported by Rak et al. [137].

In broiler chickens, Tahmoorespur et al. showed that adi-
ponectin mRNA expression in adipose tissue was inversely
related to chicken belly fat deposition levels [128]. Adiponec-
tin has a remarkable effect on the impairment of adipocyte
differentiation, which contributes to the negative regulation
of fat deposition in chicken [144]. Yan et al. observed that
adiponectin inhibited lipid deposition and the differentiation
of chicken preadipocytes through the p38 MAPK/ATF-2 and
TOR/p70 S6 kinase signalling pathways [145]. Chicken glob-
ular adiponectin inhibits lipid deposition in adipocytes by
suppressing the expression of CEBP and FAS, while increas-
ing the expression of ATGL. The mechanism is explained by
the observations that globular adiponectin stimulates p38
MAPK/ATF-2 activation and suppresses the TOR/p70 S6
kinase pathway [146]. More precisely, the ADIPOR1 gene
is implicated in metabolism and/or fat deposition in broilers
[147]. In chicken adipocytes, adiponectin also regulates mito-
chondrial biogenesis by inhibiting lipid accumulation and
activating the AMPK/ACC signalling pathway [148]. In the
muscle of broilers, rosiglitazone (antidiabetic drug) increases
circulating adiponectin levels while dexamethasone (gluco-
corticoid anti-inflammatory drugs) has opposite effects and
adiponectin has an antilipogenic effect through the p38
MAPK/ATF2 signalling pathway [145]. For the same body
weight and egg production, the high residual feed intake
chicken line (R+: fat line) consumes 40% more food than
their counterpart low residual feed intake chicken line
(R−: lean line). In the hypothalamus, ADIPOR1 expression
is increased in R+ as compared to R− chickens, suggesting a
role for this receptor in food intake regulation in chicken
[149]. In reproduction, the adiponectin gene was found in
the chicken ovary to be mainly expressed in theca cells and
is suggested to exert a paracrine or autocrine effect on ovarian
steroidogenesis. Adiponectin increased IGF-1-induced pro-
gesterone secretion in F2 and F3/4 follicles, whereas it
halved progesterone production in response to LH and
FSH in F3/4 follicles [150]. In male broiler breeder

chickens, the expression of adiponectin and its receptors
has been studied in testes [151]. A significant elevation of
ADIPO1 and ADIPOR2 gene expression is observed in sex-
ually mature chickens, which could be a result of the higher
metabolic activity related to spermatogenesis, testicular ste-
roid hormone production, and the transportation of sper-
matozoa and testicular fluid [151].

Globally, adiponectin limits lipid deposition in adipose
tissue and induces food intake through AdipoR1/AMPK sig-
nalling in the human and chicken adipose hypothalamus
(Figure 1(a)). Also, adiponectin as an insulin sensitiser could
be tested in chicken, especially for their natural insulin resis-
tance. However, the effects of adiponectin on steroidogenesis
are dependent on the species, suggesting different physiolog-
ical regulations (Figure 2).

7. Visfatin

7.1. Structure and Expression of Visfatin. Visfatin was first
discovered as a growth factor called pre-B cell colony-
enhancing factor (PBEF) in 1994 from human peripheral
blood lymphocytes that are able to initiate the maturation
of B-cell precursors (135). Visfatin has also been considered
a type II nicotinamide phosphoribosyltransferase (NAMPT)
due to its ability to synthesise nicotinamide mononucleotide
(NMN) from nicotinamide and 5′-phosphoribosyl-1′-pyro-
phosphate. NMN is a therapeutic target for treating meta-
bolic disorders by improving glucose clearance in obese and
diabetic mice models [152–154]. The identification of visfatin
as an adipokine has been controversial since an active bind-
ing site of the insulin receptor was discovered. The adipo-
genic and insulin mimetic action of visfatin depends on the
preparation of recombinant visfatin. To date, only four differ-
ent recombinant visfatin forms were validated [155–157].
Recently, the crystal structure of rat [158, 159], mouse
[160], and human [161, 162] visfatin has been solved and
revealed a dimer organisation separated by an active site. In
humans, the visfatin gene is on the long arm of chromosome
7 and encodes a 52 kDa secreted protein [163]. Visfatin
expression has been studied to a large extent in humans and
also in animal models [164–166] including chicken [167].

The full length of the chicken visfatin gene has been
cloned from adult liver. The chicken visfatin protein had high
amino acid sequence similarities with those of humans
(94%), rodents (94%) [167] and other agronomic species
(94%) [168]. The chicken visfatin mRNA was detected in
many tissues such as the brain, heart, intestine, kidney, liver,
lung, muscle, spleen and gonads (Table 1) [167, 169]. Not
surprisingly, visfatin was also expressed in adipose tissue
without any difference between subcutaneous and visceral
fat tissues in humans [170] and chicken [167]. However, Li
et al. showed that visfatin was differentially expressed in adi-
pose tissue depending on the chicken species, with higher
mRNA levels in broiler chicken (fast growing) than in silky
flow (low growing), suggesting a potential role as a marker
of fat accumulation [168]. In addition, visfatin expression is
sexually dimorphic and depends on tissue types. In chicken,
it was described more as a myokine than an adipokine,
because of its main expression in muscle and its ability to
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decrease the expression of MYF5 expression (a myogenic
factor) in myoblasts [31]. One of our recent studies also dem-
onstrated that visfatin was more expressed in the theca than
in granulosa cells in turkeys [32] and that its plasma level
was higher at the end of the laying period compared to the
beginning. We also described its expression in the ovarian
cortex, granulosa, and theca cells of chicken hierarchical
follicles. To date, no visfatin receptor has been identified.

7.2. Role of Visfatin. Visfatin is a pleiotropic protein involved
in a large spectrum of physiological processes from aging to
atherosclerosis [171]; here, however, we will focus only on
metabolic and reproductive functions. Physiological studies
have revealed a strong role of visfatin on glucose, fatty acid
metabolism, and muscle growth. A loss of visfatin in mice
adipose tissue impaired adipose tissue functions such as
inflammation, severe insulin resistance via the synthesis of
nicotinamide that is one of the oldest drugs known for its
antilipolytic effects [172], mediated by its interaction with
GPR109A, a receptor on the adipocyte plasma membrane
[173]. Visfatin also improves glucose-stimulated insulin
secretion in pancreatic β-cells by increasing nicotinamide
adenine dinucleotide biosynthesis, while visfatin haplodefi-
ciency causes impaired glucose tolerance in mice, which
was rescued after NMN administration [174]. Visfatin has
become an emerging adipokine due to subsequent studies
that have brought proof regarding it positive association with
obesity and type 2 diabetes [175, 176]. In rats, the injection of
visfatin in the arcuate nucleus of the hypothalamus plays an
orexigenic role via the modulation of dopamine, CART,
and CRH peptide activity [177]. In addition, the depletion
of visfatin in mice leads to a decrease in intramuscular

NAD synthesis and consequently induced fibre degeneration
and progressive loss of strength and treadmill endurance
muscle [178]. On the other hand, the visfatin concentration
profile in follicular fluid is a potential indicator for ovarian
reserve for woman undergoing ovarian stimulation regarding
to the positive correlation between its expression in follicular
fluid and the number of oocyte retrieved [179]. The visfatin
expression in ovarian mice increased with advancing follicu-
lar development [180]. Choi et al. [180] also reported that the
administration of low concentrations of visfatin during
superovulation improved the fertility of aged female mice.
Furthermore, visfatin increases IGF-1-induced progesterone
and oestradiol production in human and bovine-cultured
granulosa cells [181, 182]. Visfatin protein expression was
detected in human sertoli cells and Leydig cells and in the tail
and the connecting piece of spermatozoa. Visfatin protein
expression and release are higher in immature than in mature
ejaculated spermatozoa leading to the increased production
of nicotinamide without any effect on sperm mobility and
viability [183]. Visfatin also seems to be involved in the reg-
ulation of rat testicular activity since its testicular decreasing
expression is positively correlated with serum testosterone
levels and testis weight in a diabetic rat model [184]. In
addition, visfatin increases testicular steroidogenesis from
purified rat Leydig cells [185].

In chickens, there is increasing evidence that visfatin
is involved in the regulation of muscle growth [186],
metabolism [31], food intake, and reproductive functions
[187, 188]. For instance, a polymorphism in exon 7 of the vis-
fatin gene was positively associated with the body weight of
4- and 6-week-old chickens, as well as the body slanting
length, fat bandwidth, breast muscle water loss rate, and

Adiponectin
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Lipid deposition Lipid deposition
[127] [122,138,142]
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Lipid deposition Lipid deposition
[128] [139]
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(a) (b) (c)
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Figure 1: Comparison of adiponectin (a), visfatin (b), and chemerin (c) effects on main metabolic functions in mammal versus chicken.
nd: not determined; + correlated: positively correlated; − correlated: negatively correlated; ↑: increase; ↓: decrease.
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breast muscle fibre density and breastbone length of 4-week-
old chickens [189]. The central injection of visfatin in chicks
induced an increase in their food intake, suggesting that
visfatin is a potent orexigenic factor [187]. In addition,
supplementing the chicken diet with chenodeoxycholic acid
induced a decrease in feed intake and body weight associated
with a reduction of the expression of visfatin in the liver. This
suggests a potential role of visfatin in hepatic lipogenesis
[190]. Similarly to insulin, recombinant chicken visfatin
may induce the differentiation of 3T3-L1 cell lines by increas-
ing the mRNA expression of adipocyte differentiation
markers (PPARγ, aP2, FAS, and C/EBPα) [168]. Visfatin also
acts in reproductive tissues such as ovarian (theca and gran-
ulosa cells) and testicular cells (sertoli cells, Leydig cells, and
spermatozoa). More precisely, visfatin inhibits IGF1-induced
progesterone production in hen granulosa cells and its
protein levels in the testis and plasma increase in adults
compared to prepubertal chickens, suggesting a potential role
in regulating testosterone production [188, 191].

Thus, chicken visfatin and mammalian visfatin act as an
orexigenic factor, regulating muscle growth, and their
expression is positively correlated with body weight
(Figure 1(b)). However, chicken visfatin plays an opposite

role on male and female steroidogenesis compared to mam-
mals (Figure 2). This makes chicken a good model to deepen
our knowledge on the regulatory mechanisms induced by
visfatin in food intake, adipogenesis, and myogenesis. On
the other hand, the insulin mimetic activity of visfatin could
be interesting to confirm in chicken.

8. Chemerin

8.1. Structure and Expression of Chemerin. Chemerin is
an adipose cytokine which was previously known as
tazarotene-induced gene 2 (TIG2) and retinoic acid receptor
responder protein 2 (RARRES2) [192]. Chemerin is a
recently identified adipokine that is closely related to the
pathogenesis of metabolic syndrome [193]. It is secreted as
a 143-amino acid inactive prochemerin, which is then hydro-
lysed by the enzymatic cleavage of 5 to 7 amino acids from its
carboxyl terminus in the extracellular compartment. Two
neutrophil serine proteases, elastase and cathepsin G, remove
6 and 7 amino acids, respectively, to generate an active form.
Plasmin and tryptase are also able to cleave 5 amino acids
from the carboxyl terminus followed by cleavage of the
carboxyl-terminal lysine by carboxypeptidases N and B that
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Figure 2: Comparison of adiponectin, visfatin, and chemerin effects on female (a) and male (b) steroidogenesis in mammal (a, b) versus
chicken (a). IGF1: insulin like growth factor 1, FSH: follicle-stimulating hormone, LH: luteinizing hormone, hCG: human chorionic
gonadotropin.

9International Journal of Endocrinology



also result in the active chemerin [194] (Figure 3(a)). Che-
merin is secreted from white adipocytes and expressed in
several tissues, mainly white and brown adipose tissue and
the liver, pancreas, placenta, skin, kidney, adrenal gland, lung,
intestine, ovary, and testis [195–198]. Chemerin exerts
its physiological functions through the binding of three G
protein-coupled receptors: the chemokine-like receptor 1
(CMKLR1), G protein-coupled receptor 1 (GPR1), and che-
mokine (C-C motif) receptor-like 2 (CCRL2) [195, 199].
CMKLR1 is coupled to the Gi/o family of G proteins and
inhibits the cAMP signalling pathway while promoting phos-
pholipase C, PI3K, MAPK, calcium mobilisation [194], and
β-arrestin recruitment, which activate MAPK (ERK1/2)
[200]. The GPR1 sequence is closely related to CMKLR1 with
more than 40% identity and activates the same pathway
[201]. In contrast, CCRL2 does not seem to promote any sig-
nalling pathway and does not induce receptor internalisation
[200] (Figure 3(b)).

In avian species, chemerin and their receptors are
expressed in peripheral tissues and ovarian cells (Table 1).
In turkeys, chemerin mRNA was mainly present in the liver
compared to the heart, adipose tissue, and muscles, while
CMKLR1 and GPR1 mRNAs were ubiquitous. CCRL2
mRNA was highly expressed in pectoral muscle and adipose

tissue compared to the liver, heart, and leg muscle. In addi-
tion, chemerin and its receptors were more expressed in
theca cells compared to granulosa cells in both preovulatory
follicle 1 and 3/4 hierarchical follicles [32].

8.2. Role of Chemerin. Chemerin is involved in the regulation
of blood pressure, inflammation, immune responses, adipo-
cytes differentiation, and carbohydrate metabolism and plays
a key role in metabolic diseases, such as obesity and diabetes
[202]. GPR1 knockout mice fed with a high-fat diet devel-
oped serious glucose intolerance and a test of pyruvic acid
tolerance suppressed glucose-stimulated insulin levels that
consequently increased glycaemia [203]. Similar results were
observed in CMKLR1-knockout mice which developed exac-
erbated glucose tolerance and insulin sensitivity with no
effects on high-fat diet-induced glucose intolerance after cold
exposure [204]. In overweight/obese patients, the chemerin
concentration is rising and is positively correlated with BMI
and waist circumference [20]. Chemerin levels are reduced
after bariatric surgery [205]. In bovine intramuscular adipo-
cytes, chemerin also promotes lipolysis in mature adipocytes
and adipogenesis during adipocyte differentiation [206].
These results suggest that the chemerin system could act on
glucose and fat metabolism linked to obesity. Subsequent
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studies have described chemerin to inhibit gonad steroido-
genesis from the testis and ovary and be involved in follic-
ular development [196, 207]. We showed that chemerin
decreased IGF- or FSH-induced progesterone and oestradiol
secretion in cultured granulosa cells [198]. In addition, the
level of chemerin is increased in the plasma and adipose tissue
of patients with PCOS [208], as well as in the plasma of
patients affected by preeclampsia [209]. Chemerin expression
is also increased in the ovaries of rats treated with 5alpha-
dehydrotestosterone (DHT) (mimicking PCOS) that is
associated with a decrease in oestradiol secretion in gran-
ulosa cells and induces apoptosis [210]. In mice with
CMKLR1 gene deletions, the effects of chronic DHT treat-
ment on ovarian function in experimental PCOS are largely
reduced, suggesting a role of the chemerin system in PCOS
pathology [211]. As already mentioned, PCOS syndrome is,
in some cases, associated with insulin resistance, which can
both be treated with antidiabetic drugs. Metformin, an antidi-
abetic agent, restores physiological plasma chemerin concen-
trations (around 2ng/mL) and decreases chemerin protein
expression in the adipose tissue of women with PCOS, while
insulin increases them, confirming the interrelation between
chemerin, insulin, and reproductive homeostasis [208]. Che-
merin also exerts an important role in male reproductive
functions, including gametogenesis and steroidogenesis. In
humans, chemerin levels in seminal plasma are negatively
correlated with sperm quantity, maturation, and motility
[20]. Chemerin also inhibits in vitro hCG-induced testoster-
one secretion in primary cultured Leydig cells [197]. These
findings suggest that chemerin can regulate steroid secretion
in reproductive organs and may act as a key regulator of
metabolic diseases such as obesity and PCOS.

Recently, we described that chemerin and its receptors
are expressed in chicken adipose tissue, liver, muscle, and
ovarian cells. Our results indicated that plasma chemerin
levels are negatively correlated with the fattening state of
broiler hens. We also found that a restricted diet applied from
3 to 39 weeks begins to increase the plasma chemerin levels in
hens during the laying period (18–39 weeks) and decreases
the mRNA expression of chemerin in the liver and adipose
tissue compared to ad libitum hens at 39 weeks. Furthermore,
fish oil supplied (1% of the diet) from 9 to 39 weeks decreased
the plasma levels of chemerin from the beginning of the
treatment to the end of the prepubertal period (21 weeks)
in broiler hens and decreased the mRNA expression of
CCRL2 in adipose tissue and muscle and those of CMKLR1
only in adipose tissue [212]. In addition, we found that
chemerin was negatively correlated with the percentage of
hatchability of fertile eggs in broiler hens and the weight of
preovulatory follicle 1 was positively correlated with the
expression of chemerin in granulosa cells and that the pro-
duction of progesterone by granulosa cells was negatively
correlated with the expression of chemerin in theca cells.
Restrictedly fed hens expressed lower chemerin mRNA levels
in theca cells from preovulatory follicles 1 and 3 than ad
libitum-fed hens. Fish oil supplement (1% of the diet)
increased the mRNA expression of CMKLR1 in theca cells
of preovulatory follicle F1 and decreases those of chemerin
in theca cells of preovulatory follicle F3 [213]. The chicken

chemerin gene sequence shares 81% identity with the turkey
chemerin sequence. In turkeys, the plasma concentration of
chemerin decreases at the end of the laying period and is
negatively correlated with levels of plasma cholesterol, tri-
glycerides, and phospholipid levels during the entire laying
period [32]. The literature on chicken chemerin is poorly
enriched and further experiments are needed to understand
its promising role in metabolism and reproduction.

Finally, not enough studies were conducted in chicken to
draw conclusions. However, regarding our discoveries, che-
merin seems to be involved in the regulation of chicken
metabolism and reproduction but in an opposite way as in
those of mammals (Figure 1(c)).

9. Conclusions

Reproductive dysfunction arising from metabolic dysregula-
tion is mostly associated with obesity and other metabolic
and reproductive syndromes in humans and farm animals.
In this review, we reported that many researches have linked
food intake, body and fat weight, and reproductive function
to plasma adipokines levels or tissue expression, especially
those of leptin, visfatin, and chemerin levels. We particularly
focused on chickens that were submitted to various nutri-
tional, metabolic, and reproductive changes due to their
rapid growth and high production. Chicken is an atypical
species in view of their natural hyperglycaemia, insulin resis-
tance, hepatic fatty acid synthesis, and reproductive system.
Studies on chicken adipokines are emerging, and, regarding
physiological features, chicken appears as an interesting
model for in vivo studies that may provide critical informa-
tion on the roles of adipokines on lipid and carbohydrate
metabolism and the link to reproductive physiology.
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