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Rapid phenotypic evolution of quantitative traits can occur in natural populations on a 23 

timescale of decades or even years1, but little is known about its underlying genetic 24 

architecture2. Theoretical investigations have revealed that genes with intermediate 25 

pleiotropy will, under certain conditions, drive adaptive evolution3-4 but these 26 

predictions have rarely been tested, especially under ecologically realistic conditions. 27 

Here, we performed a resurrection experiment to compare the evolution of multiple 28 

traits across six in situ micro-habitats within a natural population of the plant 29 

Arabidopsis thaliana. We then used Genome Wide Association mapping to identify the 30 

SNPs associated with evolved and unevolved traits in each of these sites. Finally, a 31 

genome-wide analysis of temporal genetic differentiation allowed us to test for selection 32 

acting on these SNPs.  Phenotypic evolution was consistent across all micro-habitats but 33 

GWAS revealed largely distinct genetic bases among sites. Adaptive evolutionary 34 

change was largely driven by a small number of QTLs with intermediate degrees of 35 

pleiotropy under strong selection; this pleiotropy was synergistic with the per-trait effect 36 

size of a SNP increasing with the degree of pleiotropy. In addition to these pleiotropic 37 

QTLs, weak selection was detected for frequent small micro-habitat-specific QTLs that 38 

shape single traits. In this French population, A. thaliana likely responded to both local 39 

warming and increased competition, in part mediated by central regulators of flowering 40 

time such as FLOWERING LOCUS C and TWIN SISTER OF FT. This genetic 41 

architecture, which includes both synergistic pleiotropic QTLs and distinct QTLs within 42 

particular micro-habitats, enables rapid phenotypic evolution while still maintaining 43 

genetic variation in wild populations. 44 

 45 

 46 
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Contemporary and rapid phenotypic evolution has been observed in many natural 47 

populations of plant and animal species1,5, especially during invasion6 and in response to both 48 

global climate change7 and toxic pollution8. A handful of studies have identified the genetic 49 

architecture of contemporary adaptive evolution of qualitative traits (such as industrial 50 

melanism)9 or single quantitative traits (such as herbicide detoxification in weeds or heavy-51 

metal tolerance)10,11. However, the genetic architecture of many traits simultaneously 52 

experiencing contemporary adaptive evolution, especially assayed at the level of whole 53 

genomes, remains unexplored, despite its significance for predicting evolutionary trajectories 54 

of natural populations12.  55 

There are many factors that will impact the evolutionary trajectory of a natural 56 

population. In addition to well recognized factors such as the source of adaptive genetic 57 

variation13,14 and the scenario of environmental change14,15, theoretical studies predict that the 58 

number and effect sizes of alleles underlying multi-trait adaptive evolution depends on the 59 

magnitude of pleiotropy3,4,16. This relationship was first investigated using Fisher’s geometric 60 

model, in which every mutation potentially affects all traits. Under this model, the rate of 61 

adaptation of an allele should decrease with its degree of pleiotropy4 due to the increased 62 

probability of antagonistic effects of a mutation when more traits are impacted. In other 63 

words, the probability that a mutation is advantageous to one trait but detrimental to another 64 

trait increases with the degree of pleiotropy, leading to the concept of the so-called ‘cost of 65 

complexity’4. However, in contrast to the assumptions of the geometric model, laboratory 66 

studies performed on yeast, nematode and mouse have found that the degree of pleiotropy 67 

follows an L-shaped distribution such that most mutations affect only a small subset of 68 

traits3,16. This distribution would diminish the ‘cost of complexity’3,4.  69 
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Of additional importance is the relationship between the degree of pleiotropy and the 70 

per-trait effect size of a mutation (termed pleiotropic scaling)3,16. Most theoretical models 71 

assume that the per-trait effect size of a mutation decreases (invariant total effect model) or 72 

remains constant (Euclidean superposition model) with the degree of pleiotropy4. Laboratory 73 

studies, on the other hand, have found synergistic pleiotropy in which the per-trait effect size 74 

of a mutation increases with the number of traits affected by that mutation3. Because this 75 

scaling property leads to an increased fitness advantage for more pleiotropic mutations, any 76 

cost of complexity is expected to be greatly alleviated4. Consequently, the combination of 77 

restricted and synergistic pleiotropy leads to the prediction that polymorphisms with 78 

intermediate degrees of pleiotropy, while rare, should have the highest rate of adaptive 79 

evolution3,4. This prediction is yet to be tested empirically. 80 

In its most general sense, pleiotropy refers to the shared impact of SNPs. This can 81 

include the effect of a SNP on (i) multiple phenotypic traits in one environment, referred to as 82 

morphological pleiotropy3, (ii) a single phenotypic trait among environments, referred to as 83 

environmental pleiotropy3, or (iii) multiple traits in multiple environments, hereafter named 84 

morpho-environmental pleiotropy. Because wild populations evolve in complex abiotic and 85 

biotic environments, an exploration of the role of pleiotropy requires consideration of the 86 

impact of spatial environmental heterogeneity. In particular, when the same SNPs are favored 87 

in distinct micro-habitats, then the suite of selective effects may combine to drive rapid 88 

adaptive evolution whereas competing demands on a SNP across micro-sites might inhibit 89 

adaptive evolution.  90 

In this study, we aimed to generate a comprehensive and unbiased view of how a local 91 

population of the annual model plant, Arabidopsis thaliana, changed over an eight year period 92 

in nature. During this time period, our natural population experienced climate change while it 93 
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evolved in an environment that is spatially heterogeneous in terms of both biotic and abiotic 94 

factors. Thus, this study adopts the modern standards of ecological genomics to describe the 95 

genetic architecture underlying rapid phenotypic evolution of multiple quantitative traits 96 

within a local plant population in situ. 97 

 98 

RESULTS AND DISCUSSION 99 

Our study focused on the local population TOU-A (East of France; Supplementary 100 

Fig. 1) that experienced an increase in mean annual temperature of more than 1°C over the 101 

last 30 years (Supplementary Fig. 2). The site occupancy by A. thaliana additionally 102 

increased between 2002 and 2007 and remained stable thereafter (Supplementary Fig. 1). 103 

Seeds of 80 and 115 individual plants (hereafter named accessions) were collected in 2002 104 

and 2010, respectively. Previous studies conducted on accessions collected in 2002 showed 105 

that this population has an estimated outcrossing rate of 6%17 and is highly diverse at both 106 

genetic (based on genotyping at 149 SNPs) and phenotypic levels17-20. In addition, the TOU-A 107 

population presents fine-scale spatial variation for a broad range of soil characteristics and is 108 

located between two permanent meadows dominated by grasses (Supplementary Figs. 1 and 109 

3).  110 

A resurrection experiment revealed rapid phenotypic evolution.  111 

To identify phenotypic traits exhibiting evolutionary change within eight years, we 112 

established a resurrection experiment in which the 195 accessions collected in 2002 and 2010 113 

were grown under common environmental conditions. This design enabled us to differentiate 114 

plastic from genetic responses21. The 195 accessions were grown in situ in six representative 115 

micro-habitats, consisting of three contrasting soil types crossed with the presence or absence 116 

of the bluegrass Poa annua, a species frequently associated with A. thaliana20 117 
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(Supplementary Fig. 1). A total of 5,850 plants were scored for 29 traits related to 118 

phenology, resource acquisition, shoot architecture, seed dispersal, fecundity, reproductive 119 

strategy and survival22. We detected significant genetic evolution for 16 out of the 29 traits 120 

(Fig. 1a, Supplementary Table 1). For example, we found a significant mean delay of 6.1 121 

days for bolting time and a significant mean increase of ~7% in the number of fruits produced 122 

on the main stem (Fig. 2a). Interestingly, no evolutionary change was observed for average 123 

total seed production across the six micro-habitats, demonstrating that constant seed numbers 124 

can be maintained through evolution of flexible life-history and individual reproductive traits. 125 

A comparison of our results with the rates of evolution in other plant species23 suggests a 126 

moderate rate of mean phenotypic evolution in the TOU-A population (Fig. 2a). 127 

Analysis of our sequences of the genomes of the 195 accessions (~25x coverage) 128 

confirmed that the mean phenotypic change we observed was not the result of immigration 129 

from other phenotypically diverse populations. We observed extensive genetic variation, 130 

detecting 1,902,592 Single Nucleotide Polymorphisms, only 5.6 times less than observed in a 131 

panel of 1135 worldwide accessions24. However, the TOU-A population appears strongly 132 

genetically isolated from other local populations sampled within 1km (Fig. 3a), confirming 133 

the negligible role of immigration in the observed phenotypic change. 134 

Similar phenotypic evolution associated with strong genotype-by-environment 135 

interactions.  136 

 We dissected the phenotypic evolution within each micro-habitat to test whether local 137 

abiotic and biotic growing conditions affect the genotype-phenotype relationships in the 138 

TOU-A population. Across the 29 traits measured in the six micro-habitats, 144 of these 174 139 

eco-phenotypes displayed significant genetic variance (Fig. 1b), with broad-sense heritability 140 

estimates ranging from 0.20 to 0.87 (mean H² = 0.57, median H² = 0.60; Supplementary 141 
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Table 2). Average values of the phenotypes differed substantially among the six micro-142 

habitats (Fig. 2b, Supplementary Table 1). The proportions (ranging from 22.7% to 76.2%) 143 

and identities of genetically variable traits that evolved in our eight-year timespan also 144 

depended on the micro-habitat (Figs. 1b and 2c). These results highlight the need to consider 145 

fine-scale environmental conditions to obtain an accurate picture of the diversity of micro-146 

evolutionary phenotypic processes occurring within a population.  147 

Although each trait that evolved was consistent in its direction in all micro-habitats 148 

(Fig. 1b), we observed highly significant changes in the ranking of accessions among micro-149 

habitats for most traits, with a mean across-micro-habitat genetic correlation of 0.46 (median 150 

= 0.46, min = 0.04, max 0.89) (Supplementary Table 1, Supplementary Fig. 4). For 151 

example, increased allocation of reproduction to the main stem was consistently observed but 152 

different accessions most strongly manifested this allocation pattern among micro-habitats 153 

(Supplementary Fig. 5). These results are in accordance with previous studies revealing 154 

genotype-by-environment interactions for plant fitness-related traits at the scale of a few 155 

meters25,26. However, the existence of genotype-by-environment interactions does not clarify 156 

the extent of pleiotropy governing phenotypes in alternative micro-habitats: phenotypic 157 

evolution toward the same optimum may be driven by loci harboring alleles differing in the 158 

magnitude of allelic effects across micro-habitats and/or by distinct genetic bases in different 159 

micro-habitats27. 160 

Pleiotropy is restricted and synergistic 161 

 To characterize the genetics underlying these environmentally dependent genotype-162 

phenotype relationships, we used GWA mapping to determine the genetic architecture, the 163 

magnitude of pleiotropy and the extent of pleiotropic scaling. The TOU-A population is well-164 

suited for GWA mapping because it is phenotypically diverse and linkage disequilibrium 165 

(LD) decays to r² = 0.5 within an average of 18 base pairs (Fig. 3b). In agreement with 166 
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limited LD, we observed an L-shaped distribution of the size of LD blocks, with a median 167 

size of 780bp (mean size = 5.5kb) (Supplementary Fig. 6). To verify our ability to finely 168 

map genomic regions associated with phenotypic variation, we first tested for the presence of 169 

significant associations of known functional polymorphisms. We successfully identified three 170 

known functional genes conferring either qualitative or quantitative resistance against 171 

bacterial pathogens when the 195 TOU-A accessions were infected under controlled 172 

conditions. In two of the three cases, the most highly associated SNP (hereafter named top 173 

SNP) was located within the gene (RPS2 and RKS1)19,28 and in the third case it was located 15 174 

bp away (RPM1)29 (Supplementary Fig. 7).  175 

To further assess the efficacy of GWAS mapping in the TOU-A population, we 176 

followed the methodology used in Brachi et al. (2010)30 to calculate enrichments for a priori 177 

candidate genes for bolting time in the six in situ micro-habitats (Fig. 1b). Because bolting 178 

time is a quantitative trait for which the genetic network has been extensively studied, it is 179 

well suited for calculating enrichments for a priori candidate genes. Similar to previous 180 

results for a field trial utilizing 197 worldwide accessions30, the enrichment ratio quickly 181 

dropped with the number of top SNPs in five out of the six micro-habitats, demonstrating that 182 

candidate genes were overrepresented among top-ranking SNPs (Fig. 4a, Supplementary 183 

Fig. 8).   184 

 Here, we illustrate the impacts of genetic architecture, magnitude of pleiotropy and 185 

pleiotropic scaling when considering the 200 top SNPs (0.01% of the total number of SNPs) 186 

for each of the 144 eco-phenotypes that were heritable. Although we observed significant 187 

enrichment for up to the 500 SNPs, focus on only 200 top SNPs is conservative in defining 188 

pleiotropy and increases the fraction of true positives. Our choice of threshold does not 189 

matter: our biological conclusions are robust to successive cutoffs of top SNPs within the 190 

range of 50-500 SNPs, and to three successive cutoffs in terms of the significance of SNPs (-191 
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log10 p-value > 6, -log10 p-value > 5, -log10 p-value > 4; chosen based on van Rooijen et al. 192 

2015, Thoen et al. 2016, Kooke et al. 2017)31,33.  193 

We first compared the genetic architecture among micro-habitats for GWA results 194 

from each of the 144 heritable eco-phenotypes (Supplementary Fig. 9). The number of genes 195 

located within 2kb of the 200 top SNPs ranged from 45 (fruit number on basal branches in 196 

soil B with P. annua) to 141 (maximum height scored in soil B without P. annua) (mean = 197 

105 genes, median = 108 genes; Supplementary Fig. 10). For a given phenotypic trait, the 198 

numbers of associated genes and their corresponding allelic effects sometimes varied widely 199 

across micro-habitats, even when broad-sense heritabilities were similar (Supplementary 200 

Fig. 10, Supplementary Table 2); for one dramatic example, see the results for bolting time 201 

(Fig. 4a, Supplementary Fig. 11). 202 

The extent of pleiotropy for each top SNP was determined by calculating an effective 203 

number of eco-phenotypes, Neff, sharing a given top SNP according to Pavlicev et al. (2009)34. 204 

This statistic corrects for correlations among eco-phenotypes to produce a measure of 205 

pleiotropy that is not inflated. In agreement with previous laboratory observations on yeast, 206 

nematode and mouse3, we found that Neff follows an L-shaped distribution (Fig. 5a). More 207 

than 78% of top SNPs impacted a single trait in a single micro-habitat, indicating that genetic 208 

bases are largely distinct across micro-habitats (Supplementary Fig. 12 and 13), as 209 

illustrated for bolting time (Fig. 4b). As previously noted for yeast, nematode and mouse3,16, 210 

this pattern of restricted pleiotropy is more consistent with the notion of modular pleiotropy 211 

(with genes being organized into structured networks) than universal pleiotropy in Fisher’s 212 

geometric model (i.e. each gene affects every trait)3,4.  213 

Pleiotropic SNPs were most frequently those demonstrating morpho-environmental 214 

pleiotropy. In particular, the relative frequency of morpho-environmental pleiotropy increased 215 
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rapidly with the overall degree of pleiotropy, just as morphological pleiotropy became 216 

relatively less common (Supplementary Fig. 14). Perhaps surprisingly, there were very few 217 

examples of environmental pleiotropy, in which a significant SNP impacted the same trait in 218 

multiple environments. Our observation of the predominance of morpho-environmental 219 

pleiotropy is consistent with previous studies in A. thaliana reporting that the identity of traits 220 

affected by a gene can depend on the abiotic and biotic phenotyping environment35-36 and 221 

highlights the importance of spatial environmental heterogeneity in determining the role of 222 

pleiotropy on phenotypic evolution of a suite of quantitative traits. 223 

We found that the total effect size of a top SNP, calculated by either the Manhattan 224 

distance (TM) or the Euclidean distance ( ୉ܶ),	increased with Neff faster than linearly ( ୑ܶ 	=225 	ܿ∗ ୣܰ୤୤ௗ, d = 1.226 ± 0.003; ୉ܶ 	= 	 ܽ∗݂݂ܰ݁௕, b = 0.724 ± 0.0035; Fig. 5b, Supplementary 226 

Fig. 13 and 15, Supplementary Tables 3 and 4). This empirical pattern of synergistic 227 

pleiotropy contrasts with most theoretical models, which typically assume that the per-trait 228 

effect size of a mutation decreases (d = 0.5 or b = 0, invariant total effect model) or remains 229 

constant (d = 1 or b = 0.5, Euclidean superposition model) with the degree of pleiotropy4. 230 

While previously observed in controlled laboratory conditions3, our study reveals that such a 231 

pattern of synergistic pleiotropy can also extend to phenotypes scored in ecological realistic 232 

conditions. It should be noted that the non-linear relationship between total effect size and 233 

degree of pleiotropy is robust to successive decreasing cutoffs of Neff (Supplementary Table 234 

5), suggesting that the pattern of synergistic pleiotropy detected in our study is not driven 235 

solely by highly pleiotropic SNPs. 236 

Intermediate degrees of synergistic pleiotropy drive adaptive evolution. 237 

According to theoretical predictions3,4, the combination of an L-shape distribution of 238 

Neff and synergistic pleiotropy should lead polymorphisms with intermediate degrees of 239 
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pleiotropy, while rare, to experience the highest rates of adaptive evolution. One approach for 240 

determining rates of adaptive evolution is to measure the fitness impact of particular SNPs in 241 

particular environments. Unfortunately, the fitness proxies that we measured (e.g., total seed 242 

production and survival) were not genetically variable in some micro-habitats (Fig. 1b). This 243 

does not imply an absence of selection because we did not measure key germination and 244 

seedling survival traits.  Therefore, we instead estimated signatures of selection on top SNPs 245 

by testing for the homogeneity of differentiation across SNP markers between our two 246 

temporal samples. Such a population genomics approach allows taking into account both the 247 

effect of selective processes at all life-stages and the effect of local demographic history 248 

between 2002 and 2010.  249 

A genome-wide scan for selection based on temporal differentiation (FST) 250 

(Supplementary Fig. 16) revealed a signature of selection for top SNPs associated with 251 

evolved eco-phenotypes, but not for top SNPs associated with unevolved eco-phenotypes; top 252 

SNPs jointly associated with evolved and unevolved eco-phenotypes revealed an intermediate 253 

signature of selection (Fig. 5c, Supplementary Fig. 13). Because temporal differentiation 254 

was tested against changes in the genomic background, this result rejects the hypothesis of 255 

selectively neutral evolution for evolved eco-phenotypes. When focusing attention on top 256 

SNPs associated with evolved eco-phenotypes, we found that single-trait micro-habitat-257 

specific SNPs were weakly differentiated while SNPs exhibiting an intermediate degree of 258 

pleiotropy revealed the largest fold-increase of median temporal FST values (Fig. 5d, 259 

Supplementary Fig. 13). This pattern is strengthened when considering only the top SNPs 260 

for evolved phenotypes that have a polarity of effects in line with the direction of phenotypic 261 

evolution (~75.4% of the total number of top SNPs associated with evolved eco-phenotypes; 262 

Supplementary Fig. 17). In addition, we found that the mean FST value of the top SNPs was 263 

significantly and positively associated with estimates of phenotypic evolution (i.e. haldanes) 264 
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when we considered the evolved eco-phenotypes, but not when we considered the unevolved 265 

eco-phenotypes (Supplementary Fig. 18). Taken together, and considering the prevalence of 266 

morph-environmental pleiotropy observed at intermediate degrees of pleiotropy 267 

(Supplementary Fig. 14), our results suggest the evolution of a common adaptive strategy 268 

that was accelerated due to top SNPs being shared across environments, although they affect 269 

different traits in different environments. 270 

As previously highlighted for the patterns of restricted pleiotropy and synergistic 271 

pleiotropy, the relationships between degree of pleiotropy and signatures of selection were 272 

robust to different number of top SNPs and thresholds of significance (within the range 273 

considered; Supplementary Fig. 13). 274 

Identity of candidate genes under directional selection.  275 

The most pleiotropic genes underlying adaptive evolution in the TOU-A population 276 

were determined by retrieving all genes associated with 11 or more evolved eco-phenotypes. 277 

Among the 14 candidate genes (Supplementary Table 6), was the floral integrator TWIN 278 

SISTER OF FT (TSF), which was associated with bolting time (three microhabitats), 279 

flowering interval (one micro-habitat), the length of reproductive period (three micro-280 

habitats), the number of primary branches (one micro-habitat) and the escape strategy to 281 

competition (three micro-habitats). Interestingly, based on a panel of 948 worldwide 282 

accessions of A. thaliana, TSF has been found to be significantly associated with climate 283 

variation (i.e. number of consecutive cold days)37, suggesting that TSF may play a major role 284 

in the adaptation of A. thaliana to climate at different geographical scales. 285 

We additionally tested for biological processes that were enriched in the extreme tail 286 

of our genome-wide temporal differentiation scan (Supplementary Table 7). In total, 24 287 

biological processes were enriched, 15 of which were supported by genes associated with 288 
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phenotypic traits measured in this study (Supplementary Table 7). Enrichment for 289 

vernalization response was supported by VERNALIZATION2 (VRN2) associated with six eco-290 

phenotypes including two proxies of fitness (i.e. survival and seed production, 291 

Supplementary Table 7). We also detected many related, enriched functions such as stamen 292 

development, pollen maturation and callose deposition (Supplementary Table 7), which are 293 

consistent with the simultaneous evolution of fecundity traits observed in this study (Fig. 1). 294 

For instance, the candidate gene POWDERY MILDEW RESISTANT 4 is traditionally regarded 295 

as a defense response to wounding and pathogens due to its role in reinforcing the cell wall, 296 

although it is also essential for pollen viability and cell division38. In this study, POWDERY 297 

MILDEW RESISTANT 4 was associated with two fecundity traits: mean fruit length on 298 

primary branches (in soil A without P. annua) and the number of fruits on the main stem (in 299 

soil C with P. annua; Supplementary Table 7). The simultaneous evolution of fecundity 300 

traits suggests an adaptive strategy of short-lived semelparous species like A. thaliana in 301 

crowded environments, where plants tend to escape competition20,39. In agreement with this 302 

hypothesis, we observed an evolution of the escape strategy trait in five out of six micro-303 

habitats (Fig. 1b).  304 

The remaining nine enriched biological processes were supported by genes that were 305 

not associated with any measured phenotype. This is not surprising in that we missed the 306 

entire seed and seedling stage, and did not capture the entire suite of biotic and abiotic factors 307 

that can impact selection over time. Among these candidate genes was the MADS-box 308 

transcription factor FLOWERING LOCUS C (FLC) that, in agreement with the recent local 309 

warming experienced by the TOU-A population, supported the strong enrichment detected for 310 

vernalization response, response to temperature stimulus and regulation of circadian rhythm 311 

(Supplementary Table 6). FLC is a well-known pleiotropic gene40 that affects many traits 312 

that we did not measure (such as vernalization response, water use efficiency and regulation 313 
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of seed dormancy by maternal temperature)41-44, suggesting that one or more of these traits 314 

may have undergone contemporary and rapid phenotypic evolution in the TOU-A population. 315 

For example, the proportion of accessions with a slow rather than rapid vernalization 316 

haplotype at FLC42 increased between 2002 and 2010 (Chi-squared test = 16.554, P = 317 

0.000047; Supplementary Fig. 19). Such a pattern is understandable in light of the increase 318 

in the number of chilling degree days observed between 2002 and 2010 (Supplementary Fig. 319 

2). 320 

It is interesting to note that we identified two central regulators of flowering time in 321 

our set of candidate pleiotropic genes, i.e. FLC and TSF. In two Brassica rapa populations 322 

that evolved rapidly following drought in Southern California12, rapid evolution was in part 323 

mediated by a homologue of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 324 

(SOC1), a target of FLC-mediated transcriptional repression45, suggesting that central 325 

regulators of flowering time play a major role in the response to global warming.  326 

 327 

CONCLUSION 328 

 Our ecological genomic comparison of plants separated by eight generations revealed 329 

rapid multi-trait adaptive evolution that was similar among six micro-habitats, but largely 330 

mediated by different genes. The strong genotype-by-environment interactions highlight the 331 

importance of considering fine-scale ecological variation. By limiting the erosion of standing 332 

genetic variation, this micro-habitat dependent genetic architecture should allow populations 333 

like TOU-A to continue to respond to future environmental changes. 334 

In addition, the combination of GWAS and an in situ resurrection experiment 335 

validated the prediction that polymorphisms with intermediate degrees of pleiotropy, while 336 

rare, should have the highest rate of adaptive evolution. This result reinforces the importance 337 
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of simultaneous evolution of multiple traits in shaping the genomic adaptive trajectory of 338 

natural populations. On-going resurrection projects in plants46 and long-term population 339 

surveys of wild animals47 represent an exciting opportunity to test whether restricted 340 

pleiotropy combined with synergistic pleiotropy also underlies contemporary and rapid 341 

adaptive evolution in other plant and animal species.  342 
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 488 

METHODS 489 

Plant material. The population TOU-A is located under a 350m electric fence separating two 490 

permanent meadows experiencing cycles of periodic grazing by cattle in the village of 491 

Toulon-sur-Arroux (France, Burgundy, N 46°38’57.302’’, E 4°7’16.892’’). Seeds from 492 

individual plants were collected in 2002 (TOU-A-2002, n = 80) and 2010 (TOU-A-2010,  n = 493 

115) according to a sampling scheme allowing us to take into account the density of A. 494 

thaliana plants along a 350m transect (Supplementary Fig. 1). Differences in maternal 495 

effects among the 195 accessions collected in 2002 and 2010 were reduced by growing one 496 

plant per family under controlled greenhouse conditions, for one generation (16-h 497 

photoperiod, 20°C). 498 

Ecological characterization. Eighty-three soil samples collected along the 350m transect 499 

were characterized for 14 edaphic factors18: pH, maximal water holding capacity (WHC), 500 

total nitrogen content (N), organic carbon content (C), C/N ratio, soil organic matter content 501 

(SOM), concentrations of P2O5, K, Ca, Mg, Mn, Al, Na and Fe. Climate data was generated 502 

with the ClimateEU v4.63 software package48. 503 

Phenotypic characterization. An experiment of 5,850 plants was set up at the local site of 504 

the TOU-A population. The 195 accessions collected in 2002 and 2010 were grown in six 505 

representative ‘soil x competition’ micro-habitats. Each of these micro-habitats was organized 506 

in five blocks. Each of the five blocks corresponded to an independent randomization of 195 507 
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plants with one replicate per accession collected in 2002 and 2010. Seeds were sown in late 508 

September to mimic the main natural germination cohort observed in the TOU-A population 509 

(Supplementary Fig. 1). Each plant was scored for a total of 29 phenotypic traits chosen to 510 

characterize the life history of A. thaliana including the timing of offspring production or seed 511 

dispersal, or because they are involved in the response to competition and/or are good 512 

estimators of life-time fitness and reproductive strategies22. 513 

Phenotypic analyses, natural variation, phenotypic evolution and evolutionary rates. We 514 

explored natural variation of all phenotypic traits using the following statistical mixed model:  515 

 516 

Yijklm = µtrait + blocki (soilj * compk) + soilj + compk + soilj * compk + yearl + soilj * yearl + 517 

compk * yearl + soilj * compk * yearl + accessionm (yearl)) + accessionm (yearl)) * soilj + 518 

accessionm (yearl)) * compk + accessionm (yearl)) * soilj * compk + εijklm      (1) 519 

 520 

In this model, ‘Y’ is one of the 29 phenotypic traits, ‘µ’ is the overall phenotypic mean; 521 

‘block’ accounts for differences between the five experimental blocks within each type of 522 

‘soil * absence/presence of P. annua’ experimental combination; ‘soil’ corresponds to the 523 

effects of the three types of soil; ‘comp’ measure the effect of the presence of P. annua; ‘year’ 524 

corresponds to effect of the two sampling years 2002 and 2010; ‘accession’ measures the 525 

effect of accessions within year; interaction terms involving the ‘accession’ term account for 526 

genetic variation in reaction norms of accessions between the three types of soil and the 527 

absence or presence of P. annua; and ‘ε’ is the residual term.  528 

 All factors were treated as fixed effects, except ‘accession’ that was treated as a 529 

random effect. For fixed effects, terms were tested over their appropriate denominators for 530 

calculating F-values. Significance of the random effects was determined by likelihood ratio 531 

tests of model with and without these effects. When necessary, raw data were either log 532 
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transformed or Box-Cox transformed to satisfy the normality and equal variance assumptions 533 

of linear regression. A correction for the number of tests was performed for each modeled 534 

effect to control the False Discovery Rate (FDR) at a nominal level of 5%. 535 

 Inference was performed using ReML estimation, using the PROC MIXED procedure 536 

in SAS 9.3 (SAS Institute Inc., Cary, North Carolina, USA) for all traits with the exception of 537 

SURVIVAL, which was analyzed using the PROC GLIMMIX procedure in SAS 9.3. 538 

 For all traits, Best Linear Unbiased Predictions (BLUPs) were obtained for each 539 

accession in each of the six experimental conditions, using the PROC MIXED procedure in 540 

SAS 9.3 (SAS Institute Inc., Cary, North Carolina, USA): 541 

 542 

 Yimc = µtrait + blocki + accessionm + εim     (2) 543 

 544 

For each trait, significant genetic variation among the accessions was detected by testing the 545 

significance of the ‘accession’ term in equation (2). A correction for the number of tests was 546 

performed for the modeled ‘accession’ effect (across the 29 traits within each of the six 547 

experimental conditions) to control the FDR at a nominal level of 5%. Because A. thaliana is 548 

a highly selfing species13, BLUPs correspond to the genotypic values of accessions. 549 

 In each of the six experimental conditions, rates of evolutionary change based on 550 

genotypic values of accessions were calculated in haldanes (hg) for all eco-phenotypes with 551 

significant genetic variation among the 195 accessions collected in 2002 and 2010. haldanes 552 

is a metric that scales the magnitude of change by incorporating trait standard deviations49,50. 553 

hg values were calculated between 2002 and 2010, as:  554 

 555 

2 1( ) ( )p p
g

x s x s
h

g

−
=        (3) 556 
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 557 

 where ‘x’ corresponds to the mean genotypic value at year 1 (TOU-A population collected in 558 

2002) and year 2 (TOU-A population collected in 2010), ‘sp’ is the standard deviation of the 559 

genotypic values of the trait pooled across the two years, and ‘g’ is the number of generations. 560 

Because only one germination cohort was observed every year between 2002 and 2010 (i.e. 561 

fall germination cohort), only one generation per year was considered in the calculation of 562 

haldanes values. For a given trait, 95% confidence intervals were estimated based on the 563 

distribution of 1000 haldanes values obtained by bootstrapping 1000 random samplings with 564 

replacement of genetic values within each year. A haldanes value was considered 565 

significantly different from zero if its 95% confidence intervals did not overlap zero.   566 

Sequencing and polymorphism detection. DNA-seq experiments were performed on an 567 

Illumina HiSeq2500 using a paired-end read length of 2x100 pb with the Illumina TruSeq 568 

SBS v3 Reagent Kits. Raw reads of each of the 195 accessions were mapped onto the TAIR10 569 

A. thaliana reference genome Col-0 with a maximum of 5 mismatches on at least 80 570 

nucleotides. A semi-stringent SNPCalling across the genome was then performed for each 571 

accession with SAMtools mpileup (v0.01019)51 and VarScan (v2.3)52 with the parameters 572 

corresponding to a theoretical sequencing coverage of 30X and the search for homozygous 573 

sites. 574 

Patterns of linkage disequilibrium and geographic structure. Considering only SNPs with 575 

a Minor Allele Relative Frequency (MARF) > 0.07, the LD extent within 30kb-windows on 576 

each chromosome were estimated using VCFtools53. LD blocks across the genome were 577 

identified in the PLINK environment using the following parameters --blocks no-pheno-req --578 

maf 0.07 --blocks-max-kb 200, leading to the identification of 19,607 blocks with at least two 579 

SNPs (mean number of SNPs per block = 47.6, median number of SNPs per block = 12, mean 580 

block length = 5.5kb, median block length = 0.78kb). To position the TOU-A population 581 
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within the French geographic structure, we retrieved the positions of the 214,051 SNPs 582 

genotyped on 24 accessions within 10 populations located within 1km of the TOU-A 583 

population54 across the genomes of the TOU-A population. Clustering genotype analysis was 584 

performed using the packages gdsfmt and SNPRelate in the R environment55, using the 585 

snpgdspLD pruning command with the following parameters ld.threshold=0.8 586 

slide.max.bp=500 maf=0.07, leaving us with 90,883 SNPs.  587 

Genome-Wide Association mapping and MARF threshold. GWA mapping was run using 588 

a mixed-model approach implemented in the software EMMAX (Efficient Mixed-Model 589 

Association eXpedited)56. This model includes a genetic kinship matrix as a covariate to 590 

control for population structure. 591 

 Because of bias due to rare alleles30,56,57, we estimated a MARF threshold above which 592 

the p-value distribution is not dependent on the MARF. We plotted the 99% quantile of the p-593 

value distribution of all 144 eco-phenotypes (i.e. ‘micro-habitat x trait’ combinations) 594 

displaying significant genetic variance (Fig. 1) along 50 MARF values (with an increment of 595 

0.01 from 0.01 to 0.5). A locally-weighted polynomial regression indicated that p-value 596 

distributions were dependent on MARF value. From visual inspection, we considered a 597 

threshold of MARF value > 0.07, which resulted in a total number of 981,617 SNPs for the 598 

following analyses (Supplementary Fig. 20). 599 

Enrichment for a priori candidate genes. To determine the threshold number of top SNPs 600 

(i.e. SNPs with the highest associations) above which additional top SNPs would behave like 601 

the rest of the genome, we calculated enrichments for a priori candidate genes for natural 602 

genetic variation of bolting time observed in the six in situ experimental conditions (Fig. 1). 603 

Based on an algorithm described in Brachi et al.(2010)30 and a list of 328 candidate genes for 604 

bolting time14, enrichment was calculated for progressively fewer selective sets of top SNPs 605 
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within a 20Kb window of an a priori candidate gene. For each set of top SNPs, a null 606 

distribution of enrichment was computed to determine a 95% confidence interval30.  607 

Degree of pleiotropy and pleiotropic scaling. Each trait displaying significant genetic 608 

variance in a given in situ micro-habitat was considered an “eco-phenotype”. The degree of 609 

pleiotropy of a given top SNP was defined as the number of eco-phenotypes that shared this 610 

top SNP. To account for the correlations between eco-phenotypes that can overestimate the 611 

degree of pleiotropy, we followed Wagner et al. (2008)16 by estimating for each top SNP an 612 

effective number of eco-phenotypes as ୣܰ୤୤ = ܰ − var(λ) where var(λ) is the variance of the 613 

eigenvalues of the error-corrected matrix. 614 

The allelic effects were calculated using the mixed model implemented in the software 615 

EMMAX after fitting the pairwise genetic kinship effect56. Because different units were used 616 

to measure the 29 traits scored in this study, we calculated a standardized allelic effect for 617 

each eco-phenotype affected by a top SNP according to Wagner et al. (2008)16. The 618 

standardized effect on eco-phenotype i, denoted by Ai, is half the difference in genotypic 619 

means between the two homozygous genotypes. The total size of the phenotypic effects of a 620 

top SNP was then calculated by the Manhattan distance58 ୑ܶ	 = 	∑ ௜|௡௜ୀଵܣ| ,	where n is the 621 

degree of pleiotropy and Ai is the standardized allelic effect3,4,16. The pleiotropic scaling 622 

relationship between the total effect size and the effective number of eco-phenotypes was 623 

calculated as ୑ܶ 	= 	 ܿ∗ ୣܰ୤୤ௗ. 624 

The pleiotropic scaling relationship between the total effect size and the effective 625 

number of eco-phenotypes was also calculated as ୉ܶ 	= 	 ܽ∗݂݂ܰ݁௕, with TE corresponding to 626 

the Euclidean distance and calculated as ୉ܶ	 = 	ඥ∑ ୧ଶ୬୧ୀଵܣ ,		where n is the degree of pleiotropy 627 

and Ai is the standardized allelic effect. 628 

The degree of pleiotropy and the pleiotropic scaling relationship were calculated for (i) 629 

five threshold number of top SNPs (i.e. 50 SNPs, 100 SNPs, 200 SNPs, 300 SNPs and 500 630 
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SNPs) and (ii) three thresholds of significance (-log10 p-value > 6, -log10 p-value > 5, -log10 p-631 

value > 4). To avoid pseudo-replication due to the presence of several top SNPs in a given LD 632 

block (n = 19,607 blocks with at least two SNPs), the pleiotropic scaling was also calculated 633 

for each threshold number of top SNPs and each threshold of significance, (i) by considering 634 

the mean value of TM (or TE) and Neff per LD block containing top SNPs and (ii) by randomly 635 

sampling one top SNP per LD block (this step was repeated 1,000 times). 636 

 637 

 638 

Genome-wide scan for selection based on temporal differentiation. In the following, we 639 

outline a procedure inspired by Goldringer & Bataillon (2004)59 to test for the homogeneity of 640 

differentiation across SNP markers between two temporal samples. If all SNP markers are 641 

selectively neutral, they should provide estimates of temporal differentiation drawn from the 642 

same distribution, which depends on the strength of genetic drift in the population (and 643 

therefore on its effective size). In contrast, if some marker loci are targeted by selection (or if 644 

they are in linkage disequilibrium with selected variants), then some heterogeneity in locus-645 

specific measures of temporal differentiation should be observed. This is due to selection that 646 

will tend to drive measures of differentiation to values greater (or smaller) than expected 647 

under drift alone. The rationale of our approach is therefore to identify those SNPs that show 648 

outstanding differentiation, compared to neutral expectation. 649 

We measure temporal differentiation between sample pairs using FST. Although the FC 650 

statistic60 was used in Goldringer & Bataillon (2004)59, estimators of FST have better 651 

statistical properties in terms of bias and variance, and multilocus estimates have been 652 

precisely defined and thoroughly evaluated61.  653 

Using a multilocus estimate of FST from the pair of temporal samples, we infer the 654 
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effective size of the population. Because the 195 A. thaliana accessions are considered highly 655 

homozygous across the genome, heterozygous sites were discarded (see above) and the data 656 

therefore consist of haploid genotypes. We considered a single haploid population of constant 657 

size Ne, which has been sampled at generation 0, and τ  generations later. Generations do not 658 

overlap. New mutations arise at a rate μ, and follow the infinite allele model (IAM). 659 

Following Skoglund et al. (2014)62, the pairwise parameter FST between the two samples can 660 

be read:    
2/

2/

ST e1

e1
T

T

F θ

θ

θ −

−

−+
−=    661 

where T ≡  τ  / Ne and θ ≡  2Ne μ. In the low mutation limit (i.e., as μ → 0): 662 

e
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T
F

+
=

+
≈

τ
τ

 663 

This suggests that a simple moment-based estimator of effective population size can be 664 

derived as: 665 

ST

ST
e ˆ4

)ˆ1(ˆ
F

F
N

−= τ
 666 

where F̂ST  is a multilocus estimate of the parameter FST. In what follows, we use the 667 

estimator of Weir & Cockerham (1984)61; preliminary analyses showed that these estimates of 668 

effective size have lower bias and variance than averaged estimates based on single-locus 669 

estimates of FC. 670 

In this study, the pairwise differentiation between the 195 A. thaliana accessions 671 

samples collected in 2002 and 2010 based on the full set of 1,902,592 SNP markers was: F̂ST  672 

= 0.0215, which gives an estimate of N̂e  = 182 (measured as a number of gene copies). 673 

For each SNP, we tested the null hypothesis that the locus-specific differentiation 674 

measured at this focal marker was only due to genetic drift. For this purpose, we computed 675 

the expected distribution of FST for each SNP, conditional upon the estimated effective size 676 



29 
 

(using the same estimated value for all markers: N̂e  = 182), and the allele frequencies at the 677 

focal SNP in the initial sample (i.e. 80 accessions collected in 2002). We simulated individual 678 

gene frequency trajectories, as follows: 679 

Suppose that we observe k0 copies of the reference allele, out of n0 sampled genes, in 680 

the 2002 sample. We assume that these observed counts are drawn from a binomial 681 

distribution B(n0,π0) where π0 is the (unknown) allele frequency of the reference allele in the 682 

population. Assuming a Beta(1,1) prior distribution for π0 (uniform distribution), and using 683 

the Bayes inversion formula, the posterior distribution of π0 is a Beta(k0 + 1,n0 – k0 + 1). For 684 

each marker and for each simulation, we therefore draw the initial allele frequency  from a 685 

Beta(k0 + 1,n0 – k0 + 1). We then draw “pseudo-observed” allele counts using a random draw 686 

from B(n0,

 

). This procedure allows accounting for the sampling variance in initial allele 687 

frequencies, instead of fixing  to the observed frequency in the sample, as previously done 688 

in Goldringer & Bataillon (2004)59. 689 

Then, we simulated eight generations of drift, using successive binomial draws with 690 

parameters N̂e  = 182 and the allele frequency in the previous generation. In the last 691 

generation, a sample of genes is taken as a binomial draw with parameters nτ (the sample size 692 

in 2010), and  (the simulated allele frequency in the last generation). 693 

Last, we computed locus-specific estimates of temporal FST from the simulated allele 694 

counts at the initial and last generation. The whole procedure was repeated at least 10,000 695 

times for each marker (additional simulations were performed for some markers to obtain 696 

non-null p-values).  697 

Finally, we assigned a p-value to each SNP marker, computed as the proportion of 698 

simulations giving a locus-specific estimate of FST larger than or equal to the observed value 699 

at the focal SNP. We checked that the distribution of p-values was fairly uniform (data not 700 
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shown).  701 

Note that all SNP markers with a MARF ≤ 0.07 (computed as the overall frequency 702 

across the two temporal samples) were discarded from the analysis. There were 981,617 703 

remaining loci (Supplementary Fig. 7). To avoid any potential bias, all the distributions of 704 

FST were obtained using only simulated markers with a MARF > 0.07. 705 

Enrichment analysis of top SNPs for signals of selection. Based on the effective number of 706 

eco-phenotypes affected by a SNP, we tested whether top SNPs related to evolved eco-707 

phenotypes rejected the hypothesis of selectively neutral evolution more often than top SNPs 708 

related to unevolved eco-phenotypes for any given degree of pleiotropy. For each set of top 709 

SNPs (i.e. top SNPs that hit only evolved eco-phenotypes, top SNPs that hit only unevolved 710 

eco-phenotypes and top SNPs that hit both types of eco-phenotypes), we first computed a 711 

fold-increase in median significance of FST values using the following ratio: ratiosignificance =  712 

median of –log10(p-values) of FST values of n top SNPs / median of –log10(p-values) of FST 713 

values of n SNPs randomly sampled across the genome, where n = number of top SNPs. This 714 

step was repeated 1,000 times, generating a distribution of fold-increase in median 715 

significance of FST values of top SNPs. We assigned a p-value by computing the proportion of 716 

ratiosignificance smaller or equal to 1. The random sampling was done according to a scheme that 717 

results in sets of SNPs that resemble the original set with respect to linkage disequilibrium37. 718 

 We then tested whether the strength of selection differed among the degrees of 719 

pleiotropy by computing a fold-increase in median FST values for each set of top SNPs, using 720 

the following ratio:  ratiovalues = median of FST values of n top SNPs / median of FST values of 721 

all SNPs. This step was repeated 1,000 times, by randomly sampling the same number n of 722 

SNPs across the genome. This procedure generated a null distribution of fold-increase in 723 

median FST values. We assigned a p-value by comparing ratiovalues calculated for the set of top 724 

SNPs to the quantiles at 95%, 99% and 99.9% of the null distribution.  725 
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The enrichment analysis of top SNPs for signals of selection was calculated for (i) five 726 

threshold number of top SNPs (i.e. 50 SNPs, 100 SNPs, 200 SNPs, 300 SNPs and 500 SNPs) 727 

and (ii) three thresholds of significance (-log10 p-value > 6, -log10 p-value > 5, -log10 p-value > 728 

4). 729 

Identity of candidate genes under directional selection and enrichment in biological 730 

processes.  731 

 To identify pleiotropic candidate genes associated with the 76 evolved eco-732 

phenotypes, we first selected the 50 SNPs the most associated with each evolved eco-733 

phenotype, leading to a total of 3800 SNPs. We then retrieved all the annotated genes located 734 

within a 2kb window on each side of those top SNPs, leading to a final list of 4855 unique 735 

candidate genes. We finally focused on genes associated with 11 or more evolved eco-736 

phenotypes.   737 

To determine which biological processes were important for adaptation of the TOU-A 738 

population over eight generations, we tested whether SNPs in the 0.1% upper tail of the FST 739 

value distribution were over-represented in each of 736 Gene Ontology Biological Processes 740 

from the GOslim set63. 10,000 permutations were run to assess significance using the same 741 

methodology as described in Hancock et al. (2011)37. For each significantly enriched 742 

biological process, we retrieved the identity of all the genes containing SNPs in the 0.1% 743 

upper tail of the FST values distribution. 744 

FLC haplotypes analysis 745 

 Following Li et al. (2014)42, we extracted the 17 SNPs located within FLC and we 746 

removed from the analysis 44 accessions with more than one missing SNP information. We 747 

then merged this data set with the FLC SNP data set obtained across 1307 accessions of the 748 

Regional Mapping panel project42,54. The 17 SNPs data set was used as the input into the 749 

software fastPHASE version 1.4.864. fastPHASE was run using the same parameters as  750 
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described in Li et al. (2014)42 with the exception of invoking the -K20 option to obtain the 751 

same number of haplotypes identified in Li et al. (2014)42. We identified eight haplotypes 752 

among the 151 TOU-A accessions. Seventy accessions have a haplotype related to a rapid 753 

vernalization response (RV haloptype)42, whereas 78 accessions have a haplotype related to a 754 

slow vernalization response (SV haplotype)42. The remaining three accessions are related to 755 

an unknown vernalization response profile. 756 

 757 

 758 

Data availability. The raw sequencing data used for this study will be available at the NCBI 759 

Sequence Read Archive (http://ncbi.nlm.nih.gov/sra) through the Study 760 

accession SRP077483. The phenotypic data that support the findings of this study are 761 

available from the authors on a reasonable request. The genomic SNP data files will be 762 

archived through the Dryad digital repository upon acceptance for publication. 763 

 764 

Code availability. Custom scripts and phenotypic and genomic files used in this study have 765 

been archived in a local depository (https://lipm-browsers.toulouse.inra.fr/pub/Frachon2017-766 

NEE/) that can be accessed by the reviewers with the login ‘reviewersNEE’ and the 767 

password ‘FaupKinmyad4’.  All the scripts and data sets will be made available available in 768 

the Dryad database upon acceptance of the manuscript. The code for performing genome-769 

wide scan for selection based on temporal differentiation will be made available on the 770 

Zenodo database upon acceptance of the manuscript (Vitalis R, Gay L and Navascues M 771 

(2016) TempoDiff: a computer program to detect selection from temporal genetic 772 

differentiation. INRA. http://dx.doi.org/10.5281/zenodo.375600). 773 
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FIGURE LEGENDS 815 

 816 

Figure 1 | Genetic variation among accessions and phenotypic evolution between 2002 817 

and 2010. (a) Across the six micro-habitats. Genetic variation was detected for the 29 818 

measured phenotypic traits. (b) Within each ‘soil x competition’ micro-habitat. The letters A, 819 

B and C stand for the three types of soil. ‘w/o P. annua’ and ‘w/P. annua’ correspond to the 820 

absence and presence of P. annua, respectively. The number of genetically variable traits 821 

varied between 21 (soil A in absence of P. annua) and 28 (soil C in presence of P. annua). 822 

The percentage of evolved genetically variable traits varied between 22.7% (soil C in absence 823 

of P. annua) and 76.2% (soil A in absence of P. annua). Each genetically variable trait (white 824 

and colored squares) in a given in situ experimental condition was defined as an eco-825 

phenotype (n = 144). The rates of evolution are expressed in haldanes (a metric that scales the 826 

magnitude of change by incorporating trait standard deviations).  827 

 828 

Figure 2 | Phenotypic changes in the TOU-A population over 8 generations. (a) Mean 829 

phenotypic evolution across the six micro-habitats. The total number of seeds produced can 830 

be maintained through evolution of phenological (bolting time and flowering interval) and 831 

individual reproductive (seed production on the main stem) traits. (b) Comparison among the 832 

six in situ ‘soil x competition’ micro-habitats. Average values of the phenotypes differed 833 

substantially among the six micro-habitats. (c) Evolution within each in situ micro-habitat. ‘n’ 834 

indicates the number of evolved phenotypic traits (Fig. 1). The identity of genetically variable 835 

traits that evolved between 2002 and 2008 depended on the micro-habitat. Each box plot is 836 

based on the genotypic values (BLUPs) of the TOU-A accessions (year 2002: n = 80, year 837 

2010: n = 115). (b) and (c) The letters A, B and C stand for the three types of soil. ‘w/o P. 838 

annua’ and ‘w/P. annua’ correspond to the absence and presence of P. annua, respectively. 839 
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(a) and (c): solid and dashed boxes indicate significant evolution with absolute haldanes > 840 

0.05 and with absolute haldanes < 0.05, respectively (Fig. 1). 841 

 842 

Figure 3 | Genomic patterns of the TOU-A population. (a) Hierarchical clustering analysis 843 

of the 195 TOU-A accessions and 24 accessions from 10 populations located within 1 km of 844 

the TOU-A population. (b) Decay of linkage disequilibrium (r2) with physical distance over 845 

the five chromosomes of A. thaliana.  846 

 847 

Figure 4 | Identification of genomic regions associated with bolting time variation in the 848 

TOU-A population. (a) Manhattan plots of mapping results for each of the six in situ ‘soil x 849 

competition’ treatments. The x-axis indicates the physical position along the chromosome. 850 

The y-axis indicates the -log10 p-values using the EMMAX method. MARF > 7%. For each 851 

experimental condition, the 200 top SNPs are highlighted in red. (b) Venn diagram 852 

partitioning the bolting time SNPs detected among the lists of 200 top SNPs for each in situ 853 

‘soil x competition’ treatment. Genetic bases underlying bolting time are largely distinct 854 

across micro-habitats 855 

 856 

Figure 5 | Genetic architecture underlying in situ phenotypic evolution in the TOU-A 857 

population when considering a threshold of 200 top SNPs. (a) Frequency distribution of 858 

the effective number of eco-phenotypes affected by a SNP (Neff, accounting for the 859 

correlations among eco-phenotypes)31 among the 21,268 unique top SNPs. (b) Regression of 860 

total effect size TM (total effect size by the Manhattan distance) on Neff. The formula 861 

corresponds to the pleiotropic scaling relationship ۻࢀ 	=  A scaling component d 862 .ࢊ܎܎܍ࡺ∗ࢉ	

exceeding 1 indicates that the mean per-trait effect size of a given top SNP increased with 863 

Neff
3,4. Solid red line: fitted relationship between TM and Neff, solid black line: linear 864 
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dependence (d = 1). (c) Fold-increase in median –log10 (p-values) of neutrality tests based on 865 

temporal differentiation for SNPs that hit only evolved eco-phenotypes, only unevolved eco-866 

phenotypes or both types of eco-phenotypes, according to different classes of effective 867 

number of eco-phenotypes. The dashed line corresponds to a fold-increase of 1, i.e. no 868 

increase in median significance of neutrality tests based on temporal differentiation. (d) Fold-869 

increase in median FST values for SNPs that hit only evolved eco-phenotypes, only unevolved 870 

eco-phenotypes or both types of eco-phenotypes, according to different classes of Neff 871 

(median FST across the genome = 0.00293). Significance against a null distribution obtained 872 

by bootstrapping: *0.05 > P > 0.01, **0.01 > P > 0.001, ***P < 0.001, absence of symbols: 873 

non-significant. 874 



38 
 

Figure 1  875 

876 



39 
 

Figure 2  877 

 878 



40 
 

Figure 3  879 

 880 

 881 

 882 

 883 

 884 

 885 



41 
 

Figure 4  886 
 887 

 888 



42 
 

Figure 5 889 

 890 


