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Abstract. The vegetation optical depth (VOD) measured
at microwave frequencies is related to the vegetation wa-
ter content and provides information complementary to vis-
ible/infrared vegetation indices. This study is devoted to the
characterization of a new VOD data set obtained from SMOS
(Soil Moisture and Ocean Salinity) satellite observations at
L-band (1.4 GHz). Three different SMOS L-band VOD (L-
VOD) data sets (SMOS level 2, level 3 and SMOS-IC) were
compared with data sets on tree height, visible/infrared in-
dexes (NDVI, EVI), mean annual precipitation and above-
ground biomass (AGB) for the African continent. For all rela-
tionships, SMOS-IC showed the lowest dispersion and high-
est correlation. Overall, we found a strong (R > 0.85) corre-
lation with no clear sign of saturation between L-VOD and
four AGB data sets. The relationships between L-VOD and
the AGB data sets were linear per land cover class but with a
changing slope depending on the class type, which makes it
a global non-linear relationship. In contrast, the relationship
linking L-VOD to tree height (R = 0.87) was close to linear.
For vegetation classes other than evergreen broadleaf forest,
the annual mean of L-VOD spans a range from 0 to 0.7 and
it is linearly correlated with the average annual precipitation.
SMOS L-VOD showed higher sensitivity to AGB compared
to NDVI and K/X/C-VOD (VOD measured at 19, 10.7 and

6.9 GHz). The results showed that, although the spatial reso-
lution of L-VOD is coarse (∼ 40 km), the high temporal fre-
quency and sensitivity to AGB makes SMOS L-VOD a very
promising indicator for large-scale monitoring of the vegeta-
tion status, in particular biomass.

1 Introduction

Large-scale monitoring of vegetation properties is crucial
to understand water, carbon and energy cycles. The Nor-
malized Difference Vegetation Index (NDVI, Tucker, 1979)
computed from space-borne observations at visible and in-
frared wavelengths has been widely used since the 1980s to
study vegetation changes and their implications on animal
ecology (Pettorelli et al., 2005, 2011), global fire emissions
(van der Werf et al., 2010), deforestation and urban develop-
ment (Esau et al., 2016), global patterns of land–atmosphere
carbon fluxes (Jung et al., 2011) and the vegetation response
to climate (Herrmann et al., 2005) and extreme events such as
droughts (Vicente-Serrano et al., 2013). NDVI is sensitive to
the abundance of chlorophyll and therefore to the photosyn-
thetically active biomass (which includes herbaceous vege-
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tation and the leaves of trees) but insensitive to wood mass.
NDVI is thus not considered as an accurate proxy of total
above-ground biomass (AGB), except in areas of low vege-
tation density (Todd et al., 1998). In contrast, being sensitive
to both green and non-green vegetation components, passive
microwave observations can provide important complemen-
tary information on the state and temporal changes of the
vegetation features, in particular regarding the AGB dynam-
ics (Liu et al., 2015).

The thermal emission arising from the Earth surface at
microwave frequencies depends on the soil characteristics
such as soil temperature, soil roughness and soil moisture
content, which controls the soil emissivity (Ulaby, 1976). In
the presence of vegetation, part of the soil emission is ab-
sorbed and scattered. These effects can be parameterized us-
ing radiative transfer models such as the τ −ω model (Mo
et al., 1982; Ulaby and Wilson, 1985; Ferrazzoli and Guer-
riero, 1996; Wigneron et al., 2007; Liu et al., 2011), where
τ is the optical depth and ω is the single-scattering albedo.
τ was shown to be linked to the vegetation water content
(VWC, kg m−2) (Kirdiashev et al., 1979; Mo et al., 1982;
Jackson and Schmugge, 1991) and to other vegetation prop-
erties such as the leaf area index (Jackson and Schmugge,
1991; Van de Griend and Wigneron, 2004; Wigneron et al.,
2007). Therefore, τ is commonly known as vegetation optical
depth (VOD). VOD is also a function of the vegetation struc-
ture, which determines its dependence on the incidence angle
and on the polarization of the radiation (Ulaby and Wilson,
1985; Wigneron et al., 1995, 2004; Hornbuckle et al., 2003;
Schwank et al., 2005).

Passive microwave radiometry is therefore a promising
tool for monitoring vegetation on a global scale. VOD sam-
ples the vegetation canopy, including woody vegetation,
which uses root zone soil moisture (Andela et al., 2013).
VOD was used to study deforestation in South America
(van Marle et al., 2016) and Africa (Brandt et al., 2017).
Using VOD, it has been possible to reveal teleconnections
linking the state of the vegetation in Australia and El Niño
Southern Oscillation (Liu et al., 2007). In addition, (Liu et al.,
2015) showed the high potential of microwave VOD to mon-
itor the AGB dynamics on a large scale. Using both VOD and
NDVI contributes to a more robust assessment of the vegeta-
tion characteristics (Liu et al., 2011). The VOD has also been
used to study the VWC and variations in ecosystem-scale iso-
hydricity (Konings and Gentine, 2017; Li et al., 2017).

The above-mentioned studies used VOD derived from dif-
ferent radiometers operating at different frequencies (Liu
et al., 2011): SSM/I at 19 GHz (K-band), TRMM-TMI at
10.7 GHz (X-band) and the Advanced Microwave Scanning
Radiometer – Earth Observing System (AMSR-E) at 10.7
and 6.9 GHz (C-band). It is worth noting that VOD is in-
trinsically dependent on the frequency of the electromag-
netic radiation and VODs retrieved at different frequencies
provide complementary information. Therefore, in the fol-
lowing, a specific VOD data set will be noted as B-VOD,

where B stands for the microwave band (X-VOD, C-VOD,
etc.). The lower the frequency, the lower the VOD for a given
level of VWC (Wigneron et al., 1995, 2004; Ferrazzoli and
Guerriero, 1996). Consequently, L-band (1.4 GHz, 21 cm)
observations, which are less attenuated through the vegeta-
tion canopy, are capable of sampling the vegetation layer up
to higher biomass values compared to higher-frequency ob-
servations.

Currently, two missions are performing systematic L-
band passive microwave observations: the Soil Moisture and
Ocean Salinity (SMOS) satellite (Kerr et al., 2010), launched
by ESA in November 2009, and the Soil Moisture Active
Passive (SMAP) satellite (Entekhabi et al., 2010), launched
by NASA in January 2015. SMAP measures the brightness
temperature for a single incidence angle in two polariza-
tions. A single-angle dual polarization retrieval algorithm de-
creases the quality of the soil moisture retrievals (Konings
et al., 2016) but using a multi-orbit approach, assuming that
the L-VOD does not vary significantly in a few days window,
it is possible to estimate soil moisture and L-VOD (Konings
et al., 2017). The full-polarization and multi-angular capa-
bilities of SMOS allow the simultaneous retrieval of the soil
moisture content and L-VOD. (Lawrence et al., 2014) and
(Grant et al., 2016) compared SMOS L-VOD to X-VOD and
C-VOD measured by AMSR-E and to visible/infrared veg-
etation indices. In crop zones, such as the MODIS vegeta-
tion indices, L-VOD increases during the growing season and
decreases during senescence (Lawrence et al., 2014). On a
global scale, L-VOD is less correlated to optical/visible veg-
etation indices than X/C-VOD, suggesting that L-VOD can
add more complementary information with respect to opti-
cal/infrared indices than X/C-VOD (Grant et al., 2016). For
instance, (Rahmoune et al., 2014) found a significant corre-
lation between L-VOD and tree height estimates. (Vittucci
et al., 2016) also discussed this relationship and compared
it to the one estimated with X/C-VOD, which shows higher
values for low tree-height than SMOS L-VOD, as expected.
(Vittucci et al., 2016) also showed a close to linear relation-
ship between L-VOD and AGB at 20 selected points over
Peru, Columbia and Panama. L-VOD has been recently used
to study the evolution of carbon stocks in African drylands
by (Brandt et al., 2018).

In summary, L-VOD derived from the new SMOS L-band
observations is a promising tool for monitoring global veg-
etation characteristics. There is, however, a lack of in-depth
studies on how L-VOD relates to established vegetation char-
acteristics. The goal of the current study is to get further
insight into the sensitivity of L-VOD to vegetation proper-
ties (such as tree height and AGB) and precipitation, which
can drive the vegetation dynamics for some biomes. Taking
into account the novelty of these observations, three distinct
SMOS L-VOD data sets were evaluated against several data
sets independent of L-VOD: (i) optical/infrared indices (rep-
resenting the greenness of vegetation, also often used as a
proxy for primary productivity), (ii) AGB benchmark maps,
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(iii) lidar-derived tree height and (iv) a precipitation data set.
The area selected for this study is Africa, as it is a continent
with several climate regions and biomes and with a large
variability in the vegetation biomass, from sparse shrubs to
savannah and very dense rainforests. In addition, (Bouvet
et al., 2018) have recently discussed the first biomass map of
African savannahs computed from L-band active microwave
(synthetic aperture radar) observations.

In contrast to passive measurements, for which the goal
is to study how the thermal emission arising from the Earth
is affected by the vegetation layer, active measurements al-
low us to study how the radiation emitted by a human-made
radiation source is backscattered by the vegetation, which de-
pends mainly on the vegetation water content and the vege-
tation structure.

Since this study is mainly devoted to AGB, long-term av-
erages (typically annual) will be used. Studying the evolu-
tion of VWC would require using much shorter timescales.
The document is organized as follows. Section 2 presents the
different SMOS L-VOD data sets as well as the data sets
used for the evaluation (tree height, cumulated precipitation,
NDVI, EVI and four AGB data sets). Section 3 deals with the
evaluation methods. Section 4 presents the results, which are
discussed in Sect. 5, in particular the potential of L-VOD to
estimate AGB on a large scale. Finally, Sect. 6 summarizes
the results and presents the conclusions of this study.

2 Data

2.1 SMOS data

The SMOS (Kerr et al., 2001, 2010) mission is an ESA-
led mission with contributions from CNES (Centre National
d’Etudes Spatiales, France) and CDTI (Centro Para el Desar-
rollo Tecnológico Industrial, Spain). The SMOS radiometer
measures the thermal emission from the Earth in the pro-
tected frequency range around 1.4 GHz in full-polarization
and for incidence angles from 0◦ to ∼ 60◦. Stokes 3 and 4
parameters are used to filter the data, for instance to detect ra-
dio frequency interference sources. The footprint (full width
at half maximum of the synthesized beam) is∼ 43 km on av-
erage (Kerr et al., 2010). The equator overpass time is 6:00
(18:00) for ascending (descending) orbits. Data on ascend-
ing and descending orbits from 2011 and 2012 are used in
this study. Taking into account the novelty of L-VOD esti-
mates, three different L-VOD data sets were evaluated in this
study: the ESA level 2 (L2) product, the CATDS multi-orbit
level 3 (L3) product and the new INRA-CESBIO (IC) data
set (Table S1 in the Supplement gives a summary of the main
characteristics of those three products).

The three SMOS soil moisture and L-VOD L2 retrieval
algorithms discussed below use the L-MEB (L-band Mi-
crowave Emission of the Biosphere) radiative transfer model
(Wigneron et al., 2007), which is based on the τ−ω parame-
terization and takes into account the effect of vegetation. The

soil temperature profile is estimated from European Centre
for Medium Range Weather Forecasts (ECMWF) Integrated
Forecast System (IFS) data. The difference between forward-
model estimates of the brightness temperatures at antenna
reference frame and actual satellite measurements is mini-
mized by varying the values of the soil moisture (SM) content
and the L-VOD. The contributions from the soil and vegeta-
tion layers can be distinguished thanks to the multi-angular
and dual-polarization measurements.

The differences between the three SMOS data sets are dis-
cussed in the following.

2.1.1 SMOS level 2 soil moisture and L-VOD

The SMOS soil moisture and L-VOD L2 retrieval algorithm
was described by (Kerr et al., 2012). The forward-model con-
tributions are computed at ∼ 4 km resolution pixels and ag-
gregated to the sensor resolution using the mean synthetic
antenna pattern. For footprints with mixed land cover, the L2
algorithm distinguishes the minor and the major land cover
(low vegetation or forest). The SMOS retrieval is performed
only over the dominant land cover class within the footprint,
while the emission of the minor land cover is estimated from
ECMWF SM and MODIS leaf area index (LAI) data (Kerr
et al., 2012). The version of the data used in the current
study is 620. This data version uses auxiliary files including
information on L-VOD computed from previous retrievals,
surface roughness and radio frequency interference (RFI),
which are used to constrain the new retrievals. Due to the
specificities of the SMOS geometry of observation, the pro-
files of brightness temperatures observed in the middle part
of the field of view (∼ 600 km centred on the satellite sub-
track) have larger ranges of incidence angles than the outer
part of the field of view. For such observations, the retrieval
system has more information content that can be used to dis-
criminate the vegetation emission from the ground emission,
leading to more accurate retrieved soil moisture and VOD.
The retrieved VODs and associated uncertainties for such
grid points are used as prior first guess and uncertainties for
the L-VOD retrieval of the next overpass of these grid points
(3 days later at maximum) that will be observed, this time,
at the outer part of the field of view with a reduced range
of incidence angle. This avoids using auxiliary LAI data to
compute a first-guess L-VOD value (Kerr et al., 2012).

The SMOS L2 data are provided by ESA in an Icosahedral
Snyder Equal Area (ISEA) 4H9 grid (Sahr et al., 2003) in
swath mode with a sampling resolution of 15 km. The single-
scattering albedo and roughness values depend on the sur-
face type and are taken from literature and/or specific SMOS
studies. For low vegetation areas, the single-scattering albedo
is set to 0 and roughness set to 0.1. For forested areas the
single-scattering albedo is set to 0.06 for tropical and sub-
tropical forest and 0.08 for boreal forest and roughness set to
0.3 (Rahmoune et al., 2013, 2014).
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2.1.2 SMOS level 3 soil moisture and L-VOD

The SMOS L3 soil moisture and L-VOD data set is pro-
vided by the CATDS (Centre Aval de Traitement de Don-
nées SMOS) from CNES (Centre National D’Etudes Spa-
tiales) and IFREMER (Institut Français de Recherche pour
l’Exploitation de la Mer) in an Equal-Area Scalable Earth
Grid (EASE-Grid) version 2 (Brodzik et al., 2012.) with a
sampling resolution of 25 km. The data version used in this
study is version 300. The data set and the retrieval algorithm
are described in (Al Bitar et al., 2017). The L3 algorithm
is based on the same physics and modelling as the ESA L2
single-orbit algorithm (Sect. 2.1.1). However, instead of us-
ing information on prior retrievals to constrain the SM and
L-VOD inversion, the level 3 algorithm uses a multi-orbit
approach with data from three different revisits over a 7-day
window. In contrast to soil moisture, L-VOD is not expected
to change strongly over a short period of time. Therefore a
Gaussian correlation function is used during the retrieval to
penalize large L-VOD variations in the cost function. The
standard deviation of the Gaussian correlation function is
21 days for forests and 7 days for low vegetation. The single-
scattering albedo and roughness parameterizations use the
same approach and values of the L2 algorithm.

2.1.3 SMOS INRA-CESBIO (IC) soil moisture and
L-VOD

The SMOS INRA-CESBIO (SMOS-IC) algorithm was
designed by INRA (Institut National de la Recherche
Agronomique) and is produced by CESBIO (Centre d’Etudes
Spatiales de la BIOsphère). A detailed description is given in
(Fernandez-Moran et al., 2017). One of the main goals of the
SMOS-IC product is to be as independent as possible from
auxiliary data, which are often also used for evaluation. In
contrast to the L2 and L3 algorithms, the IC algorithm con-
siders the footprints to be homogeneous to avoid uncertain-
ties and errors linked to possible inconsistencies in the aux-
iliary data sets which are used to characterize the footprint
heterogeneity. In addition, SMOS-IC differs from the SMOS
L2 and L3 products in the initialization of the cost function
minimization and in the modelling of heterogeneous pixels:
no LAI nor ECMWF SM data are used.

A first run was done with SM 0.2 m3 m−3 and L-VOD
0.5 as the initial guess for the minimization. This allowed
us to compute a mean L-VOD map per grid point. The fi-
nal inversion was done using this mean L-VOD map as a
first guess for L-VOD and a value of 0.2 m3 m−3 as a first
guess for SM. The roughness and single-scattering parame-
ters are assigned per International Geosphere-Biosphere Pro-
gram (IGBP, Loveland et al., 2000) land cover classes, based
on (Parrens et al., 2017b, a) and are averaged within a foot-
print according to the fraction of classes present in the foot-
print. The data used in this study are version 103 and are
provided in the 25 km EASE-Grid 2.0.

2.2 Evaluation data sets

This study performs an evaluation of the SMOS L-VOD data
sets by comparing it with other vegetation-related evaluation
data sets, which are described in the following.

2.2.1 Precipitation

The WorldClim data set (Fick and Hijmans, 2017) pro-
vides spatially interpolated monthly climate data for global
land areas at a very high spatial resolution (approximately
1 km). It includes monthly temperature (minimum, max-
imum and average), precipitation, solar radiation, vapour
pressure and wind speed, aggregated across a target tempo-
ral range of 1970–2000, using data from between 9000 and
60 000 weather stations. As precipitation drives the vegeta-
tion dynamics for some biomes, mean annual precipitation
was used to evaluate the relationship with L-VOD.

2.2.2 MODIS vegetation indices

MODIS NDVI and Enhanced Vegetation Index (EVI) from
the product MYD13C1 (Tucker, 1979; Huete et al., 2002)
collection 6 were compared to the SMOS L-VOD data sets to
test L-VOD’s performance against green photosynthetically
active vegetation. Both NDVI and EVI are directly linked to
the essential climate variables FAPAR and LAI and they are
widely used as proxy for green vegetation cover. The NDVI
product contains atmospherically corrected bidirectional sur-
face reflectances masked for water, clouds and cloud shad-
ows.

EVI uses the blue band to remove residual atmospheric
contaminations caused by smoke and subpixel thin cirrus
clouds, which also introduces uncertainties over tropical ar-
eas. EVI was designed to have higher sensitivity in high
biomass regions than NDVI by allowing the vegetation and
the atmosphere contributions to be distinguished from the
signal (Huete et al., 2002). Whereas the NDVI is chlorophyll
sensitive, the EVI is more responsive to the canopy type and
structure (including LAI) and, for example, it has allowed the
Amazon green-up season to be studied (where other vegeta-
tion indexes such as NDVI do not show any particular pat-
tern, Huete et al., 2006).

Global MYD13C1 data are cloud-free spatial composites
of the gridded 16-day 1 km MYD13A2 and are provided
as a level 3 product projected on a 0.05◦ geographic Cli-
mate Modeling Grid (CMG). Cloud-free global coverage is
achieved by replacing clouds with the historical MODIS time
series climatology record.

2.2.3 Lidar tree height

This study used global tree height data from (Simard et al.,
2011). This data set was produced using 2005 data from the
Geoscience Laser Altimeter System (GLAS) aboard ICESat
(Ice, Cloud, and land Elevation Satellite). The processing fol-
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lows three steps. First, (Simard et al., 2011) developed a pro-
cedure to select waveforms and correct slope-induced dis-
tortions and to calibrate canopy height estimates using field
measurements. In a second step, GLAS canopy height esti-
mations were found to be correlated to other ancillary data
such as annual mean precipitation, precipitation seasonality,
annual mean temperature, temperature seasonality, elevation,
tree cover and classes of protection status. In a third step, a
machine-learning approach (random forest) was trained us-
ing the ancillary variables as input and GLAS tree height as
reference data. Finally, the random forest algorithm was ap-
plied to the ancillary data to produce a forest canopy height
map at 1 km resolution for areas not covered by GLAS wave-
forms.

2.2.4 Above-ground biomass

This study used four static AGB benchmark maps (Baccini
et al., 2012; Saatchi et al., 2011; Avitabile et al., 2016; Bou-
vet et al., 2018) each with specific strengths and limitations
that assess L-VOD’s ability to reflect above-ground biomass
in different biomes: whereas the maps produced by Saatchi,
Baccini and Avitabile aim to cover all pantropical regions
with a focus on dense forests, the Bouvet’s map focuses on
African savannahs with lower biomass values. To take advan-
tage of ALOS/PALSAR L-band observations, in the current
study the Bouvet data set has also been extended to rainforest
(see below).

The first AGB map over Africa was extracted from the
1 km resolution pantropical AGB data set produced by
(Saatchi et al., 2011). The methodology used to produce this
data set involves roughly two steps:

i. In situ inventory plots are used to derive AGB estimates
from the Lorey’s height (the basal area weighted height
of all trees with a diameter of more than 10 cm) calcu-
lated from the ICESat GLAS measurements.

ii. These punctual measurements are spatially extrapolated
using MODIS and Quick Scatterometer (QuikSCAT)
data through maximum entropy (MaxEnt) modelling.
All in situ AGB measurements were made from 1995
to 2005, and the MODIS and QuikSCAT data used for
spatial extrapolation were acquired in 2000–2001, so
that the resulting biomass map is representative of AGB
circa 2000.

This study also used data over Africa extracted from the
pantropical AGB data set produced by (Baccini et al., 2012).
The methodology used to produce this data set is very similar
to that of (Saatchi et al., 2011), except that (i) only MODIS
data are used for the spatial extrapolation, (ii) random forest
is used instead of MaxEnt, (iii) the data set is representative
of circa 2007–2008, and (iv) the AGB map is produced at a
resolution of 500 m.

The (Avitabile et al., 2016) was also used in this study.
This forest biomass data set was obtained by merging the

data sets by (Saatchi et al., 2011) and (Baccini et al., 2012)
with machine-learning techniques to compute a pantropical
AGB map at 1 km spatial resolution. The merging method
was trained using an independent reference data set with field
observations and locally calibrated high-resolution biomass
maps, harmonized and upscaled to be representative of
1 km2. They used a total of 14 477 AGB samples in Australia,
southern Asia, Africa, South America and Central America,
spanning AGB values from 0 to ∼ 500 Mg h−1 and covering
different biomes such as grasslands, shrublands, savannahs
and rainforests.

The fourth biomass map used in this study is based on
(Bouvet et al., 2018) map over savannahs and from (Mer-
moz et al., 2015) over dense forests. The map from (Bou-
vet et al., 2018) at 25 m resolution is the first biomass map
for Africa with a focus on savannahs and was built from
a L-band ALOS PALSAR mosaic produced with observa-
tions made in year 2010 (when SMOS was already in opera-
tion). A direct model was developed to relate the PALSAR
backscatter to AGB with the help of in situ and ancillary
data. In a subsequent step, a Bayesian inversion of the di-
rect model was performed. Seasonal effects were taken into
account by stratification into wet and dry season areas. In
(Bouvet et al., 2018), the method was originally applied to sa-
vannah and woodlands with typical AGB values of less than
85 Mg h−1. In the current study, the Bouvet et al. data set was
extended to regions with AGB values larger than 85 Mg h−1

using the methodology presented by (Mermoz et al., 2014):
the ESA CCI (Climate Change Initiative) land cover map was
used to separate dense forest areas, over which AGB was
estimated at 500 m resolution using the results by (Mermoz
et al., 2015). The resulting data set will be referred to as the
Bouvet–Mermoz data set in the following.

3 Methods

The region selected for this study was the African conti-
nent because the Bouvet–Mermoz data set, which is the only
one that has been produced using SAR observations made in
the same frequency band (L-band) as SMOS, is limited to
Africa. The African continent contains arid, equatorial and
temperate regions (Kottek et al., 2006) with deserts, shrub-
lands, mediterranean woodlands, grasslands, savannah and
rainforests (Olson et al., 2001). Therefore, this study covers
a wide range of climate regions and biomes and allows the
analysis of L-VOD data to be extended to monitor vegeta-
tion properties, in particular biomass, on larger scales than in
previous studies (Lawrence et al., 2014; Grant et al., 2016;
Vittucci et al., 2016).

Unlike SMOS-IC and SMOS L3 products, which are pro-
duced natively on the 25 km EASE-Grid 2.0, the SMOS L2
L-VOD products are provided on the ISEA4H9 grid. A spa-
tial interpolation was required to align the SMOS L2 L-VOD
to the 25 km EASE-Grid. In order to maintain the meaning
of the opacity as much as possible, e.g. close to the coastline
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or transitions between the two grid systems, this interpolated
level 2 (hereafter iL2) L-VOD is obtained using (i) a De-
Launay triangulation linear interpolation whenever possible
(three valid L2 L-VOD), (ii) a linear interpolation (only two
valid L2 L-VOD) or (iii) the nearest L2 L-VOD (only one
valid L2 L-VOD) to the 25 km EASE-Grid grid point within
a neighbour defined by the 25 km EASE-Grid square cell.

AGB, precipitation, tree height and MODIS NDVI/EVI
data were aggregated and resampled to the EASE-Grid 2.0,
which are common to the SMOS L3 and IC data sets us-
ing the Geospatial Data Abstraction Library (GDAL) routine
gdalwarp in average mode. Regarding, the SMOS level 2
data, several SMOS level 2 retrievals are available for a given
day for high northern and southern latitudes. At these lati-
tudes, the best retrievals (corresponding to lower values of
the cost function Chi2) were selected.

In spite of observing in a protected band dedicated
to research observations, some radio frequency interfer-
ences (RFI) from human-built equipment affect the quality
of the SMOS observations. Several quality indicators are
present in the SMOS L2 and L3 products. The DQX pa-
rameter uses the inverse linear tangent model (Jacobian) to
translate the observation uncertainty (radiometric accuracy)
into the parameter space uncertainty. The forward models are
much more sensitive for lower values of the (SM, L-VOD)
parameter space (leading to low DQX) than for higher values
(leading to high DQX). Therefore, filtering to keep the lowest
DQX implies a risk of biasing our results toward the lowest re-
trieved values, particularly for tropical forest where both SM
and L-VOD are high. In addition, the DQX parameter does not
give information about the correctness of the solution, which
is based on a quality of a fit. Therefore, the Chi2 (goodness
of the fit) was used to filter out the retrieved solutions. Sev-
eral tests were done and a value of 3, corresponding approx-
imately to the peak of the Chi2 probability distribution was
found to be a good threshold. This is in agreement with the
values used in other studies (see for instance, Román-Cascón
et al., 2017).

In the case of SMOS-IC, data with a root mean squared
difference between modelled and observed brightness tem-
peratures larger than 10 K were filtered out. In addition, the
L-VOD time series of the three products were analysed from
grid point to grid point, and values with a deviation (in abso-
lute value) larger than 2.5 with respect to the grid point aver-
age σ (where σ is the standard deviation) were considered as
outliers and also filtered out.

The main evaluation strategy used in this study is to com-
pare L-VOD data to the evaluation data sets presented in
Sect. 2. These variables such as above-ground biomass, tree
height or long-term averages of mean annual precipitation
are not expected to change quickly over time. The biomass
data sets discussed in Sect. 2 were produced with observa-
tions from years 1995 to 2010. The comparison of L-VOD
with the other data sets was done using L-VOD data from
2011 and 2012, as 2011 is the first complete year after the

SMOS commissioning phase, which ended in June 2010. The
L-VOD data for 2011 and 2012 were averaged to avoid short-
term variations due to changes in the vegetation water con-
tent over short time periods.

To get a quantitative assessment of the correlation and the
dispersion of L-VOD versus the evaluation data sets, three
correlation coefficients were computed. The Pearson corre-
lation coefficient R is a measure of the linear correlation be-
tween two variables. If the relationship linking these vari-
ables is linear with no dispersion, R equals 1 (both variables
increase together) or −1 (one variable increases when the
other decreases). However, the relationships between L-VOD
and the evaluation data are not expected to be linear in most
of the cases. Therefore, the Spearman and Kendall rank cor-
relations (which can range from −1 to 1) were also com-
puted to quantify monotonic relationships, whether linear or
not (the exact definition of the Spearman and Kendall rank
correlations is given in the Supplement).

The AGB and L-VOD relationship was studied for dif-
ferent biomes using the IGBP land cover classes (Loveland
et al., 2000). Table S2 summarizes the IGBP classes, and
Fig. S1 in the Supplement shows their spatial distribution us-
ing the Bouvet–Mermoz AGB map. For a single biome, a
linear function gives a good fit to the AGB and L-VOD rela-
tionships (see Sect. 4.3). In contrast, the global relationships
linking the AGB data sets and L-VOD are significantly non-
linear; therefore fits were computed following the approach
used by (Liu et al., 2015). The L-VOD data were binned in
0.05-width bins. For each L-VOD bin, the 5th and 95th per-
centiles and the mean of the AGB distribution were com-
puted, providing three AGB curves as a function of L-VOD.
The three curves were fitted with the function used by (Liu
et al., 2015):

AGB= a×
arctan(b (vod− c))− arctan(−b c)
(arctan(∞)− arctan(−b c))

+ d, (1)

and with a logistic function,

AGB=
a

1+ e−b (VOD−c) + d. (2)

In Eqs. (1) and (2), the parameters a,b,c and d are varied to
get the best fit to the curves. The fitted curves give AGB in
Mg h−1 units as a function of L-VOD, which is a dimension-
less quantity. Therefore the units of a and d are Mg h−1 and
b and c are dimensionless quantities.

4 Results

Figure 1 shows the average L-VOD computed over 2011
and 2012 using both ascending and descending orbits for the
three SMOS L-VOD products. In addition, it also shows the
standard deviation (SD) and the number of points of the local
time series after applying the filters discussed in Sect. 3. The
three SMOS L-VOD products show a similar spatial distri-
bution but the SMOS-IC L-VOD shows a smoother spatial
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Figure 1. Average of L-VOD for the SMOS-IC, SMOS iL2 and SMOS L3 data sets from years 2011–2012 (panels a, d and g), corresponding
standard deviation (SD, panels b, e and h) and number of points (Np, panels c, f and i) after filtering (Sect. 3) of the local L-VOD time series
for the three products.

distribution than the iL2 and L3 data sets. The highest values
are found in equatorial forest regions and L-VOD decreases
monotonically with distance to the equatorial forest in the
tropical area and beyond. The SD of the L-VOD time series
also increases towards the equatorial forest, in particular for
the iL2 and L3 data sets. The number of points in the time
series is lower for the IC data set due to the lower revisit
frequency arising from the requirement of having bright-
ness temperature measurements spanning an incidence angle
range of at least 20◦ (Fernandez-Moran et al., 2017).

Figure 2 shows the evaluation data after resampling to
a 25 km EASE-Grid 2.0: the 2011–2012 average of the
MODIS NDVI and EVI indices, tree height, mean annual
precipitation and AGB data sets. EVI and NDVI also de-
crease with increasing distance to the equator but more
slowly than L-VOD. The tree height map shows two main
populations: the equatorial forest, with heights larger than
20 m, and the rest of the continent, where most of the vegeta-
tion is lower than ∼ 5 m. In contrast to the previous quan-
tities, AGB can vary by 2 orders of magnitude; therefore
AGB maps are shown in logarithmic units in Fig. 2. The Bac-

cini, Saatchi and Bouvet–Mermoz maps show a similar AGB
distribution. In contrast, the Avitabile map shows a much
sharper decrease in AGB from the equatorial forest region
to the rest of the continent.

4.1 Comparison of the three L-VOD data sets

Figure 3 shows the scatter plots of SMOS IC L-VOD with
respect to the evaluation data. The scatter plots obtained with
the iL2 and L3 data sets are shown in Figs. S2 and S3, respec-
tively. A visual inspection shows that the scatter plots ob-
tained with IC L-VOD are significantly different than those
of iL2 and L3 L-VOD, as they show smoother relationships
with lower dispersion with respect to all the evaluation data
sets than the equivalent plots for iL2 and L3 L-VOD.

A quantitative assessment of the correlation and the dis-
persion of the different scatter plots can be found in Ta-
ble 1, where Pearson, Spearman and Kendall correlation co-
efficients are given for the three L-VOD data sets with respect
to the evaluation data sets. The lowest Pearson correlation
coefficient values were obtained for L3 L-VOD (R = 0.65–
0.87). The Pearson correlation coefficients obtained for iL2
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Figure 2. AGB maps from (Avitabile et al., 2016), (Baccini et al., 2012), (Saatchi et al., 2011) and (Bouvet et al., 2018) (panels a, b, d, e).
Mean annual precipitation and tree height (panels c, f). Average of MODIS EVI (g) and NDVI (h)for 2011–2012.

L-VOD are similar (R = 0.67–0.87) to those obtained for L3
L-VOD but systematically higher by up to 4%, while the val-
ues obtained for IC L-VOD are the highest (R = 0.77–0.94)
with respect to all the evaluation data sets. The correlation in-
crease is in the range of 5 %–10 % with respect to iL2 L-VOD
and up to 15 % with respect to L3 L-VOD. The rank correla-
tion values with respect to all the evaluation data sets are also
higher for IC L-VOD (ρ = 0.78–0.91, τ = 0.61–0.75), fol-
lowed by iL2 L-VOD (ρ = 0.67–0.83, τ = 0.50–0.65) and L3
L-VOD (ρ = 0.66–0.80, τ = 0.49–0.62). These results are in
agreement with those obtained with the Pearson correlation
and imply that the lower Pearson correlation values obtained
for the L3 and iL2 data sets are not due to a correlation that
could be better but more non-linear than that of the IC data
set. Therefore, using eight vegetation-related evaluation data
sets and three different metrics, the most consistent SMOS L-
VOD data set is SMOS-IC. This result implies that, currently,
the SMOS-IC data set is the best SMOS L-VOD product with
which to perform vegetation studies, and the rest of the cur-
rent study will focus on SMOS-IC L-VOD.

4.2 Comparison of SMOS IC L-VOD to other data sets

The relationship between tree height and IC L-VOD was
found to be close to linear with a high Pearson correlation
coefficient (R = 0.87, Table 1), in agreement with previous
findings using SMOS L2 data (Rahmoune et al., 2014).

With respect to visible/infrared indices such as EVI and
NDVI, Fig. 3 shows that both indices saturate even for mod-
erate L-VOD values of ∼ 0.5, in agreement with previous
studies (Lawrence et al., 2014). The correlation coefficients
are R = 0.80–0.81 and ρ = 0.86–0.88 for NDVI and EVI.
Regarding precipitation, the scatter plots show more disper-
sion (R = 0.77, ρ = 0.82) than those obtained with NDVI
and EVI but there is a saturation in the mean annual precipi-
tation values for L-VOD values higher than ∼ 0.6–0.7.

Regarding the different AGB data sets, most of the scatter
plots show a clear non-linear relationship between L-VOD
and AGB. The relationship between (Baccini et al., 2012)
AGB versus IC L-VOD is the less non-linear one, and the as-
sociated Pearson correlation coefficient is the highest found
(R = 0.94, ρ = 0.90). The relationship between (Avitabile
et al., 2016) AGB and L-VOD is the most non-linear one
(R = 0.85, ρ = 0.84). It shows a low sensitivity to low L-
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Figure 3. Density scatter plots of SMOS-IC L-VOD respect to tree height (a), EVI (c), NDVI (e), cumulated precipitation (g), (Baccini et al.,
2012) AGB (b), (Avitabile et al., 2016) AGB (d), (Saatchi et al., 2011) AGB (f) and Bouvet–Mermoz AGB data sets (h).

VOD values and a large dispersion for high L-VOD values
with AGB ranging from ∼ 300 to 500 Mg h−1. The relation-
ship between L-VOD and the Bouvet–Mermoz AGB data
set (R = 0.89, ρ = 0.91) also shows a significant dispersion

for high L-VOD values, with AGB spanning a range from
200 to 400 Mg h−1. In contrast, the results obtained with
the (Saatchi et al., 2011) (R = 0.92, ρ = 0.91) and (Bac-
cini et al., 2012) data sets show a single AGB peak for
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Figure 4. Scatter plots of MODIS NDVI and EVI with respect to (Saatchi et al., 2011) AGB.

Table 1. Pearson’s R, Spearman’s ρ and Kendal’s τ correlation coefficients of the three SMOS L-VOD data sets with respect to mean annual
precipitation, tree height, MODIS NDVI and EVI and AGB from (Saatchi et al., 2011), (Avitabile et al., 2016), (Baccini et al., 2012) and
Bouvet–Mermoz.

R ρ τ

IC iL2 L3 IC iL2 L3 IC iL2 L3

Precipitation 0.77 0.67 0.65 0.82 0.72 0.69 0.62 0.53 0.50
Tree height 0.87 0.79 0.78 0.78 0.67 0.66 0.61 0.50 0.49
NDVI 0.81 0.75 0.73 0.88 0.81 0.78 0.72 0.63 0.60
EVI 0.80 0.74 0.73 0.86 0.79 0.76 0.69 0.60 0.57
Avitabile 0.85 0.78 0.78 0.84 0.73 0.72 0.65 0.54 0.53
Baccini 0.94 0.87 0.87 0.90 0.80 0.77 0.74 0.62 0.60
Saatchi 0.92 0.84 0.84 0.91 0.82 0.80 0.75 0.64 0.62
Bouvet–Mermoz 0.89 0.81 0.81 0.91 0.83 0.80 0.75 0.65 0.62

the highest SMOS L-VOD values with values of ∼ 280 and
∼ 320 Mg h−1, respectively. In summary, IC L-VOD shows
high sensitivity to AGB, with smooth relationships and with-
out strong signs of saturation, in particular with respect to
the AGB data sets from (Saatchi et al., 2011), (Baccini et al.,
2012) and Bouvet–Mermoz.

To compare the relationship linking L-VOD and AGB to
the relationship between other vegetation indices and AGB,
scatter plots similar to those of Fig. 3 were computed us-
ing Saatchi’s AGB with respect to MODIS NDVI and EVI
(Fig. 4). There is a close to linear relationship for AGB lower
than ∼ 90 Mg h−1 and EVI and NDVI lower than 0.4 and
0.7, respectively. However, in contrast to L-VOD, the rela-
tionship saturates for EVI and NDVI higher than 0.5–0.6 and
0.7–0.8, respectively, for which AGB increases sharply from
90 to 300 Mg h−1. This is expected as the visible/infrared in-
dices are sensible to the greenness of the canopy, which is not
closely related to the total AGB in densely vegetated regions.

To get further insight into the global AGB versus L-VOD
relationship, the fitting method described in Sect. 3 was used.
Fits of the same quality were found using Liu’s function
(Eq. 1) and the logistic function (Eq. 2). Figure 5 shows the
fits using a logistic function and Table S3 shows the best-fit
parameters. Even if the overall form of the scatter plots of

L-VOD and the four different AGB data sets are different,
fits of the same quality were obtained for the four relation-
ships. The Pearson correlation coefficients (R2) of the fitted
function with respect to the points to fit are in the range from
0.990 to 0.999 (Table S3). Equation (2) with the best-fit co-
efficients of Table S3 for the “mean” curves can be used to
transform SMOS IC L-VOD into AGB, while the 5th and
95th quantile best fits can be used to provide an uncertainty
interval.

4.3 Comparison of IC L-VOD to other data sets per
land cover class

4.3.1 AGB data sets

Figure 6 shows the relationship between L-VOD and the four
AGB data sets (from left to right: Bouvet–Mermoz, Saatchi,
Baccini, Avitabile) for different IGBP land cover classes
(from top to bottom: open shrublands, croplands, grasslands,
croplands and natural vegetation mosaics, savannah, woody
savannah, evergreen broadleaf). Each panel of Fig. 6 shows
the regression line and the corresponding equation, as well
as values of the Pearson R, Spearman ρ and Kendall τ coef-
ficients.
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Figure 5. AGB vs. L-VOD scatter plots of Fig. 3 but plotted as point scatter plots. In addition, on the right-hand panels, the 5th and 95th
percentiles of the AGB distribution in bins of L-VOD are displayed as blue circles, while the mean is displayed as black circles. Solid blue
and black lines are the fits obtained using a logistic function (Eq. 2) with the parameters given in Table S3 for the 5th and 95th percentiles
and the mean curves.

Maximum L-VOD values increase from grasslands, crop-
lands, shrublands and savannahs, where L-VOD reaches a
maximum value of ∼ 0.4, to croplands and natural vegeta-
tion mosaics and woody savannahs, where L-VOD reaches a
maximum value of∼ 0.6–0.7. L-VOD values higher than 0.7
were only found in the evergreen broadleaf equatorial forest,
where the L-VOD range is 0.5–1.2.

There are clear trends in the slope of the regression lines.
For Bouvet–Mermoz and Saatchi AGB data sets the trends
are consistent. Slopes increase from 75–86 Mg h−1 from
shrublands and croplands to 110–150 Mg h−1 for grasslands,
croplands and natural vegetation mosaics, savannahs and
woody savannahs. Finally the AGB versus L-VOD relation-
ship slopes increase to 215–250 Mg h−1 for broadleaf ev-
ergreen forest. The general trends found with the Baccini
AGB data set are in overall agreement with those of Bouvet–
Mermoz and Saatchi but the slopes for shrublands and grass-
lands are significantly lower (2–44 Mg h−1), while those for
croplands and natural vegetation mosaics, savannahs and
woody savannahs reach 160–210 Mg h−1, which are values
significantly higher than the ones obtained with Bouvet–
Mermoz and Saatchi (122–156 Mg h−1). The slope obtained
for the evergreen broadleaf equatorial forest was in good
agreement with the two other AGB data sets (265 Mg h−1).
On the other hand, the slopes of the Avitabile AGB and

L-VOD do not show the same trends as the other three
AGB data sets. Slopes for shrublands, croplands, grasslands
and savannahs are as low as 13–44 Mg h−1. The slope in-
creases for mosaics of croplands and natural vegetation up to
87 Mg h−1 are still significantly lower than the range of 132–
174 Mg h−1 found with the other three AGB data sets. The re-
gression line for the scatter plot for Avitabile’s woody savan-
nah AGB increases up to 175 Mg h−1, an intermediate value
with respect to those found with Saatchi’s (123 Mg h−1) and
Baccini’s AGB (211 Mg h−1), and actually the scatter plot
shows signs of bimodality for L-VOD values of 0.5–0.7. In
contrast, the slope obtained for evergreen broadleaf forest
using Avitabile’s AGB is much higher (362 Mg h−1) than
those obtained with the other three AGB data sets (215–
265 Mg h−1).

Many of the relationships are close to linear with Pear-
son coefficients R up to 0.70–0.87 and similar Spearman ρ
values. SMOS L-VOD is well correlated to Bouvet–Mermoz
and Saatchi’s AGB for all IGBP classes with Pearson correla-
tion coefficients R of 0.6–0.85 (except with Saatchi AGB in
shrublands, which is lower, R = 0.49). With respect to Bac-
cini AGB, the Pearson correlation is high (R = 0.7–0.87) for
all IGBP classes but for shrublands and grasslands, where it
was found to be very low: R = 0.03–0.39. Similar behaviour
to that of Baccini AGB was found using Avitabile AGB, for
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which Pearson correlation values were also found to be low
for shrublands and grasslands (R = 0.31–0.44), while they
increase for savannahs and woody savannahs to R = 0.51–
0.56 and to R ∼ 0.7 for croplands, crops and natural vegeta-
tion mosaics and evergreen broadleaf forest.

The best correlations of AGB and L-VOD were found
with (i) Bouvet–Mermoz AGB for shrublands (R = 0.64)
and savannahs (R = 0.81), (ii) Baccini AGB for croplands
(R = 0.76) and evergreen broadleaf equatorial forest (R =
0.78) and (iii) Saatchi AGB for grasslands (R = 0.82). Re-
garding croplands and natural vegetation mosaics, the high-
est correlation values were obtained with Saatchi and Bac-
cini, which gave very similar results (R = 0.85–0.87) and
were somewhat higher than those obtained with Bouvet–
Mermoz (R = 0.81). Finally, for woody savannah, the high-
est correlation values were also obtained with Saatchi and
Baccini (R = 0.67–0.70, respectively), while with Bouvet–
Mermoz (R = 0.6) and Avitabile (R = 0.56) the correlation
was lower. One should note that Pearson correlation values
obtained with Bouvet–Mermoz for woody savannah could
be degraded by the fact that, for the highest values of AGB
found in this class at the SMOS resolution, the AGB esti-
mation is a mix of Bouvet and Mermoz approaches. Ac-
tually, it is noteworthy that the highest rank correlations
for woody savannahs and mosaics of croplands and natural
vegetation were obtained with the Bouvet–Mermoz data set
(ρ = 0.77 and ρ = 0.91, respectively). In summary, except
for the Avitabile AGB data set, all the other AGB data sets
perform better than L-VOD for a few land cover classes.

4.3.2 Other auxiliary data sets

Figure 7 is similar to Fig. 6 but it shows the relationship be-
tween L-VOD and other auxiliary data sets (from left to right:
tree height, NDVI, EVI and mean annual precipitation) for
different IGBP land cover classes.

Regarding tree height, the slope of the regression line is
17–27 m for all IGBP classes except for shrublands, where
it is 12 m. The Pearson correlation is relatively low (∼ 0.4)
except for mosaics of croplands and natural vegetation and
for evergreen broadleaf forest (R = 0.61–0.73).

Regarding the L-VOD and NDVI relationship in different
biomes, the slope of the regression line increases from 0.05
in shrublands to 0.57 in grasslands and 0.87 in mosaics of
croplands and natural vegetation, before decreasing again to
0.6 in savannahs, 0.36 in woody savannahs and 0.11 in ev-
ergreen broadleaf forest as NDVI saturates. It is noteworthy
that no significant difference is seen in the behaviour of EVI
and NDVI for high L-VOD values, in spite of the “enhanced”
performance of EVI with respect to NDVI, pointed out in
some studies (Huete et al., 2006).

Regarding the relationship between L-VOD and the av-
erage amount of annual precipitation, L-VOD increases
from 0 up to ∼ 0.7 for increasing precipitation up to ∼
1500 mm (values found for croplands and natural vegeta-

tion mosaics and woody savannah). In this range of L-VOD,
all other vegetation tracers increase as well. For instance,
Bouvet–Mermoz and Saatchi’s AGB increase up to 85 and
∼ 100 Mg h−1, respectively, and NDVI and EVI increase up
to ∼ 0.7 and ∼ 0.45, respectively (Figs. 6 and 7). The Pear-
son correlationR and the slope of the regression line increase
from 0.2–0.3 and 266–612 mm for shrublands and grasslands
to 0.4–0.65 and 1395–1914 mm for croplands, mosaics of
croplands and natural vegetation and savannahs. The Pearson
correlation coefficient R and the slope decrease to 0.25 and
741 mm, respectively, in woody savannahs. Finally, L-VOD
values higher than 0.6–0.7, found only in evergreen broadleaf
forest, are uncorrelated with the mean annual precipitation
(R = 0.04 and slope of −64 mm). The mean annual precip-
itation could be one of the drivers of vegetation growth in
drylands. In contrast, over that threshold of ∼ 1500 mm of
annual precipitation, which occur basically in the evergreen
broadleaf forest, L-VOD and the other vegetation tracers are
not coupled to the amount of precipitation.

5 Discussion

5.1 Sensitivity of L-VOD to AGB

As mentioned in Sect. 2, SMOS L2 and L3 products con-
sider heterogeneous land cover inside the SMOS footprints,
while SMOS-IC does not account for footprint heterogene-
ity. The better results obtained with the SMOS-IC data set
suggests that the approach used to account for heterogeneous
land cover introduces uncertainties in the level 2 and 3 prod-
ucts. Nevertheless, independently of the choice of the SMOS
L-VOD data set, the results showed a generally high sensitiv-
ity of L-VOD with respect to the vegetation-related variables
and indices used for the evaluation, in particular with respect
to AGB (R = 0.78–0.94).

The relationship between tree height and SMOS L-VOD
was found to be close to linear, confirming previous findings
by (Rahmoune et al., 2014) using SMOS L2 L-VOD. (Vit-
tucci et al., 2016) estimated a correlation of L2 L-VOD and
tree height of 0.81, which is in good agreement with the value
reported here (R = 0.79, Table 1). However, for IC L-VOD
the relationship shows even less dispersion and a higher cor-
relation (R = 0.87).

The SMOS-IC L-VOD relationships with respect to NDVI
and EVI were found to be in agreement with those discussed
using SMOS L3 data by (Grant et al., 2016) as there is satu-
ration in EVI and NDVI for high L-VOD values. In contrast,
the relationships found in this study using SMOS-IC showed
less dispersion than those found by (Grant et al., 2016).

Regarding the comparison to AGB, (Vittucci et al., 2016)
discussed the relationship linking L2 L-VOD and biomass
from the Carnegie Airborne Observatory (Asner et al., 2014)
at 20 selected points over Peru, Columbia and Panama,
spanning AGBs from ∼ 50 to ∼ 280 Mg h−1. The relation-
ship was almost linear, in good agreement with the results
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Figure 6. SMOS IC L-VOD relationships versus the four AGB data sets (from left to right: Bouvet–Mermoz, Saatchi, Baccini, Avitabile)
for different IGBP land cover classes (from top to bottom: open shrublands, croplands, grasslands, croplands and natural vegetation mosaics,
savannah, woody savannah, evergreen broadleaf). Each panel shows the regression line and equation, and values of the Pearson R, Spearman
ρ and Kendall τ coefficients.
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Figure 7. SMOS IC L-VOD relationships versus auxiliary data sets (from left to right: tree height, NDVI, EVI and average annual precipi-
tation) for different IGBP land cover classes (from top to bottom: open shrublands, croplands, grasslands, croplands and natural vegetation
mosaics, savannah, woody savannah, evergreen broadleaf). Each panel shows the regression line and equation, and values of the Pearson R,
Spearman ρ and Kendall τ coefficients.
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Figure 8. (a) Fits of the 5th and 95th percentile curves of the (Saatchi et al., 2011) AGB with respect to SMOS-IC L-VOD (green) and NDVI
(pink). To plot both distributions with the same scale, VOD and NDVI were normalized from 0 to 1 using their respective maxima (0.83 for
NDVI and 1.24 for L-VOD). (b) Fits of the 5th and 95th percentile curves of the (Saatchi et al., 2011) AGB with respect to SMOS-IC L-VOD
(green) overlaid in the K/X/C-VOD versus (Saatchi et al., 2011) AGB curves of Fig. S4 from (Liu et al., 2015) (brown). No normalization is
needed in this case as both VODs span a similar range of values.

discussed in Sect. 4 for SMOS IC L-VOD for evergreen
broadleaf forest.

5.2 Comparison of L-band sensitivity to AGB to other
frequencies

This study is devoted to L-VOD as estimated from SMOS ob-
servations, but it is interesting to discuss the scatter plots pre-
sented in Sect. 4.2 in comparison those obtained for other fre-
quencies. Figure 8a shows the fits to the 5th and 95th curves
obtained by analysing the Saatchi AGB and L-VOD distri-
butions (Fig. 5c). The area between the curves was shaded
in green. In addition, the figure also shows the fits to the 5th
and 95th curves obtained by analysing the MODIS NDVI and
L-VOD distributions (Fig. 4). The area between the curves
was shaded in pink. Since the dynamic range of L-VOD
and NDVI are significantly different, both quantities were
normalized from 0 to 1 by their maximum values being di-
vided (1.24 and 0.83 for L-VOD and NDVI) in order to bet-
ter show the sensitivity to AGB. As discussed in Sect. 4.2,
NDVI shows some sensitivity to AGB only for low AGB val-
ues (with a low slope) before showing strong saturation for
AGB values higher than ∼ 70 Mg h−1.

Regarding the VOD estimated with higher microwave fre-
quencies, (Liu et al., 2015) discussed fits of Saatchi’s AGB
as a function of K/X/C-VOD. They used K/X/C-VOD data
in the period 1998–2002 (as mentioned in Sect. 2, the data
used to compute the (Saatchi et al., 2011) maps were ac-
quired from 1995 to 2005). (Liu et al., 2015) computed the
5th and 95th quantiles of the AGB distribution in VOD bins,
obtaining two curves and giving the “envelope” of the AGB
versus and VOD distribution, which is the same method that
was used in the current study (Sect. 3). Figure 8b shows the
fits to the 5th and 95th curves shown in Fig. S4 of (Liu et al.,
2015), which were reproduced using the function and the pa-

rameters given in their Eq. (S2) and Table S1, respectively.
The area between the curves was shaded in brown. In addi-
tion, Fig. 8b shows the fits to the 5th and 95th curves ob-
tained by analysing the Saatchi AGB and L-VOD distribu-
tions. The area between the curves was shaded in green as
in Fig. 8a. The relationship between AGB and K/X/C-VOD
shows a similar shape to that of AGB versus L-VOD but it
is somewhat shifted to higher VOD values. AGB increases
from ∼ 50 to ∼ 300 Mg h−1 for K/X/C-VOD values higher
than ∼ 0.7. In contrast, the relationship between AGB and
L-VOD shows a more steady increase from low to high AGB
and L-VOD values. In particular, it does not show a thresh-
old beyond which the relationship saturates and the slope in-
creases significantly. One must bear in mind that the time
periods of the data compared with K/X/C-VOD are not the
same, as the L-VOD period used in this study is 2011–2012
and more detailed comparisons of the sensitivity to AGB of
VOD at different frequencies would be interesting. However,
the non-linearity of the curve and the difference in sensitiv-
ity to high AGB from different frequencies is driven by the
high AGB values in the dense equatorial forest, which is not
supposed to vary strongly in a few years time at the SMOS
spatial resolution. In addition, it is worth noting that the dif-
ferent shapes of the L-VOD and AGB relationships with re-
spect to the K/X/C-VOD and AGB relationships are in agree-
ment with what it is expected from the radiation transfer the-
ory (Wigneron et al., 1995, 2004; Ferrazzoli and Guerriero,
1996) and previous results on L-VOD and X/C-VOD com-
parison by (Grant et al., 2016) and (Vittucci et al., 2016) as
Fig. 8b shows that, for a given AGB, L-VOD is lower than
VOD at higher frequencies, as expected.
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5.3 Comparison of the different AGB data sets

Estimating the AGB from remote sensing measurements is
complex and the errors of different retrieval methods are not
easy to characterize. Interpreting why L-VOD compares bet-
ter to a given AGB data set for a given IGBP class (Sect. 4.3)
is not easy.

The Avitabile AGB data set shows that a sharp decrease
from the equatorial region with distance is not seen in any
other AGB map nor in the L-VOD maps. Avitabile AGB and
L-VOD scatter plots are also significantly different to those
computed with the original Baccini and Saatchi maps. For in-
stance, the low AGB versus L-VOD slopes obtained for low
shrublands, grasslands and croplands are much lower than
those found with the original Saatchi and Baccini data sets.
The scatter plot found with Avitabile for woody savannah re-
sembles an overlay of the scatter plot obtained from Baccini
and the scatter plot obtained from Saatchi. Finally, the slope
of the AGB versus L-VOD in evergreen broadleaf forest is
∼ 30% higher than those found with the other data sets. The
singular behaviour of Avitabile AGB could arise from the
fact that it is a pure data-driven method and that it is there-
fore very sensitive to the data used to train the method. In
the (Avitabile et al., 2016) training database, high AGB plots
could be overrepresented.

On the other hand, as mentioned in Sect. 4.3, the distri-
bution of Baccini AGB for woody savannah is significantly
different to the other data sets, which have much higher val-
ues than those found for Bouvet–Mermoz and Saatchi AGB.
Actually, with Baccini AGB, the value of the slope obtained
for woody savannah is 80 % of that obtained for evergreen
broadleaf forest, while this ratio is only 55 % for Bouvet–
Mermoz and Saatchi AGB. This high slope for woody savan-
nah is responsible for the lower non-linearity of the global
AGB and L-VOD relationship using the Baccini data set.
Woody savannah in the IGBP classification is defined as
herbaceous vegetation and a forest canopy cover between
30 % and 60 %. AGB could be overestimated in this hetero-
geneous land cover class in the Baccini data set due to the
fact that no microwave data but only MODIS is used for the
spatial extrapolation (Sect. 2). Figure S4 shows scatter plots
of the four AGB data sets as a function of the (Simard et al.,
2011) tree height estimation. The relationship is almost lin-
ear for (Baccini et al., 2012) AGB, which is not the expected
behaviour from allometric relations (Chave et al., 2014).

Radar observations in low vegetation regions such as
shrublands and grasslands are thought to be very sensitive
to biomass variations, in spite of a significant sensitivity to
soil moisture. The high correlation of the two AGB maps in-
volving radar data, either as the main source of information
(Bouvet–Mermoz) or together with optical and elevation data
(Saatchi), with SMOS L-VOD in grasslands would confirm
this fact, as the high correlation in shrublands for Bouvet–
Mermoz. The low slopes found for shrublands and grass-
lands when being compared to Baccini AGB also support this

interpretation. Interestingly, the Bouvet–Mermoz AGB data
set, which has been obtained from L-band SAR data and is
the only one developed with a particular focus on savannahs,
shows a linear relationship between L-VOD and AGB with a
very low dispersion.

6 Conclusions

Three different SMOS-based L-VOD data sets were evalu-
ated and compared to precipitation, tree height, NDVI, EVI
and AGB data. Lower dispersion and smoother relationships
were obtained by using SMOS-IC L-VOD compared to the
iL2 and L3 L-VOD data sets. Consistently, the rank correla-
tion values obtained with SMOS-IC were significantly higher
by 5 %–15 % than those obtained with level 2 and level 3 L-
VOD data sets.

The relationships between AGB estimates and L-VOD
were strong (R = 0.85–0.94) but differed among the prod-
ucts. For low vegetation classes (grasslands to woody savan-
nah), the best performance was achieved with the Bouvet–
Mermoz, Baccini and Saatchi biomass data sets. The biomass
data by Baccini and Saatchi showed the best agreement with
L-VOD for dense forest (R = 0.70–0.79). Avitabile’s AGB
data showed low correlation values with L-VOD for low veg-
etation classes and a similar performance to Bouvet–Mermoz
for dense forest (R = 0.64–0.67). The AGB and L-VOD rela-
tionships can be fitted over the entire range of both variables
with a single law using a sigmoid logistic function. How-
ever, an analysis per land cover class showed that within the
same land cover class, the L-VOD and AGB relationship is
close to linear. Therefore, the global non-linear relationship,
found when all the different land cover are considered to-
gether, arises from different slopes in the L-VOD/AGB rela-
tionship obtained for different land cover classes considered
separately. For low vegetation classes, the annual mean of L-
VOD spans a range from 0 to 0.7 and could be related to the
mean annual precipitation.

The relationship between AGB versus L-VOD was com-
pared to the ones between AGB versus NDVI and AGB ver-
sus K/X/C-VOD from (Liu et al., 2015). As expected, NDVI
saturates strongly and it becomes weakly sensitive to AGB
changes from∼ 70 to∼ 300 Mg h−1. With respect to K/X/C-
VOD, the AGB also increases slowly as VOD increases for
most (∼ 70 %) of the K/X/C-VOD dynamic range but it satu-
rates for VOD > 0.8. In contrast, AGB values show a steady
increment as L-VOD increases over the whole L-VOD dy-
namic range.

The equations computed in this study can be used to esti-
mate AGB from SMOS-IC L-VOD. Of course, these equa-
tions depend on the data set used as reference to fit the AGB
and L-VOD relationship. Three of them (those determined
with (Baccini et al., 2012), (Saatchi et al., 2011) and Bouvet–
Mermoz) gave very similar values when the 5th and 95th per-
centiles of the distributions were taken into account.
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The results obtained in this study showed that the L-VOD
parameter estimated from the SMOS passive microwave ob-
servations is an interesting index with which to monitor AGB
at coarse resolution (∼ 40 km). Despite its coarse spatial res-
olution, the advantage of using SMOS L-VOD is that it is
possible to compute one AGB map per year, for instance,
which allows temporal estimations of the changes in the
global carbon stocks on large scales (Brandt et al., 2018).

Data availability. SMOS level 3 and IC products are avail-
able from CATDS at ftp://ext-catds-cpdc:catds2010@ftp.
ifremer.fr/Land_products/GRIDDED/ (CATDS, 2018a) and
ftp://ext-catds-cecsm:catds2010@ftp.ifremer.fr/Land_products/
L3_SMOS_IC_Vegetation_Optical_Depth/ (CATDS, 2018b), re-
spectively. SMOS Level 2 products are available from ESA (2018)
at https://smos-diss.eo.esa.int.
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