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Abstract

Up-to-date land cover maps are important for biodiversity monitoring as they

are central to habitat and ecosystem distribution assessments. Satellite remote

sensing is a key technology for generating these maps. Until recently, land cover

mapping has been limited to static approaches, which have primarily led to the

production of either global maps at coarse spatial resolutions or geographically

restricted maps at high spatial resolutions. The recent availability of optical

(Sentinel-2) and radar (Sentinel-1) satellite image time series (SITS) which pro-

vide access to high spatial and very high temporal resolutions, is a game chan-

ger, offering opportunities to map land cover using both temporal and spatial

information. These data moreover open interesting perspectives for land cover

mapping based on data combination approach. However, the usefulness of

combining dense time series (more than 30 images per year) and data combina-

tion approaches to map natural vegetation has so far not been assessed. To

address this gap, this contribution tests the idea that the combined considera-

tion of optical and radar data combination and time series analyses can signifi-

cantly improve natural vegetation mapping in the Pendjari National Park, a

Sahelian savanna protected area in Benin. Results highlight that the combina-

tion of Sentinel-1 and Sentinel-2 SITS performs as well as Sentinel-2 SITS alone

in terms of classification accuracy. Land cover maps are however qualitatively

better when considering the data combination approach. Our results also clearly

show that the use of dense/hypertemporal optical time series significantly

improves classification outcomes compared to using multitemporal only a few

images per year) or monotemporal data. Altogether, this work thus demon-

strates the ability of dense SITS to improve discrimination of natural vegetation

types using information on their phenology, leading to more detailed and more

reliable maps for environmental management.

Introduction

We are facing an unprecedented decline in global biodi-

versity, yet we currently lack reliable information on the

extent and speed of decline in many ecosystems. Such

information is needed by decision-makers and practition-

ers in order to mobilize political action to halt and miti-

gate against declines. The horizontal structure of

ecosystems (which e.g. refers to the level of spatial

heterogeneity in a given ecosystem) is an important com-

ponent of ecosystem assessment, and can be assessed

using information on land cover, which itself is consid-

ered by many as an important ‘essential biodiversity vari-

able’ (Skidmore et al. 2015). Satellite remote sensing has

become an indispensable tool for monitoring land cover

and land cover change as it provides repetitive and stan-

dardized measures that are spatially continuous and com-

parable over time (Nagendra 2001).
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Mapping of land cover is generally done either at a

broad geographical scale with high temporal but coarse to

medium spatial resolution imagery (MODIS, Landsat) or

at a small geographical scale with low temporal but very

high spatial resolution imagery. This means that land

cover mapping is generally either limited to a coarse spa-

tial resolution or to a temporally fixed and geographically

restricted approach (Mairota et al. 2015; G�omez et al.

2016). Interestingly, the use of satellite image time series

(SITS) has shown to be particularly useful for vegetation

mapping, because of its ability to take into account plant

phenology (Lambin and Linderman 2006; Duro et al.

2007; Kuenzer et al. 2014). However, because of the com-

mon trade-off between spatial and temporal resolutions

characterizing land cover mapping approaches, most

existing classifications have been, and still are, based on

single-date image or cloud-free composite (Li et al. 2011;

Peterson and Nelson 2014; White et al. 2014; G�omez

et al. 2016).

The launch of new generation satellites – such as the

Sentinel suite of satellites, as well as fleets of SmallSats/

CubeSats – has recently changed this status quo and

could potentially be game changing, offering opportuni-

ties to map land cover using high resolution imagery in

both the spatial and the temporal domains, enabling both

the detection of small elements in the landscapes

(<30 m 9 30 m) and the ‘almost in real time’ monitor-

ing of vegetation phenology.

For land cover mapping, the temporal information is

generally exploited through the extraction of temporal

metrics from time series or derived from a model (Sch-

wieder et al. 2016; Chen et al. 2018; Rufin et al. 2019);

these metrics do not however account for all existing

temporal variations in vegetation phenology.

With the launch of new generation satellites, novel clas-

sification protocols and algorithms have emerged to take

full advantage of the temporal information contained in

dense time series (> 20 images per year) (Inglada et al.

2017; Belgiu and Csillik 2018). However, these new

approaches have mostly been applied to crop mapping;

the efficiency of dense optical time series to map natural

vegetation has so far hardly ever been assessed.

The recent availability of co-registered optical (Sen-

tinel-2) and radar (Sentinel-1) imagery moreover opens

promising perspectives for land cover mapping based on

a data combination approach, enabling the combined use

of the complementary information captured by both types

of sensors (Joshi et al. 2016). Fusion or combination of

different sources of data can be performed at different

stages of the classification. In pre-classification fusion

(also known as pixel-level fusion or data-based combina-

tion), the different data sources are used together as

inputs of the classification algorithm (Joshi et al. 2016).

In post-classification fusion (sometimes known as deci-

sion-level fusion or result-based combination), classifica-

tions obtained from different sources of data are

combined to yield a final fused classification (Zhang

2010). A lot of fusion techniques exist and their compar-

ison is not the scope of this paper; reviews of these differ-

ent fusion techniques can be found in Joshi et al. (2016);

Pohl and Genderen (1998); Schulte to B€uhne and Pet-

torelli (2018); and Zhang (2010).

Although optical and radar image fusion have often

shown an ability to enhance land cover classification

accuracy (Stefanski et al. 2014; Joshi et al. 2016; Clerici

et al. 2017), there is still a lack of proper comparison and

validation of methods to assess the actual added value of

combining optical and radar data for natural vegetation

mapping (G�omez et al. 2016; Joshi et al. 2016; Hirsch-

mugl et al. 2018). Although fusion and time series

approaches are more and more used, their joint use is still

relatively new. Limited availability of imagery has so far

limited multitemporal analyses to a few images per year

(e.g. Zhu and Tateishi 2006). As a result, little is known

about the benefits of combining dense optical and radar

SITS for natural vegetation mapping (Kuenzer et al. 2014;

Hirschmugl et al. 2018).

To address this knowledge gap, this contribution ana-

lyzes the complementarity of radar (Sentinel-1) and opti-

cal (Sentinel-2) time series for natural vegetation

mapping over a Sahelian savanna protected area in West

Africa (in this case the Pendjari National Park). Specifi-

cally, we here test the idea that the combination of opti-

cal and radar data and dense time series analyses can

significantly improve our ability to reliably map natural

vegetation, particularly subtle differences in savanna veg-

etation, providing detailed vegetational maps, including

measures of agricultural encroachment, that are needed

by managers. Savanna landscapes are important for con-

servation, being known to host a variety of biodiversity

hotspots and key conservation areas (Solbrig 1996). They

are characterized by a herbaceous cover with a variable

proportion of shrub and woody cover, on a gradient

from grasslands to open forests, offering a diversity of

habitats for wildlife. This heterogeneity makes savannas

difficult to map with satellite images because it leads to

pixels composed of a mixture of different land cover

types (Eggen et al. 2016). Therefore, land cover classifi-

cation of savannas has often been limited to a main

savanna class encompassing different types of savanna

subclasses (such as grass savanna, shrub savanna, tree

savanna) (M€uller et al. 2015; Eggen et al. 2016; Symeon-

akis et al. 2018). To our knowledge, the only work that

classified savanna following a vegetation height gradient

was the contribution of Schwieder et al. (2016) in Brazil

using temporal metrics extracted from Landsat time
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series; the overall accuracy of their classification was rel-

atively low, at 63%.

Based on the current state of knowledge (Crowson

et al. 2019; Hirschmugl et al. 2018; Symeonakis et al.

2018), we expect classifications based on data combina-

tion to perform better than classifications based on opti-

cal or radar data alone, because data combination takes

advantage of the sensitivity of both sensors (H1). Based

on previous studies (Archibald and Scholes 2007; Mathieu

et al. 2013; Schwieder et al. 2016), we also assume that

the differences between close savanna subclasses will rely

on small phenological variation. We therefore expect the

use of dense time series (here, more than 30 images per

year) to significantly enhance land cover classification

outcomes compared to single date analysis and multitem-

poral analysis (six images per year, H2).

Materials and Methods

Study area

The Pendjari National Park is located in the north-west

of Benin (Fig. 1A). The park is a component of the W-

Arly-Pendjari (WAP) complex which is a large trans-

boundary protected area (36 000 km2) comprising pro-

tected areas in Benin, Burkina Faso and Niger. It is the

largest remaining preserved savanna ecosystem in West

Africa. The park covers an area of about 2800 km2,

A

B C D E

Figure 1. (A) Boundaries of Pendjari National Park with location of reference data and illustrations of the different savanna subclasses (B–E).
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subject to a tropical Sudanese-Guinean climate with a

rainy season lasting from May to October; average annual

precipitation is 1100 mm.

It holds natural habitats that are critical for a number

of species, including elephants (Loxodonta Africana)

(Bouch�e et al. 2011), the last population of cheetahs in

West Africa (Acinonyx jubatus) (Durant et al. 2017) and

endangered West African lions (Panthera leo) (Henschel

et al. 2014). It currently is one of the best examples of

natural habitats within West Africa.

The boundaries of the Pendjari National Park are

almost entirely defined by the Pendjari river that begins

in the Atacora mountain chain (formed by hills that have

a maximum elevation of 400 m) located in the south of

the park. Most of the park is covered by shrub and tree

savanna, with wood density getting higher along the

Pendjari river and its temporary tributaries, forming

riparian and gallery forests. The alluvial plains are mostly

covered by grass savanna (Bousquet 1992).

We here consider four savanna subclasses (Fig. 1B–
E). Grass savanna is grassland where no ligneous elements

are present. Grass can grow up to 2 or 3 m. Shrub

savanna is composed of grass and small ligneous elements

such as shrubs and bushes that are not higher than 3 m.

Tree savanna is composed of grass, shrubs and sparse

trees (at least 3 m high) sufficiently spaced so that the

leaves of different individuals do not touch each other.

Woodland savanna is savanna composed of grass, shrubs

and denser tree cover than tree savanna. Leaves can touch

each other, especially during wet season when canopy

cover is dense. In some nomenclatures, savanna woodland

is referred to as clear forest.

Reference data

Ground truth data were collected during a field survey

that was carried out in January 2019. About 90 way-

points were recorded across the park using a Global

Positioning System (Fig. 1A). Classes that were consid-

ered are: grass savanna, shrub savanna, tree savanna,

woodland savanna, forest, water bodies, temporary wet-

lands, bare ground and rocks vegetation. Temporary

wetlands were added as an additional category to

account for the unique vegetation characteristics of areas

that are inundated during the wet season and part of

the dry season; in their dry state, they were characterized

by bare ground or very low vegetation ground cover.

Polygons were then digitized following a small and

homogeneous area around the waypoint using Sentinel-2

and Sentinel-1 imagery. Additional small polygons were

digitized using knowledge of the local area, information

from Google Earth and Sentinel-1 & -2 data, to obtain

at least 300 pixels per savanna type.

Satellite imagery

Sentinel-2 is a constellation of two satellites (Sentinel-2A

and Sentinel-2B) that carry a MultiSpectral Instrument

(MSI) delivering optical images every 5 days. The Pend-

jari National Park extent is covered by the same Sentinel-

2 orbit (R22), therefore, no mosaicking was required. We

used the images acquired from 8 February 2018 to 3

February 2019 with less than 50% cloud cover detected

on Level L1C products. In total, 43 acquisitions were

used. The Level L1C images (orthorectified and radiomet-

rically corrected to Top of Atmosphere reflectance) were

processed to Level L2A surface reflectances (corrected for

atmospheric effects and slope effects) using the MACCS-

ATCOR Joint Algorithm (MAJA) L2A Processor (Hagolle

et al. 2010, 2017). The images were downloaded from the

PEPS platform of the French Spatial Agency (https://pe

ps.cnes.fr) that allows applying MAJA processor on Sen-

tinel-2 L1C images on the fly. Along with atmospheric

and terrain corrections, MAJA processor includes a multi-

temporal cloud detector which provides a particularly

reliable mask of clouds and cloud shadows (Baetens et al.

2019).

Images acquired by an optical sensor can be affected by

the presence of clouds and their shadows resulting in

noisy data in the image that should not be considered for

classification. When using time series, it results in ‘gaps’

that do not necessarily occur at the same time for all pix-

els. For classification purposes, we need to have the same

number of dates (i.e. variables) for all the pixels. There-

fore, we applied a temporal gap filling algorithm in order

to fill the gaps in the time series associated with each

pixel. We performed a spline gap filling using the applica-

tion Image Time Series Gap Filling of the Orfeo

ToolBox (OTB) which is an open-source toolbox for

remote sensing images processing (Grizonnet et al. 2017).

We used the ten Sentinel-2 spectral bands at 10 m and

20 m spatial resolution – resampling the six bands at

20 m to 10 m resolution using nearest neighbor interpo-

lation –, as well as the Normalized Difference Vegetation

Index (NDVI) (Pettorelli 2013).

Sentinel-1 is a constellation of two satellites with SAR

sensors (Sentinel-1A and Sentinel-1B), operating at C-

band (5.6 cm wavelength). Over the land surfaces, most

acquisitions are made in dual polarization (VV and VH)

with a time repeat frequency of 6 days. At the time of the

study, only Sentinel-1A acquired images over the Pendjari

National Park, providing one acquisition every 12 days.

The 31 acquisitions released from 10 February 2018 to 5

February 2019 with the ascending relative orbit 1 were

used. This orbit covers 96% of the park with an incident

angle varying from 30 to 36°. We used Level-1 Ground

Range Detected High resolution (GRDH) products
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recorded in interferometric wide swath mode. The images

were radiometrically calibrated to convert them to radar

backscattering coefficient r0 using OTB application SAR

Radiometric Calibration (Laur et al. 2004). These were

then orthorectified to correct for the geometric distor-

tions using the OTB application OrthoRectification (Small

and Schubert 2008). The output spatial resolution is

10 m per pixel. The images were subsequently converted

from intensity to the logarithm dB scale. We used both

polarizations VH and VV, and the ratio VH/VV was com-

puted as a third polarization, because multi-polarization

data have often been shown to improve land cover classi-

fication accuracy (Lee et al. 2001; McNairn et al. 2009a).

A temporal filter (Bruniquel and Lopes 1997; Quegan and

Yu 2001) was used to reduce the speckle effects without

degrading the spatial resolution; the efficiency of such fil-

ter when compared to single-date filtered images has been

previously demonstrated (Ciuc et al. 2001; Trouve et al.

2003; McNairn et al. 2014).

Classification, accuracy assessment and
comparisons

We used the Random Forest (RF) classifier, implemented

in OTB applications with the following parameters: maxi-

mum depth of tree = 25; minimum number of samples

in each node = 25; maximum number of trees in the

forest = 100. Those parameters were chosen following

[Pelletier et al. 2016] recommendations, as a good com-

promise between classification accuracy and computation

time. Different inputs associated with a time dimension

(hypertemporal, multitemporal or monotemporal) were

considered as inputs of the classification (Table 1). The

combination of optical and radar data was performed for

the hypertemporal case only, by stacking both hypertem-

poral time series prior to classification. The classification

workflow can be found in Figure 2.

The reference dataset was split randomly into disjoint

training (70%) and validating (30%) subsets. The strati-

fied split was performed at the polygon level in order to

have an independent set of pixels between the training

and the validation steps (no pixels belonging to the same

polygon in the training and validating subsets). The ran-

dom split was repeated 20 times to ensure the results

are not biased by a specific combination of training/vali-

dating subsets. The same subsets for a given repetition

were used for each input, so that the results are fully

comparable. The 20 resulting classifications (for each

input) were sieved to reduce the salt and pepper effect

using the GDAL (GDAL/OGR contributors, 2018)

gdal_sieve.

For each iteration, the confusion matrix was computed

based on the corresponding validation subset and the

F-score was extracted as a measure of accuracy, which is

the harmonic mean between precision and recall (Sasaki

2007).

To compare the performances of each input configura-

tion, we used the Z-statistics of the Wilcoxon rank-sum

test (Wilcoxon 1945) computed between each pair of dis-

tributions of 20 F-scores. The test was run with the SciPy

(Jones et al. 2001) library of Python. We also reported

the average processing and computational times for each

approach and compared them to the average classification

accuracy.

Table 1. Inputs of the classification

Name Sensor

Number of dates (variables)

Hypertemp. Multitemp. Monotemp.

Sentinel-2

S2_4 Reflectance in four spectral bands (B2, B3, B4, B8) 43 (172) 6 (21) 1 (4)

S2_10 Reflectance in ten spectral bands (B2, B3, B4, B8, B5, B6, B7, B8A, B11, B12) 43 (430) 6 (60) 1 (10)

S2_4-NDVI Reflectance in four bands and NDVI 43 (215) 9 9

Sentinel-1

S1 _ r0VH; r
0
VV; r

0
VH

�
r0VV 31 (93) 9 9

Sentinel-1 and Sentinel-2 combination

S2_4-S1 S2_4 stacked with S1 43 and 31 (265) 9 9

S2_10-S1 S2_10 stacked with S1 43 and 31 (523) 9 9

For the hypertemporal case, all the images of the time series were used. Multitemporal and monotemporal cases were considered for Sentinel-2

only. For the multitemporal case, six dates well distributed in time were extracted from the time series before the gap filling, under the condition

that there were 0% cloud cover estimated at L2A. We chose dates 08-02-2018, 05-03-2018, 29-04-2018, 19-05-2018, 26-10-2018, 15-12-2018,

24-01-2019. Note that there are no cloud-free acquisitions during the wet season. For the monotemporal case, we used the Sentinel-2 image

acquired on 24-01-2019 because it is the closest date to the field survey with 0% cloud cover.
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Results

As expected (H1), the combination of Sentinel-2 and Sen-

tinel-1 SITS provides the highest classification accuracies:

the combination of Sentinel-1 with Sentinel-2 (ten bands)

or with Sentinel-2 (four bands) leads to equivalent aver-

age F-scores (respectively 73.2% and 73.0%, Fig. S1).

Interestingly, the use of Sentinel-2 SITS alone performs

well too, with F-scores above 72% using four bands and

NDVI or ten bands. Sentinel-1 SITS alone provide the

lowest results with an average F-score of 60.1%. The

results obtained from combining optical and radar data

and from Sentinel-2 alone are not significantly different

(Table S1).

Overall, the combined use of Sentinel-2 and Sentinel-1

time series leads to forest, water bodies, temporary wet-

lands, bare ground and rock vegetation being very

well classified (per-class F-score >90%, Table S2), while

grass savanna and woodland savanna are not

so well identified (F-score > 70%). Our results show that

the main confusions are between grass and shrub savanna

and between shrub and tree savanna.

On average, shrub savanna is the class that is the most

difficult to classify (average F-score around 40%,

Table S1). Adding Sentinel-1 data to Sentinel-2 data

enables a better detection of grass savanna (gain of 4% in

accuracy compared to Sentinel-2 alone). Tree savanna is

also better detected when adding Sentinel-1 data to Sen-

tinel-2 four bands (gain of 4% in accuracy), but not to

Sentinel-2 ten bands (decrease of 4%).

Despite the similar quantitative results given by

F-score, it is worth noticing that a visual inspection of

the produced maps shows a better agreement with the

actual landscapes when Sentinel-1 and Sentinel-2 are

combined; for example, the narrow lines of trees along

temporary streams are much better detected when Sen-

tinel-1 and Sentinel-2 data are combined (Fig. 3C).

As expected (H2), also, the use of a single date clearly

leads to poorer classification results (average

F-score = 52.7% using Sentinel-2 ten bands). Outcomes

Figure 2. Workflow of the classification scheme.
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Figure 3. Extract of the hypertemporal classifications using (A) Sentinel-2 data (ten bands) alone, (B) Sentinel-1 data alone and (C) Sentinel-2

combined with Sentinel-1. These are from the same classification iteration, chosen because it has the closest F-score to the average F-score for

the different inputs.

ª 2020 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd behalf of Zoological Society of London. 7

M. Lopes et al. Sentinel-2 & 1 Time Series to Map Savannas



are much improved when using six dates (average F-

score = 65.3%) but it does not reach the high accuracy

obtained using hypertemporal data. The consideration of

hypertemporal data results in significantly higher F-score

than the consideration of multitemporal data (average F-

score = 72.1%; P-value < 0.01 when considering either

Sentinel-2 four bands or ten bands).

The added value of using multitemporal or hypertem-

poral data depends however on the class. For temporally

stable classes (forest, water bodies), the gain in accuracy

is minor (1% increase at best, Table S2). However,

savanna subclasses and classes clearly identifiable by their

temporal behavior (temporary wetlands for instance) are

much better classified when using hypertemporal data.

With Sentinel-2 four bands for example, going from

monotemporal to multitemporal data, the gain is of

10% for grass savanna, 9% for shrub savanna, 7% for

tree savanna and 37% for woodland savanna. There is

an additional gain of 14% for grass savanna, 7% for

shrub savanna, 5% for tree savanna when using hyper-

temporal data (Fig. S2). For temporary wetlands, the

gain from monotemporal to multitemporal data is of

44%.

Discussion

Our results demonstrate that the use of hypertemporal

optical time series (>30 images per year) can significantly

improve land cover mapping in sub-Saharan regions:

these findings are in line with those of (M€uller et al.

2015; Symeonakis et al. 2018) using Landsat time series.

Our results also show for the first time that the combina-

tion of both dense Sentinel-1 and Sentinel-2 SITS can

potentially enhance classification accuracy, although in

our case not significantly. Our validation data, based on

field surveys, were sparse and the classification errors

might have been larger than the differences in accuracy

between both approaches.

Surprisingly, radar time series, although being sensitive

to vegetation structure and texture, did not contribute

much to improve the discrimination of woody classes;

these results contradict the findings of Naidoo and col-

leagues’ work (2016) in which radar data performed bet-

ter at retrieving woody canopy cover in savannas than

Landsat optical data. However, these authors used L-band

from ALOS PALSAR which penetrates better in canopy

cover than Sentinel-1 C-band. In addition to that, images

were acquired in HH/VH polarization; the polarization

has an influence on the radar response to vegetation

structure (McNairn et al. b) and was shown to impact on

the discrimination of woody classes (Mathieu et al. 2013).

We did not compare the effect of Sentinel-1 polarizations

on the woody classes retrieval, but it could be investigated

in future studies. Moreover, as the incident angle of Sen-

tinel-1 is larger than the one of ALOS PALSAR, it could

have decreased its ability to distinguish between woody

classes because smaller incidence angles are known to

penetrate deeper into canopy cover (Inoue et al. 2002).

Symeonakis et al. (2018) also found an improved overall

accuracy (>5%) when combining optical data (Landsat)

and L-band radar data (ALOS PALSAR) for land cover

classification in a savanna landscape. These findings sug-

gest that the association of Sentinel-2 with ALOS PAL-

SAR-2 could significantly improve savanna subclasses

discrimination. We were not able to test this particular

assumption in this study as the 2018 ALOS PALSAR-2

mosaic was not yet available.

One major drawback revealed by our work relates to

the use of Sentinel-1 data when working on a spatial

extent covered by different orbits. Sentinel-1 has a wide

swath of 250 km, with incident angle varying from 30°
to 46°. Hence, it is difficult to mosaic Sentinel-1 images

acquired over different orbits because overlapping areas

are viewed with very different incident angles (Syrris

et al. 2019), considerably impacting the magnitude of

the backscattered signal as mentioned above (Frison and

Mougin 1996; Inoue et al. 2002). To be able to work

with different orbits one should have a good distribution

of reference data over the different orbits, which is not

always easy to obtain especially in conservation areas. In

our case, 4% of the parks could not be classified when

using Sentinel-1 data because they were covered by a

different orbit where we did not have ground truth data.

To our knowledge, no study has so far reported this

issue because most works involving classification using

Sentinel-1 data are set on small geographical extents.

Another limitation of this study comes from the combi-

nation of optical and radar data that was performed at

the pixel-level in a relatively simple way (i.e. only by

stacking both types of data prior to classification, result-

ing in a very high number of input variables). Many

fusion techniques exist and could potentially lead to bet-

ter outcomes when using Sentinel-1 and Sentinel-2 sen-

sors in combination.

Our study has shown that the combined use of dense

optical and radar time series has the potential to substan-

tially improve our ability to map natural vegetation in

remote areas such as the W-Arli-Penjari transboundary

park. However, such an approach is time demanding and

requires an advanced set of remote sensing skills. For

dense time series pre-processing, on average using a stan-

dard computer with 8 Gb RAM and 2.10 GHz 9 4 CPU,

it took about 45 min to process each full Sentinel-2 time

series associated with a 10 m spectral band for the extent

of the park, and 1 h 30 for the 20 m spectral bands (an

additional step is required, resampling to 10 m). In other
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words, 3 hours were required for Sentinel-2 four bands

and another 9 h for Sentinel-2 ten bands. For Sentinel-1,

5 h were necessary to obtain the three final filtered time

series. In terms of additional computational times during

the classification process, it cost about 45 additional sec-

onds to add a supplementary variable to a random forest

classification of such an area. At one point, one classifica-

tion iteration (including model training and image classi-

fication) took a total of 1 h 15 for Sentinel-2 four bands,

3 h 30 for Sentinel-2 ten bands, 2 h 30 for the combina-

tion of Sentinel-1 and Sentinel-2 four bands and 4 h30

for the combination of Sentinel-1 and Sentinel-2 ten

bands. The processing time could be much reduced by

using Google Earth Engine platform that provides access

to Sentinel imagery and high performance computational

infrastructure (Gorelick et al. 2017).

Altogether, this work demonstrates the usefulness of

dense SITS to help discriminate among natural vegetation

types when mapping land cover. It also highligghts how

our reliance on single-date images for land cover mapping

limits our ability to monitor ecosystems worldwide, only

enabling the distinction of broad classes that are either

temporally stable or have a high inter-class separability

(such as water, forest, crops, bare ground, built-up areas).

Our results thus call for a shift in habits, encouraging a

higher use of Sentinel-2 time series to inform environ-

mental management worldwide, particularly in large, con-

servation relevant regions: although being sensitive to

clouds, the high spatial resolution combined to the high

revisit frequency of Sentinel-2 appears for example suffi-

cient to map vegetation at fine scale in an area affected

by cloud cover, suggesting promising possibilities for land

cover classification in tropical areas. Increased use of

dense time series will enable a more rapid generation of

automatic processing chains with low human interven-

tion, ultimately making tailored land cover mapping more

efficient and less sensitive to human errors. For instance,

using all the images acquired in a year avoids an arbitrary

date selection, often limited by the cloud cover; this

approach also allows the use of images acquired during

the wet season and subsequently the gap filling of the

images (because of clouds) that cannot be done efficiently

if using only a few images. Our study shows how such a

shift in methodology has the potential to provide more

detailed and more reliable maps, that can be used by

managers for accurate monitoring of habitat. The

approach we detailed is replicable, and only relies on free

imagery and open-source software; we therefore hope our

results will encourage more scientists and practitioners to

consider dense time series analyses as the new norm for

tracking changes in the distribution of natural vegetation

from space.
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Figure S1. Boxplots of F-score distribution over the 20

classifications using hypertemporal time series with differ-

ent inputs (S2_4: Sentinel-2 four bands, S2_10: Sentinel-2

ten bands, S2_4-NDVI: Sentinel-2 four bands and NDVI,

S1: Sentinel-1 two polarizations and their ratio, S2_4-S1:

S2_4 stacked with S1, S2_10-S1: S2_10 stacked with S1).

Figure S2. Average F-score value over the 20 repetitions

depending on the number of dates when using Sentinel-2

data (four or ten bands). Table S1. Absolute value of Z-

statistics of the Wilcoxon test run between each pair of

20 F-score resulting from classifications using hypertem-

poral data. * means test is significant with P-value < 5%,

**means test is significant with P-value < 1%. Table S2.

Normalized (per row) confusion matrix of the classifica-

tion reaching the highest F-score using Sentinel-2 and

Sentinel-1 hypertemporal time series (input S2_10-S1, F-

score = 81.4%). Table S3. Average F-score per class (%)

over the 20 classifications using hypertemporal time ser-

ies. Table S4. Average F-score per class (%) over the 20

classifications using Sentinel-2 data with different number

of dates.
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