H. Driguez-;-b)-h.-driguez-;-c, ). K. Pachamuthu, R. R. Schmidt-;-d, ). G. Lian, X. Zhang et al., For reviews on thioglycosides, vol.187, pp.13-22, 1997.

B. Aguilera, A. Fernández-mayoralas, ;. M. Sandgren, G. I. Berglund, A. Shaw et al., For representative examples, vol.63, pp.2202-2203, 1998.

R. T. Dere, X. Zhu-;-c.-o'reilly, P. V. Murphy-;-c, ). X. Zeng, R. Smith et al., For representative examples, vol.10, pp.4165-4170, 2008.

C. A. De-leon, P. M. Levine, T. W. Craven, and M. R. Pratt, Biochemistry, vol.56, pp.3507-3517, 2017.

N. Martínez-sáez, J. Castro-lópez, J. Valero-gonzález, D. Madariaga, I. Compañón et al., Angew. Chem., Int. Ed, vol.54, pp.9830-9834, 2015.

M. K. Tarrant, H. Rho, Z. Xie, Y. L. Jiang, C. Gross et al., Nat. Chem. Biol, vol.8, pp.262-269, 2012.

Z. Amso, S. W. Bisset, S. Yang, P. W. Harris, T. H. Wright et al., Chem. Sci, vol.9, pp.1686-1691, 2018.

G. E. Norris and M. L. Patchett, Curr. Opin. Struct. Biol, vol.40, pp.112-119, 2016.

J. C. Maynard, A. L. Burlingame, and K. F. Medzihradszky, Mol. Cell. Proteomics, vol.15, pp.3405-3411, 2016.

M. R. Levengood and W. A. Van-der-donk, Chem.-Eur. J, vol.1, pp.5997-6006, 2003.

D. A. Thayer, H. N. Yu, M. C. Galan, and C. H. Wong, Angew. Chem., Int. Ed, vol.44, pp.875-887, 2004.

S. Knapp, D. S. Myers-;-d)-d, W. A. Galoni?, D. Y. Van-der-donk, and . Gin, J. Am. Chem. Soc, vol.67, pp.12712-12713, 2002.

S. B. Cohen and R. L. Halcomb, Org. Lett, vol.3, pp.405-407, 2001.

G. J. Bernardes, E. J. Grayson, S. Thompson, J. M. Chalker, J. C. Errey et al., Angew. Chem., Int. Ed, vol.47, pp.2244-2247, 2008.

D. Crich and F. Yang, J. Org. Chem, vol.73, pp.7017-7027, 2008.

E. Calce, G. Digilio, V. Menchise, M. Saviano, and S. De-luca, Chem.-Eur. J, vol.24, pp.6231-6238, 2018.

A. Dondoni, A. Massi, P. Nanni, and A. Roda, Chem.-Eur. J, vol.15, pp.11444-11449, 2009.

D. Ellis, S. E. Norman, H. M. Osborn-;-b)-l.-lázár, M. Csávás, M. Herczeg et al., Tetrahedron, vol.64, pp.4650-4653, 2008.

, Besides thioanalogues of glycosylated tyrosines, only one example of peptide arylthioglycoside has been reported to our knowledge, Chem. Commun, vol.49, pp.7608-7610, 2013.

P. La?te and R. Daniellou, Nat. Prod. Rep, vol.29, pp.729-738, 2012.

A. Halim, G. Brinkmalm, U. Rüetschi, A. Westman-brinkmalm, E. Portelius et al., Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.932-944, 2011.

J. C. Trinidad, R. Schoepfer, A. L. Burlingame, and K. F. Medzihradszky, Mol. Cell. Proteomics, vol.12, pp.3474-3488, 2013.

S. L. King, H. J. Joshi, K. T. Schjoldager, A. Halim, T. D. Madsen et al., Blood Adv, vol.1, pp.429-442, 2017.

T. Jank, X. Bogdanovi?, C. Wirth, E. Haaf, M. Spoerner et al., Nat. Struct. Mol. Biol, vol.20, p.7807, 2013.

A. Bruneau, J. Brion, M. Alami, S. Messaoudi-;-b, ). E. Brachet et al., Adv. Synth. Catal, vol.49, pp.2627-2636, 2013.

E. Brachet, J. Brion, M. Alami, S. Messaoudi, . Chem et al., Org. Biomol. Chem, vol.19, pp.6720-6728, 2013.

A. Bruneau, M. Roche, A. Hamze, J. Brion, M. Alami et al., Chem.-Eur. J, vol.21, pp.8375-8379, 2015.

N. C. Bruno, M. T. Tudge, S. L. Buchwald, ;. Bruneau, M. Roche et al., Chem. Sci, vol.4, pp.1386-1396, 2013.

S. V. Moradi, W. M. Hussein, P. Varamini, P. Simerska, and I. Toth, Chem. Sci, vol.7, pp.2492-2500, 2016.

, The coupling of 1a and 2a was also performed in the presence of different other Pd-based catalysts such as

. Pd, XPhos and Pd(OAc) 2 /disodium 2-aminopyrimidine-4,6-diol. However, none of the catalysts did produce the desired product 3a even at high loading (see ESI, ? P5)

, In all cases herein reported, when the peak corresponding to the anomeric proton could be clearly identi?ed on the 1 H NMR spectrum

I. Valverde, F. Lecaille, G. Lalmanach, V. Aucagne, A. F. Delmas-;-b)-v.-aucagne et al., Angew. Chem., Int. Ed, vol.51, pp.201-210, 2012.

C. Decourt, V. Robert, K. Anger, M. Galibert, J. Madinier et al., Sci. Rep, 2016.

M. J. Orsini, M. A. Klein, M. P. Beavers, P. J. Connolly, S. A. Middleton et al., Am. J. Physiol.: Endocrinol. Metab, vol.50, pp.296-303, 2007.

, Proteomic studies showed that the precursor of KP10, KISS1, can be post-translationally modi?ed by phosphorylation at this Tyr residue, Anal. Chem, vol.76, pp.2763-2772, 2004.

N. Nishizawa, Y. Takatsu, K. Sumano, A. Kiba, J. Ban et al., J. Med. Chem, vol.59, pp.8804-8811, 2016.

G. F. Springer, J. Mol. Med, vol.75, pp.594-602, 1997.

S. J. Gendler, C. A. Lancaster, J. Taylor-papadimitriou, T. Duhig, N. Peat et al., J. Biol. Chem, vol.265, pp.15286-15293, 1990.

C. Sihlbom, I. Van-dijk-härd, M. E. Lidell, T. Noll, G. C. Hansson et al., Proc. Natl. Acad. Sci. U. S. A, vol.19, pp.261-266, 2009.

V. Lakshminarayanan, P. Thompson, M. A. Wolfert, T. Buskas, J. M. Bradley et al., Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.3575-3579, 2005.

V. Rojas-ocáriz, I. Compañón, C. Aydillo, J. Castro-lopez, J. Jiménez-barbero et al., J. Org. Chem, vol.81, pp.5929-5941, 2016.

J. A. Speir, U. M. Abdel-motal, M. , and I. A. Wilson, Immunity, vol.10, pp.51-61, 1999.

, N-Terminal biotinylation of 7a by reaction with biotin sulfoNHS ester under standard conditions led to a mixture of the expected mono-biotinylated together with non-and multi-biotinylated species, despite the absence of Lys residues in the sequence. We attribute these results to the formation of Ser/Thr esters, and optimized conditions for 7a, 7b, 8c and 8f to avoid such over-biotinylation, see ESI ? for details

R. Gibadulli, D. W. Farnswort, J. J. Barchi, and J. C. Gildersleeve, ACS Chem. Biol, vol.12, pp.2172-2182, 2017.

M. Ibba, P. Kast, H. Hennecke-;-b, ). P. Kast, H. Hennecke-;-c et al., Proc. Natl. Acad. Sci. U. S. A, vol.33, pp.964-967, 1991.

L. Wang, J. Xie, A. A. Deniz, P. G. Schultz-;-g)-k.-kodama, S. Fukuzawa et al., J. Org. Chem, vol.68, pp.134-139, 2003.

T. J. Wadzinski, A. Steinauer, L. Hie, G. Pelletier, A. Schepartz et al., Nat. Chem, vol.10, pp.644-652, 2018.