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Abstract 26 

Murid rodents (Rodentia: Myomorpha: Muroidea: Muridae) represent the most diverse and 27 

abundant mammalian group. In this study, we reconstruct a dated phylogeny of the family using 28 

a multilocus dataset (six nuclear and nine mitochondrial gene fragments) encompassing 160 29 

species representing 82 distinct murid genera from four extant subfamilies (Deomyinae, 30 

Gerbillinae, Lophiomyinae, and Murinae). In comparison with previous studies on murid or 31 

muroid rodents, our work stands out for the implementation of multiple fossil constraints within 32 

the Muridae thanks to a thorough review of the fossil record. Before being assigned to specific 33 

nodes of the phylogeny, all potential fossil constraints were carefully assessed; they were also 34 

subjected to several cross-validation analyses. The resulting phylogeny is consistent with 35 

previous phylogenetic studies on murids, and recovers the monophyly of all sampled murid 36 

subfamilies and tribes. Based on nine controlled fossil calibrations, our inferred temporal 37 

timeframe indicates that the murid family likely originated in the course of the Early Miocene, 38 

23.0-16.0 million years ago (Ma), and that most major lineages (i.e. tribes) have started 39 

diversifying ca. 10 Ma. Historical biogeography analyses support the Paleotropical origin for 40 

the family, with an initial internal split (vicariance event) followed by subsequent migrations 41 

between Afrotropical and Indomalayan lineages. During the course of their diversification, the 42 

biogeographic pattern of murids is marked by several dispersal events toward the Australasian 43 

and the Palearctic regions, mostly from the Indomalaya. The Afrotropical region was also 44 

secondarily colonized at least three times from the Indomalaya, indicating that the latter region 45 

has acted as a major centre of diversification for the family. 46 
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1. Introduction 51 

With about 150 genera and more than 730 recognized species, Muridae is the most diverse 52 

family of mammals (Musser and Carleton, 2005). Collectively murids have colonized highly 53 

distinct ecological niches, adapting to a wide array of environments ranging from warm (deserts 54 

or tropical forests) to cold habitats (high altitude mountain ranges, tundra; Vaughan et al., 55 

2011). Life habits in murids are also diverse, as the family encompasses amphibious, arboreal, 56 

fossorial, or terrestrial taxa (Michaux et al., 2007; Musser and Carleton, 2005).  57 

All murid species are native to the Old World (Musser and Carleton, 2005), but some 58 

species (especially the black rat Rattus rattus Linnaeus, the Norway rat Rattus norvegicus 59 

(Berkenhout) and the house mouse Mus musculus Linnaeus) now have a worldwide distribution 60 

due to commensalism and dissemination by humans. Murid species diversity is especially high 61 

in the Australasian and Indomalayan regions which accommodate half of the species diversity 62 

of the family (Rowe et al., 2016a). Second to that is the species diversity in the Afrotropical 63 

region (more than 200 species; Musser and Carleton, 2005). By contrast, there are much less 64 

native murid taxa in the Palearctic region (e.g. Apodemus Kaup, Diplothrix Thomas, or 65 

Tokudaia Kuroda).  66 

The history of murid systematics is complex and convoluted with numerous changes 67 

occurring in the past sixty years (see Table 1 for a summary). Simpson (1945) divided 68 

representatives of family Muridae (as currently understood) into two separate families: 69 

Cricetidae (with subfamilies Gerbillinae, Lophiomyinae and others) and Muridae (subfamilies 70 

Murinae and Otomyinae). Chaline et al. (1977) considered “murid” rodents to belong to four 71 

families: Cricetidae (including Lophiomyinae), Gerbillidae, Muridae (exclusively Murinae) 72 

and Nesomyidae (including Otomyinae). Lavocat (1978) simplified this classification by 73 

recognizing only two families: Muridae (Murinae) and Nesomyidae (in which he included 74 

Gerbillinae, Lophiomyinae and Otomyinae). Another major change was later made by Carleton 75 
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and Musser (1984), who defined family Muridae in the broad sense with no less than 14 76 

subfamilies (including Gerbillinae, Lophiomyinae, Murinae and Otomyinae). Following the 77 

introduction of molecular systematics, changes in the classification of family Muridae 78 

continued at a fast rate. Using molecular phylogenetics Chevret et al. (1993a) demonstrated that 79 

Acomys I. Geoffroy is not a member of the subfamily Murinae but belongs to a separate 80 

monophyletic clade including Deomys Thomas, Lophuromys Peters and Uranomys Dollman. 81 

All four genera were assigned to the subfamily Deomyinae, which is closely related to the 82 

Gerbillinae. In another study, Chevret et al. (1993b) showed that Otomyinae are closely allied 83 

to the tribe Arvicanthini, thus unequivocally constituting a subset of the subfamily Murinae at 84 

the tribe level (Ducroz et al., 2001; Jansa and Weksler, 2004). Jansa and Weksler (2004) also 85 

strongly suggested that Lophiomyinae belonged to the Muridae. Only part of these proposals 86 

was followed by Musser and Carleton (2005) who recognized the following five subfamilies in 87 

the family Muridae: Deomyinae, Gerbillinae, Leimacomyinae, Murinae and Otomyinae. 88 

Nowadays the most consensual classification agrees on five subfamilies: Deomyinae (four 89 

genera and ca. 42 species), Gerbillinae (16 genera and ca. 103 species), Leimacomyinae (only 90 

one species, possibly extinct; Kingdon, 2015), Lophiomyinae (only one species) and Murinae 91 

(129 genera and ca. 584 species; see the review of Granjon and Montgelard, 2012).  92 

Musser and Carleton's (2005) comprehensive catalogue listed 730 species in the family 93 

Muridae. Estimates of species diversity in this family are very likely not definitive, as new 94 

murid taxa are being regularly described (e.g. Carleton et al., 2015; Esselstyn et al., 2015; 95 

Missoup et al., 2016; Mortelliti et al., 2016; Rowe et al., 2016a). Expected and ongoing raise in 96 

species number can be accounted for by an increased focus on poorly known regions with high 97 

levels of endemism, especially in tropical Asia and Africa. It is also linked with the 98 

development of integrative taxonomy studies, where molecular genetic approaches are able to 99 
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detect taxa and geographical regions with high cryptic diversity (e.g. Bryja et al., 2014, 2017; 100 

Ndiaye et al., 2016). 101 

Because of the high species richness of the family, determining the precise timing of its 102 

radiation is of particular paleobiogeographic interest. Several dated estimates for the age of 103 

Muridae are available owing to studies either focusing on the order Rodentia (Adkins et al., 104 

2001, 2003; Fabre et al., 2012; Montgelard et al., 2008), on the superfamily Muroidea 105 

(Muroidea; Schenk et al., 2013 ; Steppan et al., 2004) or on various murid subsets (e.g. Bryja 106 

et al., 2014; Chevret and Dobigny, 2005; Dobigny et al., 2013; Fabre et al., 2013; Pagès et al., 107 

2016; Rowe et al., 2008, 2011, 2016b). However, no clear consensus could be reached for the 108 

age of the family Muridae. Indeed, age estimates derived from all aforementioned studies are 109 

far from being congruent, likely because their datasets have not been designed for this particular 110 

purpose. In addition, all these studies used very diverse dating procedures, some of them relying 111 

on substitution rate calibrations (e.g. Arbogast et al., 2001; Nicolas et al., 2008) whereas others 112 

used fixed ages (e.g. the putative Mus/Rattus split at 12 Ma; Steppan et al., 2004), very distant 113 

fossil constrains (Adkins et al., 2003; Fabre et al., 2012; Montgelard et al., 2008) or primary 114 

calibrations using various fossil constraints within or outside the family Muridae (e.g. Bryja et 115 

al., 2014; Pagès et al., 2016; Rowe et al., 2016b; Schenk et al., 2013).  116 

For fossil-based calibrations of molecular clocks, it is crucial: (i) to properly assign and 117 

place fossils on the tree, and (ii) to correctly estimate the age of fossil-bearing formations 118 

(Parham et al., 2012; Sauquet et al., 2012). Unfortunately the fossil record of oldest murids is 119 

quite fragmentary and mostly consists of isolated teeth and mandible remains, thus sometimes 120 

making taxonomic identification difficult. The earliest representatives for the family Muridae 121 

include the tribe Myocricetodontini with genera such as †Myocricetodon Lavocat, †Dakkamys 122 

Jaeger and †Mellalomys Jaeger (Jacobs and Flynn, 2005; Lazzari et al., 2011). Extinct members 123 

of the genus †Potwarmus Lindsey could be considered as a stem group of the subfamily 124 
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Murinae based on detailed analyses of dental morphology (Lazzari et al., 2011; López 125 

Antoñanzas, 2009; Wessels, 2009). The earliest unequivocal representative of the subfamily 126 

Murinae is the genus †Antemus Jacobs (Jacobs and Downs, 1994; Jacobs and Flynn, 2005; 127 

Kimura et al., 2015). †Antemus possesses a new cusp (anterostyle, also known as t1), which is 128 

a synapomorphy of Murinae. The earliest record of †Antemus chinjiensis is dated at 13.8 Ma 129 

(Jacobs et al., 1990) based on specimens from the locality YGSP 491, Chinji Formation in the 130 

Potwar Plateau, Pakistan (Jacobs, 1977). In the fossil record of the Potwar Plateau, two more 131 

derived fossil genera are of particular interest: †Karnimata Jacobs and †Progonomys Schaub. 132 

Based on the relative position of the anterostyle to the lingual anterocone on M1, Jacobs (1978) 133 

hypothesized that †Karnimata is related to Rattus and that †Progonomys is a member of the 134 

lineage including Mus. Hence, their first stratigraphic occurrence has been used to define the 135 

widely used Mus/Rattus calibration (ca. 12 My; Jacobs and Downs, 1994). However, in 2015, 136 

Kimura et al. revisited these fossils from a paleontological perspective and proved this 137 

calibration point to be controversial. They showed that †Karnimata is a member of the 138 

Arvicanthini-Millardini-Otomyini clade rather than a member of the lineage encompassing the 139 

genus Rattus and its relatives (i.e. tribe Rattini). Therefore, they demonstrated that the 140 

continuous fossil record of the murine rodents from the Potwar Plateau actually provides a 141 

minimum age for the most recent common ancestor of the lineages leading to Arvicanthis 142 

Lesson and Mus (= Mus/Arvicanthis split).  143 

Recent progresses in divergence dating analyses lead us to revisit results previously 144 

obtained by favouring the implementation of a new set of well-justified primary fossil 145 

calibrations within a Bayesian framework. In comparison to previous studies (listed above), our 146 

study can be considered as medium-sized in terms of taxonomic sampling, and essentially 147 

focused on the family Muridae. But our study stands out for rigorous evaluation of the fossil 148 

data for this highly diverse mammalian family. The present study has four main objectives: (i) 149 
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to design a comprehensive multi-marker molecular dataset for the family Muridae, (ii) to review 150 

the murid fossil record in order to identify reliable and suitable primary fossil calibrations, (iii) 151 

to provide a reliable estimate of the timing of diversification of the family using multiple fossil 152 

calibrations, and (iv) to lean on the resulting dated phylogeny to reconstruct the biogeographic 153 

history of the family using up-to-date analytical approaches. 154 

 155 

2. Material and Methods 156 

2.1. Taxon sampling 157 

For this study, new DNA sequences were generated for five murid species (Acomys cf. 158 

cineraceus, Acomys subspinosus (Waterhouse), Acomys wilsoni Thomas, Arvicanthis niloticus 159 

(Desmarest), Arvicanthis neumanni (Matschie) see Appendix A). Though we largely relied on 160 

GenBank data for this work, it is worth underlining that our research group generated thousands 161 

of murid sequences (all deposited in GenBank) in the past 15 years (we used some of these 162 

sequences for 44 species included in this study). In total, our dataset (Appendix A) encompasses 163 

160 murid species representing 82 of the 151 known murid genera. All four extant subfamilies 164 

(if considering the Togo mouse from Leimacomyinae to be extinct) of Muridae are included. 165 

For the largest subfamily Murinae, we included representatives of all 10 tribes that have been 166 

defined by Lecompte et al. (2008): Apodemini, Arvicanthini, Hydromyini, Malacomyini, 167 

Millardini, Murini, Otomyini, Phloeomyini, Praomyini and Rattini. As outgroup taxa, we 168 

selected five species of the family Cricetidae (from subfamilies Arvicolinae, Cricetinae, 169 

Neotomyinae and Tylomyinae), which constitutes the sister group of Muridae (Fabre et al., 170 

2012). Finally, the tree was rooted using Calomyscus baluchi Thomas, a representative of the 171 

more distant family Calomyscidae (Fabre et al., 2012). All species names followed Musser and 172 

Carleton (2005) and Monadjem et al. (2015).  173 

 174 
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2.2. DNA extraction, sequencing and molecular matrix 175 

DNA was extracted using a Qiagen® DNeasy Blood and Tissue kit (Qiagen, Hilden, 176 

Germany) following the manufacturer’s instructions. Two nuclear gene fragments were 177 

targeted using the following combinations of polymerase chain reactions (PCR) primers: 178 

IRBP217 and IRBP1531 (Stanhope et al., 1992) for the fragment of the ‘interphotoreceptor 179 

retinoid binding’ (IRBP) gene; RAG1F1705 and RAG1R2951 (Teeling et al., 2000) for a 180 

fragment of the ‘recombination activating gene 1’ (RAG1) gene. For PCR protocols, see Bryja 181 

et al. (2017) and Teeling et al. (2000), respectively. PCR products were Sanger sequenced in 182 

both directions using the BigDye® Terminator chemistry (Thermo Fisher Scientific) either in 183 

the Institute of Vertebrate Biology on an ‘Applied Biosystems® 3130xl Genetic Analyzer’, or 184 

commercially through the GATC Biotech company (Konstanz, Germany). New sequences were 185 

deposited in GenBank under accession numbers KY634246 to KY634250. 186 

The newly generated sequences were further combined with data from GenBank. The 187 

resulting matrix (see Appendix A) encompasses the following six nuclear and nine 188 

mitochondrial gene fragments: ‘acid phosphatase 5’ (AP5), BRCA1, intronic portion of 189 

‘Peripheral benzodiazapine receptor variant’ (BZRP), ‘growth hormone receptor’ (GHR), IRBP 190 

and RAG1, for the nuclear genes, and ‘12S ribosomal RNA’ (12S), ‘16S ribosomal RNA’ 191 

(16S), ‘ATP synthase 8’ (ATPase8), ‘cytochrome c oxidase I’ (COI), ‘cytochrome oxidase II’ 192 

(COII), ‘cytochrome b’ (Cytb), ‘Aspartic acid transfer RNA’ (tRNA-Asp), ‘Lysine transfer 193 

RNA’ (tRNA-Lys), ‘Serine transfer RNA’ (tRNA-Ser), for the mitochondrial genes. For nine 194 

taxa (Acomys cf. cineraceus, Acomys wilsoni Thomas, Aethomys chrysophilus (de Winton), 195 

Aethomys hindei (Thomas), Aethomys kaiseri (Noack), Aethomys silindensis Roberts, 196 

Arvicanthis nairobae J.A. Allen, Arvicanthis neumanni and Thallomys paedulcus (Sundevall), 197 

gene fragments were concatenated from two individuals to minimize the amount of missing 198 

data. For all protein-coding genes, we used Mesquite 3.2 (Maddison and Maddison, 2007) to 199 
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check the coding frame for possible errors or stop codons. The sequences of several markers 200 

(i.e. 12S, 16S, intronic portion of BZRP, tRNA-Asp, tRNA-Lys and tRNA-Ser) were variable 201 

in length; their alignment was accomplished using MUSCLE (Edgar, 2004) with default 202 

settings.  203 

 204 

2.3. Phylogenetic analyses 205 

Phylogenetic analyses were conducted using both Bayesian inference (BI) and 206 

maximum likelihood (ML). Analyses were performed on the online computer cluster CIPRES 207 

Science Gateway (Miller et al., 2010; www.phylo.org) and on the high performance computing 208 

(HPC) cluster hosted in the Centre de Biologie pour la Gestion des Populations (CBGP) in 209 

Montferrier-sur-Lez, France. For both phylogenetic analytical approaches, we carried out 210 

partitioned analyses to improve phylogenetic accuracy (Nylander et al., 2004). The molecular 211 

dataset was divided a priori into 33 partitions: we used three partitions for each of the protein-212 

coding genes (AP5, ATPase8, BRCA1, COI, COII, Cytb, GHR, IRBP and RAG1) and one 213 

partition for each of the rRNA-tRNA genes (12S, 16S, tRNA-Asp, tRNA-Lys and tRNA-Ser) 214 

as well as the BZRP intronic portion. The best partitioning scheme and substitution models 215 

were determined with PartitionFinder 1.1.1 (Lanfear et al., 2014) using a greedy heuristic 216 

algorithm; because of the risk of over-parameterization associated with the high number of 217 

specified partitions, the ‘unlinked branch lengths’ option was chosen over the ‘linked branch 218 

lengths’ option. The Bayesian information criterion (BIC) was also preferentially used to 219 

compare partitioning schemes and substitution models following the recommendation of 220 

Ripplinger and Sullivan (2008). 221 

PartitionFinder (based on BIC) identified the same three partitions for both BI and ML 222 

analyses: two partitions are associated with a Generalized-Time-Reversible (GTR +Γ +I) model 223 
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and one partition is associated with a Hasegawa-Kishino-Yano (HKY +Γ +I) model (see Table 224 

2).  225 

Bayesian inference analyses were carried out using MrBayes v3.2.6 (Ronquist et al., 226 

2012b). Two independent runs with four MCMC (one cold and three incrementally heated 227 

chains) were conducted: they ran for 50 million generations, with trees sampled every 1,000 228 

generations. A conservative 25% burn-in was applied after checking for stability on the log-229 

likelihood curves and the split-frequencies of the runs. Support of nodes for MrBayes analyses 230 

was provided by clade posterior probabilities (PP) as directly estimated from the majority-rule 231 

consensus topology. Following Erixon et al. (2003), nodes supported by PP ³ 0.95 were 232 

considered strongly supported. 233 

Maximum likelihood analyses were performed using RAxML v8.2.8 (Stamatakis, 2014). 234 

Because this software does not allow simpler substitution models, we used three partitions with 235 

a General Time Reversible (GTR +Γ +I) model (see Table 2). The best ML tree was obtained 236 

using heuristic searches with 100 random addition replicates. Clade support was then assessed 237 

using a non-parametric bootstrap procedure with 1,000 replicates. Following Hillis and Bull 238 

(1993), nodes supported by bootstrap values (BV) ³ 70 were considered strongly supported.  239 

 240 

2.4. Evaluation of suitable fossil calibrations 241 

Following the recommended criteria of Parham et al. (2012) for fossil calibrations, we 242 

rigorously compiled a list of potential candidates from the paleontological literature and 243 

eventually retained 18 candidate fossils (see Table 3). The candidate fossils possess the 244 

information for the collection site, unique identification number, and the state of preservation 245 

along with justification for the age of the fossil (i.e., age of fossil-bearing formation and 246 

stratigraphic level, preferably with an absolute age by radiometric dating and/or reliable relative 247 

age estimates, for example, by magnetostratigraphy).  248 
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In the next step, diagnostic morphological characters were reassessed to determine 249 

whether they could be reliably used as minimum age constraints in our phylogeny, either as 250 

crown or stem calibrations. Seven fossils were discarded following this step (see the ‘Results’ 251 

section).  252 

For the remaining 11 fossils, we used the cross-validation procedure developed by Near 253 

and Sanderson (2004) and Near et al. (2005). The following approach was used: (i) we 254 

identified potential inconsistencies within the 11 remaining fossil calibrations, and (ii) we 255 

explored the impact of the inclusion of each of these fossils on our divergence time estimates. 256 

Each of the 11 fossil constraints was enforced at a time in a specific Bayesian relaxed-clock 257 

(BRC) analysis to estimate the ages of the remaining nodes (see also section 2.5). First, the sum 258 

of the squared differences between the molecular and fossil age estimates (SS) was calculated 259 

(for more details see Near and Sanderson, 2004). All calibration points were then ranked based 260 

on the magnitude of its SS score; here the fossil with the greatest SS score is assumed to be the 261 

most inconsistent with respect to all other fossils in the analysis (Near and Sanderson, 2004). 262 

Second, we calculated the average squared deviation, s, for all fossil calibrations in the analysis. 263 

Following the method of Near et al. (2005), we removed the fossil with the greatest SS score 264 

and recalculated s with the remaining fossil calibration points. This process was pursued until 265 

only the two fossil calibration points with the lowest and second lowest magnitudes of SS 266 

remained (Near and Sanderson, 2004). The rationale behind this procedure is to assess whether 267 

calibration points are approximately equally informative and accurate (Near et al., 2005): if it 268 

is the case the magnitude of s should only decrease by a small fraction whenever a fossil 269 

calibration is removed.  270 

 271 

2.5. Bayesian relaxed-clock analyses 272 
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 Although divergence time dating is now a well-established cornerstone of evolutionary 273 

biology, there is still no widely accepted objective methodology for converting data from the 274 

fossil record to calibration information of use in molecular phylogenies (Drummond and 275 

Bouckaert, 2015). In the last few years, several methodological approaches to better implement 276 

fossil calibrations have been developed, for instance allowing one to directly include fossil 277 

lineages in phylogenies (‘total-evidence dating’; Pyron, 2010; Ronquist et al. 2012a) or to 278 

account for information on the density of the fossil record (‘fossilized birth-death (FBD) 279 

process’; Stadler, 2010; Heath et al., 2014). However, for our study, a ‘total evidence dating’ 280 

approach was not applicable since it would have required the coding of a morphological matrix 281 

for both fossils and extant taxa, which is problematic given the fragmentary nature of muroid 282 

fossils. The use of the FBD methodology was also not envisioned because the fossil record of 283 

muroid rodents is too sparse. Instead, we relied on a node-dating approach in which fossil 284 

information is enforced on specific nodes through the use of parametric distributions. 285 

Following our assessment of the murid fossil record and the results of cross-validation 286 

analyses, nine fossil calibrations were finally retained for the dating procedure (for more 287 

information, see Tables 3 and 4, and Appendix B). Five of them were defined based on fossil 288 

material collected in the Siwalik Group of Pakistan (†Antemus chinjiensis, †Karnimata darwini 289 

Jacobs, †cf. Karnimata sp., †Mus sp. and †Abudhabia pakistanensis Flynn and Jacobs). Three 290 

additional accepted fossils originate from 6.1 Ma fossils discovered in the Lemudong'o locality 291 

in Kenya (†Aethomys sp., †Arvicanthis sp. and †Gerbilliscus sp.), and the last retained fossil 292 

calibration constraint is defined by the 9.6 Ma fossil of †Parapodemus lungdunensis Schaub. 293 

Priors for fossil constraints were defined by using either uniform or lognormal statistical 294 

distributions in two separate analyses. Statistical distributions were bounded by the minimum 295 

ages provided by the fossil constraints and a conservative maximum age (ca. 25 Ma) for the 296 

root derived from the study of Schenk et al. (2013; see Table 4). In a preliminary way (see 297 
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section 2.4 of the Material and Methods), BRC analyses were also conducted using one fossil 298 

constraint at a time to carry out cross-validation analyses.  299 

Bayesian relaxed-clock analyses were conducted with BEAST v1.8.4 (Drummond et al., 300 

2012) using uncorrelated lognormal relaxed clocks (Drummond et al., 2006). To limit the risk 301 

of over-parameterization: (i) we used three clock models (based on PartitionFinder results, 302 

Table 2); and (ii) we enforced a guide tree that corresponds to the topology with the best clade 303 

support (this topology corresponds to the topology obtained with MrBayes; see the ‘Results’ 304 

section). For the tree speciation model, a birth death process (Gernhard, 2008) was used in order 305 

to better account for extinct and missing lineages.  306 

BEAST .xml files were modified to implement the path-sampling procedure for Bayes 307 

factor (BF) estimation following the recommendations of Baele et al. (2013). Out of the two 308 

calibrations, the calibration procedure with lognormal prior has the best harmonic mean (-309 

208117.74 versus -208262.58 for the procedure with a uniform prior) and is recovered as the 310 

best-fit calibration procedure with a statistically significant BF of 289.68 (BF>10, Kass and 311 

Raftery, 1995). The final analysis (with nine verified fossil constraints and lognormal prior 312 

distribution for calibration constraints) was carried out by two independent runs each with 50 313 

million generations and trees sampled every 5,000 generations. We used a conservative burn-314 

in of 12.5 million generations per run. Post burn-in trees from both analyses were further 315 

combined using the LogCombiner module of BEAST. Convergence of runs was assessed 316 

graphically under Tracer v.1.6 and by examining the ESS of parameters. 317 

 318 

2.6. Historical biogeography 319 

Ancestral biogeography was reconstructed using the R package ‘BioGeoBEARS’ 320 

(Matzke, 2013). Data for species’ ranges were obtained from the International Union for 321 

Conservation of Nature website (https://www.iucn.org/). Five major biogeographic areas were 322 
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defined on the basis of Olson et al. (2001): A, West Palearctic (from Western Europe to the 323 

Ural Mountains, including North Africa); B, East Palearctic (from the Urals to Japan); C, 324 

Indomalaya (from Afghanistan through the Indian subcontinent and Southeast Asia to lowland 325 

southern China, and through Indonesia as far as Java, Bali, and Borneo, west of the Wallace 326 

line); D, Australasia (Australia, New-Zealand, Papua-New-Guinea and neighbouring small 327 

islands); E, Afrotropics (Africa, northern part excluded). Dispersal rate between adjacent areas 328 

was fixed to 1 (A-B; B-C), whereas the dispersal of 0.7 (A-E; C-D) and 0.3 (B-D; B-E) was 329 

specified for long-distance dispersal or whenever a geographical barrier had to be crossed. 330 

Dispersal was disallowed between geographical areas separated by two or more areas (A-D; D-331 

E). Six models of geographic range evolution were compared in a likelihood framework: (i) 332 

Dispersal-Extinction Cladogenesis model (DEC) similar to Lagrange (Ree and Smith, 2008), 333 

which parameterizes dispersal and extinction; (ii) DEC +J model (Matzke, 2013; 2014), which 334 

adds founder-event speciation with long-distance dispersal (cladogenesis, where daughter 335 

lineage is allowed to jump to a new range outside the range of the ancestor; Matzke, 2013) to 336 

the DEC framework; (iii) Dispersal Vicariance Analysis (DIVA; Ronquist, 1997); (iv) DIVA 337 

with long-distance dispersal (DIVA +J; Matzke, 2013); (v) Bayesian inference of historical 338 

biogeography for discrete areas (BayArea; Landis et al., 2013); and (vi) BayArea with long-339 

distance dispersal (BayArea +J; Matzke, 2013). Model fit was assessed using the Akaike 340 

information criterion (AIC) and likelihood-ratio tests (LRT).  341 

 342 

3. Results 343 

3.1. Phylogeny of Muridae 344 

Our multilocus dataset representing all major lineages of the family Muridae is 10,482 bp 345 

long with 42.5% missing data. Both BI and ML analyses yield similar topologies (see Fig. 1 for 346 

the topology inferred under BI, and Fig. S1 in Appendix D for the best-fit ML tree), as indicated 347 
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by a high proportion of shared nodes (160 out of 162). BI and ML analyses differ only in the 348 

position of Pelomys fallax (Peters) and Zyzomys argurus (Thomas), but their placements are 349 

not significantly supported in either analysis. Clade support is moderate to high on average; if 350 

considering the number of nodes that are supported by PP	≥	0.95 or BV	≥	70%, BI analyses 351 

yield a slightly more robust topology (135 well-supported nodes) compared to the ML tree (122 352 

well-supported nodes).  353 

Phylogenetic analyses confirm the monophyly of the family Muridae, of all its four 354 

constituent subfamilies, as well as of the previously defined tribes of the subfamily Murinae 355 

(Fig. 1). On the contrary, the phylogenetic position of some genera (e.g. Acomys I. Geoffroy, 356 

Dasymys Peters, Golunda Gray, Melomys Thomas, Micaelamys Ellerman, Pelomys Peters, 357 

Oenomys Thomas and Otomys F. Cuvier) within particular tribes was only partly supported.  358 

 359 

3.2. Evaluation of suitable fossil calibrations 360 

We summarized all fossils considered in this study in Table 3 and Appendix B regarding 361 

taxonomic information and specification for prior settings (see also Figure 2 for their respective 362 

positions within the tree). Five out of 18 preselected fossils (i.e. †Parapelomys robertsi Jacobs, 363 

†Potwarmus primitivus, †Preacomys kikiae Geraads, †cf. Progonomys sp. Schaub and †aff. 364 

Stenocephalomys Frick) were excluded from further analyses because the scarcity of 365 

paleontological interpretation about their phylogenetic relationships impeded assigning them to 366 

specific nodes of the phylogeny (Appendix B). We also excluded fossils of Acomys and 367 

Lemniscomys Trouessart from the Lemudong’O locality, Kenya (Manthi, 2007), because first 368 

upper molars, which possess the most diagnostic characters in the murine dentition, are not 369 

described from the locality (Table 3; see more details also in Appendix B). The two-step cross-370 

validation procedure resulted in a further reduction of the fossil set of possible calibration 371 

points. Specifically, we excluded two fossils: one is a 2.4 Ma fossil identified as the genus 372 
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Gerbillus Desmarest, while the other one corresponds to a 6.1 Ma fossil identified as the genus 373 

Mastomys Thomas (Appendix C). The rationale is that (i) these two fossil calibrations exhibited 374 

the largest magnitude of SS, and that (ii) their removal also resulted in a very high (fivefold) 375 

decrease in s (see Appendix C for more details). As a result of the latter series of selection steps, 376 

nine fossils were finally retained for divergence dating (see Figure 2 for their position on the 377 

tree, Table 4 for specification of priors, and Appendix B for more details on all considered 378 

fossils).  379 

 380 

3.3 Historical biogeography and divergence dating 381 

Among the six models of geographic-range evolution compared in a likelihood 382 

framework in BioGeoBEARS, the Dispersal-Extinction Cladogenesis model with founder-383 

event speciation (DEC +J) was chosen because of its best likelihood and AICc associated scores 384 

(lnL=-117.1, AICc=240.4; Table 5).  385 

The dated tree resulting from the BRC analyses is shown in Figure 2 while dating 386 

estimates for all internal nodes are provided in Table 6, and results of ancestral distribution 387 

reconstructions are presented in Figure 3. The most recent common ancestor (MRCA) of 388 

Muridae originated during the early Miocene (median age of 19.3 Ma; 95% highest posterior 389 

density (HPD): 17.06-21.92 Ma) in the Afrotropical and Indomalayan bioregions.  390 

Three subfamilies (Deomyinae, Gerbillinae and Lophiomyinae) belonging to the same 391 

clade started their diversification in the Afrotropics. Within this clade, a first split occurred ca. 392 

18.6 Ma (95% HPD: 16.35-21.11 Ma) between the Lophiomyinae and the clade encompassing 393 

the Deomyinae and Gerbillinae. Deomyinae started their diversification ca. 14.6 Ma (95% 394 

HPD: 12.68-16.82 Ma) while Gerbillinae started theirs ca. 12.2 Ma (95% HPD: 10.46-14.16 395 

Ma). In Deomyinae and Gerbillinae, several lineages were able to colonize the Palearctic region 396 
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from the Afrotropics (in our dataset, this concerns Acomys russatus (Wagner) and Gerbillus 397 

gerbillus Olivier). 398 

The subfamily Murinae originated in the Indomalayan region during the middle Miocene 399 

(median age of 14.2 Ma; 95% HPD: 12.70-16.07 Ma); the corresponding basal split separated 400 

the Phloeomyini and all remaining murines (‘core murines’ sensu Steppan et al. 2005). The 401 

next major split occurred in the Indomalaya between Rattini and the remaining tribes of 402 

Murinae (median age of 12.3 Ma; 95% HPD: 11.28-13.62 Ma), with an origin of Rattini 403 

estimated at 10.4 Ma (95% HPD: 9.23-11.93 Ma). The ancestral area of Rattini was also 404 

inferred to be the Indomalaya; during the course of their diversification, a few taxa colonized 405 

Australasia (e.g. Bunomys andrewsi (J.A. Allen), Melasmothrix naso Miller and Hollister, 406 

Paruromys dominator Thomas and Rattus leucopus (Gray)) as well as the West and East 407 

Palearctic (e.g. Micromys minutus (Pallas) and Diplothrix legata (Thomas)). The Hydromyini 408 

split from the remaining Murinae at ca. 11.9 Ma (95% HPD: 10.95-13.10 Ma); although basal 409 

lineages of this tribe are currently found in the Indomalaya (e.g. Archboldomys luzonenzis 410 

Musser, Apomys datae (Meyer), Apomys hylocoetes Mearns, Chrotomys gonzalesi Rickart and 411 

Heaney, Chiropodomys gliroides (Blyth) and Rhynchomys isarogensis Musser and Freeman), 412 

a specific and diverse lineage of Hydromyini also colonized and radiated in the Australasia ca. 413 

8.1 Ma (95% HPD: 7.22-9.09 Ma). The clade gathering Apodemini, Malacomyini, Murini and 414 

Praomyini likely originated in the Afrotropics, with several lineages secondarily colonizing the 415 

Indomalaya and the West and East Palearctic. The split between Malacomyini (which remained 416 

in the Afrotropics) and Apodemini (which dispersed and differentiated mainly in the West and 417 

East Palaearctic) is estimated at ca. 10.2 Ma (95% HPD: 9.33-11.39 Ma). Murini started to 418 

diversify in the Indomalaya at ca. 7.2 Ma (95% HPD: 6.24-9.29 Ma). The intense radiation (51 419 

extant species, Monadjem et al., 2015) of Praomyini occurred in the Afrotropics (median age 420 

of 6.8 Ma for the MRCA of Praomyini; 95% HPD: 6.06-7.77 Ma). The Indomalayan Millardini 421 
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split from the predominantly Afrotropical Arvicanthini + Otomyini tribes at ca. 10.8 Ma (95% 422 

HPD: 9.88-12.04 Ma). The respective first diversifications within Arvicanthini, Millardini and 423 

Otomyini are estimated at ca. 8.8 Ma (95% HPD: 7.92-9.72 Ma), 9.2 Ma (95% HPD: 7.72-424 

10.75 Ma) and 4.9 Ma (95% HPD: 4.12-5.98 Ma), respectively. The position of Asian Golunda 425 

within Arvicanthini is not resolved (Fig. 1); the dispersal to Indomalaya of the lineage leading 426 

to the extant Golunda species at ca. 8.5 Ma (95% HPD: 7.33-9.57 Ma; as suggested in Fig. 3) 427 

should therefore be taken with caution.  428 

4. Discussion 429 

4.1. Selection of taxa and molecular markers 430 

Our sampling of 160 species from 82 genera represents 22% of known murid species 431 

diversity and more than half of the generic diversity of the family Muridae. When one compares 432 

our sampling effort to previous studies (Table 7), only the study of Fabre et al. (2012) relied on 433 

a better sampling for the family Muridae (302 species from 105 genera, i.e. about 41% of known 434 

species diversity). In the study of Schenk et al. (2013), 18% of murid species are included. The 435 

number of sampled murid species is also lower in Lecompte et al. (2008) and Rowe et al. (2008) 436 

because their studies focussed on specific tribes and subfamilies.   437 

 438 

4.2. Calibration of molecular clock and divergence dating 439 

Using the classical Mus/Rattus calibration as prior for divergence dating often lead to an 440 

underestimation of the age of the subfamily Murinae, inferring median ages that are generally 441 

comprised between 13.3 to 12.0 Ma. Only the most recent studies (e.g. Rowe et al., 2016b) used 442 

the correct Mus/Arvicanthis calibration with a prior median age of 11.1 Ma (as suggested by 443 

Kimura et al., 2015). This resulted in the estimation of Murinae age of ca. 14.0 Ma (Rowe et 444 

al., 2016b), which is consistent with our study (Table 6). 445 
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Other fossils frequently used for molecular clock calibration are from the genus 446 

†Parapodemus. Recent studies used these fossils in two ways: the first occurrence of 447 

†Parapodemus sp. (Martín-Suáres and Mein, 1998) in the late Miocene in Europe (Lungu, 448 

1981; see Appendix B) was used to calibrate the MRCA of ‘Apodemurini’ (representing the 449 

split between Apodemini+Malacomyini and Murini+Praomyini; Fabre et al., 2013; Rowe et al., 450 

2011). Another calibration point is based on the discovery of †Parapodemus pasquierae 451 

Aguilar and Michaux, from ‘Lo Fournas 6’ site (Roussillon, France). Authors postulated that 452 

the latter species and the smaller †Parapodemus lugdunensis co-occurred during the same time 453 

period ‘MN10’ (Aguilar et al., 1999; Montuire et al., 2006), dated approximately at 9.7 Ma 454 

(Mein, 2003). Michaux et al. (2002) considered the differences between these two species as 455 

representative of the split between the large Apodemus mystacinus Danford and Alston and all 456 

smaller Apodemus species from the subgenus Sylvaemus, but they used a younger age of 7.0 457 

Ma as a prior for their divergence. Numerous authors followed this calibration (e.g. Bryja et al., 458 

2014; Fabre et al., 2013; Lecompte et al., 2008; Schenk et al., 2013) even if there is no clear 459 

rationale for it. The estimated dates of MRCA of Apodemini range from 7.5 Ma (Rowe et al. 460 

2016b; Schenk et al., 2013) to 9.6 Ma (Bryja et al., 2014; Michaux et al., 2002; Lecompte et 461 

al., 2008). In our study, we conservatively used the †Parapodemus lugdunensis fossil as a stem 462 

constraint for Apodemini and this placement resulted in an estimation of their MRCA at 9.0 Ma 463 

(95% HPD: 7.92-10.13 Ma). 464 

There are several localities in Africa (e.g. Lukeino Formation, Winkler, 2002; 465 

Lemudong’o, Ambrose et al., 2007; Manthi, 2007) where fossil representatives of Arvicanthis 466 

were identified. These fossils were used for molecular clock calibration in several studies with 467 

a prior MRCA for the genus at 6.1 Ma (e.g. Fabre et al., 2013; Rowe et al., 2011).  The fossils 468 

from Lemudong’o were also used, in a less conservative way, by Bryja et al. (2014): based on 469 

early records of †Otomys sp. (ca. 5.0 Ma; Denys, 1990), †Aethomys sp., †Arvicanthis sp., 470 
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†Lemniscomys sp. (from Lemudong’o = 6.1 Ma; Ambrose et al., 2007; Manthi et al., 2007) and 471 

other relevant samples where these and related genera were absent (9.50-10.50 Ma; Mein et al. 472 

2004), they set the split between Arvicanthini and Otomyini within 6.08-9.54 Ma. This 473 

calibration resulted in an estimation of the MRCA for the tribe Arvicanthini at 7.8 Ma (Bryja 474 

et al., 2014), which is about 1 million year younger than our own estimate (Table 6). Rowe et 475 

al. (2016b) used as minimum age 8.7 Ma for the split between Arvicanthis and Otomys based 476 

on the study of Kimura et al. (2015) that set minimum and maximum ages for locality Y388, 477 

where †Karnimata darwini was found. This calibration resulted in an estimated MRCA of 478 

Arvicanthini at 8.5 Ma. In our study, we instead used the age of an older locality (Y182; median 479 

age of 9.2 Ma) where †Karnimata darwini was also found (Jacobs, 1978; Kimura et al., 2015), 480 

in order to set a crown calibration for the Arvicanthini/Millardini/Otomyini clade. This 481 

placement resulted in an estimation of their MRCA at 8.8 Ma (95% HPD: 7.92-9.72 Ma) (Table 482 

6).  483 

 484 

4.3. Historical biogeography with focus on faunal exchanges between the Afrotropics and 485 

the Indomalaya 486 

Our study could not resolve the origin of murid rodents, but it was either in the Afrotropics 487 

or in the Indomalaya. Our inferred ancestral tropical range for the MRCA of murids is consistent 488 

with the fact that most extant murid taxa are still distributed in warm and moist tropical areas. 489 

During the Early Miocene (23.0-16.0 Ma), the rotation of Africa and Arabia, and finally the 490 

collision with Eurasia formed a landbridge between Africa and Eurasia (the so-called 491 

‘Gomphotherium landbridge’; Rögl, 1999). During this time period, early murids colonized 492 

both geographical regions. The subsequent reopening of the Mediterranean-Indo-Pacific 493 

seaway (‘Indo-Pacific recurrence’; Rögl, 1999) separated Africa from Eurasia again, thus 494 

giving rise to the main clades of Afrotropics and Indomalaya rodents. Three subfamilies, 495 
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Deomyinae, Gerbillinae and Lophiomyinae, then likely diversified in the Afrotropics (Chevret 496 

and Dobigny, 2005; Ndiaye et al., 2016; Schenk et al., 2013, this study; Figure 3). This 497 

hypothesis is supported by paleontological records since the oldest fossils tied to these 498 

subfamilies were found in the Afrotropics (e.g. late Miocene Acomys, Gerbilliscus, Lophiomys 499 

and †Preacomys from East Africa; Winkler et al. 2010 and references therein). The subfamily 500 

Murinae started to diversify in Indomalaya, most probably in Southeast Asia, where we can 501 

also find the hitherto highest phylogenetic diversity, including the oldest offshoots of this clade 502 

(e.g. the ancestor of Phloeomyini probably lived in the Philippines, those of Rattini and 503 

Hydromyini in South-east Asia, etc.; Fabre et al., 2013). 504 

During the Middle Miocene (16.0-11.6 Ma), the Mediterranean-Indo-Pacific seaway 505 

closed again at the beginning of the Serravallian ca. 13.8 Ma (‘Parathethys Salinity Crisis’;	506 

Rögl, 1999), co-incidentally with a global cooling that caused vegetation shifts and a general 507 

aridification (Prista et al., 2015). The newly formed landbridge (Rögl, 1999) allowed repeated 508 

dispersals of murine rodents from Asia to both Africa and Eurasia. Murine fossil records 509 

provide clear evidence for connections between the Indomalaya, the Palearctic, and the 510 

Afrotropics. Among them, there are two conspicuous examples: (i) †Progonomys was recorded 511 

in many Indomalayan Middle Miocene localities (Jacobs and Flynn, 2005) as well as in the 512 

Palearctic region (Algeria: Wessels, 2009; China: Qiu et al., 2004; Egypt: Heissig, 1982; 513 

France: Mein et al., 1993; Spain: Weerd, 1976); and (ii) the oldest records of †Parapelomys 514 

spp. were found synchronously in Africa (8.5 Ma; Chorora, Ethiopia; Geraads, 2001) and in 515 

Pakistan (ca. 8.0 Ma; Jacobs and Flynn, 2005). During this period, representatives of several 516 

murine tribes occurred in the Afrotropics (Arvicanthini, Malacomyini, Otomyini and 517 

Praomyini) and the Indomalaya (Millardini, Murini, Rattini, and basal lineages of Hydromyini).  518 

The last faunal interchange of murid taxa between Africa, Asia and Western Palearctic 519 

(Benammi et al., 1996; Sabatier, 1982; Sen, 1977, 1983; Winkler, 2002) is coincident with 520 
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Messinian Salinity Crisis ca. 6 Ma during the Late Miocene (Hsü et al., 1973, 1978). During 521 

this period of global sea level depression (Haq et al., 1987) Africa and Arabia were reconnected 522 

through Neguev-Sinai landbridge (‘Levantine corridor’, Fernandes et al., 2006) and landbridge 523 

in the Bab-el-Mandeb (Bosworth et al., 2005). In murids, evidence to support this faunal 524 

exchange can be found in the African subgenus Nannomys (genus Mus), which colonized 525 

Afrotropics and started there its radiation ca. 5.2 Ma (Bryja et al., 2014). A possible example 526 

for an opposite west-to-east migration is the genus Golunda, which belongs to the Arvicanthini 527 

tribe. In a predominantly Afrotropical clade, Golunda is the only genus that occurs in the 528 

Indomalaya, probably since the end of Miocene (Ducroz et al., 2001; Fig. 3). However, one 529 

should be cautious with this scenario since the position of Golunda within Arvicanthini is not 530 

well supported (Fig. 1). Africa-to-Asia dispersals at the Miocene/Pliocene boundary have been 531 

also recorded in other taxa, such as rodents (e.g. Myomyscus yemeni (Sanborn and Hoogstraal); 532 

our unpubl. data), reptiles (e.g. Varanus yemenensis: Böhme et al., 2003, Portik and Papenfuss 533 

2012; Hemidactylus geckos: Šmíd et al. 2013; Echis vipers: Pook et al. 2009) and hamadryas 534 

baboons (Winney et al. 2004).  535 

 536 

5. Conclusion and perspectives 537 

In this study, we provided an improved multilocus dated phylogeny for the highly 538 

speciose family Muridae. Both our dating and historical biogeography analyses suggest that the 539 

family originated during the Early Miocene, and subsequently gave rise to four extant 540 

subfamilies: three in the Afrotropical region (Deomyinae, Gerbillinae and Lophiomyinae) and 541 

one in the Indomalaya (Murinae). Our study also supports a dynamic biogeographic scenario 542 

in which repeated colonisation events occurred in the Australasian (Hydromyini, Rattini), 543 

Afrotropical (Malacomyini, Praomyini, Arvicanthini, Otomyini) and Palearctic (Apodemini) 544 

regions. One of the strong aspects of this study lies in the assessment and treatment of fossil 545 
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data (Appendix B); such data is likely to be useful for further studies investigating the timing 546 

of diversification of rodents, or even mammals in general. For an easy access to all 547 

corresponding fossil records, we have made data available on the Date-a-Clade Website 548 

(http://palaeo.gly.bris.ac.uk/fossilrecord2/dateaclade/index.html), Paleobiology Database 549 

(http://fossilworks.org/) and TimeTree Database (http://timetree.org).  550 
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 921 

 922 

Figure titles 923 

Figure 1. Molecular phylogeny of family Muridae based on Bayesian inference (BI) in 924 

MrBayes. Very similar topology was obtained also by maximum likelihood (ML) 925 

analysis in RAxML (see Appendix D). Red points show nodes supported in BI 926 

analysis (posterior probability PP ≥ 0.95), blue points show high bootstrap support 927 

in ML analysis (bootstrap BV ≥ 0.70). Violet nodes are supported by both analyses.   928 

Figure 2. Divergence dating analysis of family Muridae. Nodes show medians of times to most 929 

recent common ancestor (MRCA), node bars indicate 95% HPD intervals. Latin 930 

numbers in yellow squares indicate positions of fossil constrains selected by 931 

multiple-step evaluation and used for final analysis (see Table 4 for more details). 932 

Figure 3. Ancestral reconstruction for family Muridae with BioGeoBEARS (DEC+J; d=0.008; 933 

e=0; j=0.0246; LnL=-117.11). Five biogeographical areas are represented using 934 

different colours: A, West Palearctic (dark blue); B, East Palearctic (light blue); C, 935 

Indomalaya (green); D, Australasia (yellow); E, Afrotropics (red).  936 

 937 

 938 

  939 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 10, 2017. ; https://doi.org/10.1101/180398doi: bioRxiv preprint 

https://doi.org/10.1101/180398
http://creativecommons.org/licenses/by/4.0/


	

	 39	

Tables:  940 

Table 1: Brief summary of taxonomic changes in the family Muridae. The taxonomic position 941 

of particular lineages has changed significantly and they were either considered as 942 

separate families, or included in other families outside Muridae (names of families 943 

are in bold). 944 

Table 2: PartitionFinder results showing optimum partitioning schemes and best fit models 945 

for each analysis (RAxML, MrBayes, BEAST). Settings: BIC, unlinked branch 946 

lengths, greedy algorithm. 947 

Table 3: Overview of 18 candidate fossils with stratigraphic age, locality and relevant references. For 948 

more details see Appendix B. 949 

Table 4: Overview of fossils finally selected for divergence dating, with parameters of uniform 950 

and lognormal prior distribution. 951 

Table 5: Comparison of models used for BioGeoBEARS; likelihood scores (LnL), number of 952 

parameters (numparams), dispersal rate (d), extinction rate (e),  free parameter controlling 953 

the relative probability of founder-event speciation events at cladogenesis (j), corrected 954 

Akaike Information Criterion (AICc), and AICc model weights. 955 

Table 6: Results of divergence dating analysis. Time to the most common ancestor (MRCA) is 956 

shown as median in Ma, with 95% highest posterior density (HPD). Estimates from 957 

previous studies dealing with divergence dating of murid rodents are reviewed here 958 

for comparison. 959 

Table 7: Comparison between previous relevant studies. 960 

 961 
  962 
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Supplementary material 963 

Appendix A. List of taxa and genetic markers. 964 

Appendix B. Description of considered fossils. 965 

Appendix C. Results of cross-validation of fossil constraints. 966 

Appendix D. Maximum likelihood phylogenetic tree. 967 
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Table 1: Brief summary of taxonomic changes in the family Muridae, The taxonomic position of particular lineages has changed significantly and they were either 
considered separate families or included in other families outside Muridae (name of families are in bold). 
 
Simpson (1945) 
 

Chaline et al. (1977) 
 

Lavocat (1978) 
 

Cricetidae Lophiomyinae Cricetidae Lophiomyinae Nesomyidae Lophiomyinae 
Gerbillinae Gerbillidae 

 
Gerbillinae 

Muridae Murinae Muridae Murinae Otomyinae 
Otomyinae Nesomyidae Otomyinae Muridae   

 
Carleton and Musser (1984) Musser and Carleton (2005) Granjon and Montgelard (2012) 

Muridae Lophiomyinae Cricetidae Lophiomyinae Muridae Lophiomyinae 
Gerbillinae Muridae Otomyinae Gerbillinae 
Murinae Gerbillinae Murinae 
Otomyinae Murinae Deomyinae 

 
 

Deomyinae Leimacomyinae 
		 		 Leimacomyinae 		
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Table 2: PartitionFinder results showing optimum partitioning schemes and best fit models for each analysis (RAxML, MrBayes, BEAST). Settings: BIC, 
unlinked branch lengths, greedy algorithm. 
 
Analysis N. of 

part 
Best sub. 
model 

Subsets 

RAxML 3 GTR+I+G 12S, 16S, ATPase8_pos1-pos2, COII_pos1-pos2, COI_pos1-pos2, CYTB_pos1-pos2, tRNA-Asp, tRNA-Lys, tRNA-Ser 
  GTR+I+G ATPase8_pos3, COII_pos3, COI_pos3, CYTB_pos3 
  GTR+I+G AP5_pos1-pos3, BRCA_pos1-pos3, BZRP, GHR_pos1-pos3, IRBP_pos1-pos3, RAG_pos1-pos3 

MrBayes 3 GTR+I+G 12S, 16S, ATPase8_pos1-pos2, COII_pos1-pos2, COI_pos1-pos2, CYTB_pos1-pos2, tRNA-Asp, tRNA-Lys, tRNA-Ser 
and BEAST  HKY+I+G ATPase8_pos3, COII_pos3, COI_pos3, CYTB_pos3 
  GTR+I+G AP5_pos1-pos3, BRCA_pos1-pos3, BZRP, GHR_pos1-pos3, IRBP_pos1-pos3, RAG_pos1-pos3 
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Table 3: Overview of 18 candidate fossils with stratigraphic age, locality and relevant references. For more details see Appendix B. 
Fossil Final  

analysis 
Reason for 
excluding  

Age (Ma) Dating Fossils 
Method References Site References 

†Potwarmus primitivus 
(Wessels) 

No Equivocal 
placement 

16.0 magnetostratigraphy time scale of Ogg and  
Smith (2004) 

Pakistan, Potwar Plateau, 
YGSP591 

Lindsay (1988), Wessels 
(2009) 

†Antemus chinjiensis 
Jacobs 

Yes (1)  13.8 magnetostratigraphy Jacobs and Flynn (2005) Pakistan, Potwar Plateau, 
YGSP 491 

Jacobs et al. (1989) 

†cf. Progonomys sp. 
Schaub 

No Equivocal 
placement 

11.6 magnetostratigraphy time scale of Ogg and  
Smith (2004) 

Pakistan, Potwar Plateau, 
YGSP 83, YGSP 504 

Jacobs and Flynn 
(2005), Cheema et al. 
(2000), Kimura et al. (in 
prep.) 

†cf. Karnimata sp. 
Jacobs 

Yes (2)  11.2 magnetostratigraphy Kimura et al. (2015) by  
time scale of Ogg and  
Smith (2004) 

Pakistan, Siwalik Group, 
Nagri Formation, YGSP 
791, YGSP 797, 

Jacobs and Flynn 
(2005); Kimura et al.  
(2015) 

†Parapodemus 
lungdunensis Schau 

Yes (3)  9.6 magnetostratigraphy Daxner-Höck (2003) France, Dionay Lungu (1981), Mein et 
al. (1993), Renaud et al. 
(1999) 

†Karnimata darwini 
Jacobs 

Yes (4)  9.2 magnetostratigraphy Kimura et al. (2015) by  
time scale of Ogg and  
Smith (2004) 

Pakistan, Siwalik Group, 
Dhok Pathan Formation, 
YGSP 182 

Jacobs (1978); Kimura 
et al. (2015) 

†Abudhabia  
pakistanensis Flynn and 
Jacobs 

Yes (5)  8.7 magnetostratigraphy Flynn and Jacobs (1999) 
by 
time scale of Ogg and  
Smith (2004) 

Pakistan, Siwalik Group, 
Dhok Pathan Formation, 
YGSP387 

Flynn and Jacobs (1999) 

†aff. Stenocephalomys 
Frick 

No Equivocal 
placement 

8.5 40K/40Ar Geraads et al. (2002),  
Suwa et al. (2015) 

Ethiopia, Chorora Geraads (2001) 

†cf. Parapelomys Jacobs  No Equivocal 
placement 

8.5 40K/40Ar Geraads et al. (2002),  
Suwa et al. (2015) 

Ethiopia, Chorora Geraads (2001) 
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Table 3 (continued) 
 

       

Fossil Final  
analysis 

Reason for 
excluding 

Age (Ma) Dating Fossils 

Method References Site References 
†Preacomys kikiae 
Geraads 

No Equivocal 
placement 

8.5 40K/40Ar Geraads et al. (2002),  
Suwa et al. (2015) 

Ethiopia, Chorora Geraads (2001) 

†Mus sp. Linneaus Yes (6)  8.0 magnetostratigraphy Kimura et al. (2015) by  
time scale of Ogg and  
Smith (2004) 

Pakistan, Siwalik Group, 
Dhok Pathan Formation, 
YGSP 547 

Kimura et al. (2013; 
2015) 

†Acomys sp. I. Geoffroy No missing M1 6.1 40Ar / 39Ar Deino and Ambrose 
(2007) 

Kenya, Lemudong’o, 
locality 1 

Manthi (2007) 

†Aethomys sp.Thomas Yes (7)  6.1 40Ar / 39Ar Deino and Ambrose 
(2007) 

Kenya, Lemudong'o, 
locality 1 

Manthi (2007) 

†Arvicanthis sp. Lesson Yes (8)  6.1 40Ar / 39Ar Deino and Ambrose 
(2007) 

Kenya, Lemudong’o, 
locality 1 

Manthi (2007) 

†Gerbilliscus sp. 
(Thomas) 

Yes (9)  6,1 40Ar / 39Ar Deino and Ambrose 
(2007) 

Kenya, Lemudong'o, 
locality 1 

Manthi (2007) 

†Lemniscomys sp. 
Trouessart 

No missing M1 6.1 40Ar / 39Ar Deino and Ambrose 
(2007) 

Kenya, Lemudong’o, 
locality 1 

Manthi (2007) 

†Mastomys sp. Thomas No cross-
validation 

6.1 40Ar / 39Ar Deino and Ambrose 
(2007) 

Kenya, Lemudong’o, 
locality 1 

Manthi (2007) 

†Gerbillus sp. 
Desmarest 

No cross-
validation 

2.4 geochronology  
(BKT-3 tephra),  
40K/40Ar, 40Ar / 39Ar; 
sedimentology 

Kimbel et al. (1996),  
Campisano and Feibel  
(2008) 

Ethiopia, Hadar, AL894 Reed (2011) 
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Table 4: Overview of fossils finally selected for divergence dating, with parameters of uniform and lognormal prior distribution. 

 
  

Fossil Position Stem/Crown 
 

Age (Ma) 
Uniform 

distribution 
Lognormal 
distribution  

 Min Max Offset Log Mean 
1 †Antemus chinjiensis crown Murinae crown 13.8 13.24 25.29 13.24 1.0 3.2 
2 †cf. Karnimata sp. Mus/Arvicanthis split crown 11.2 10.47 25.37 10.47 1.0 4.0 
3 †Parapodemus lugdunensis Apodemus/Tokudaia split stem 9.6 8.93 25.41 8.93 1.0 4.5 
4 †Karnimata darwini TMRCA Millardini/Otomyini/Arvicanthini crown 9.2 8.52 25.42 8.52 1.0 4.6 
5 †Abudhabia pakistanensis Gerbilliscus/Desmodillus split crown 8.7 8.01 25.43 8.01 1.0 4.7 
6 †Mus sp. Murini stem 8.0 7.29 25.45 7.29 1.0 4.9 
7 †Aethomys sp. Aethomys stem 6.1 5.34 25.50 5.34 1.0 5.5 
8 †Arvicanthis sp. Arvicanthis stem 6.1 5.34 25.50 5.34 1.0 5.5 
9 †Gerbilliscus sp. Gerbilliscus  stem 6.1 5.34 25.50 5.34 1.0 5.5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 10, 2017. ; https://doi.org/10.1101/180398doi: bioRxiv preprint 

https://doi.org/10.1101/180398
http://creativecommons.org/licenses/by/4.0/


Table 5: Comparison of models used for BioGeoBEARS; likelihood scores (LnL), number of parameters (numparams), dispersal rate (d), extinction 
rate (e),  free parameter controlling the relative probability of founder-event speciation events at cladogenesis (j), corrected Akaike Information 
Criterion (AICc), and AICc model weights. 

 

 
LnL numparams d e j AICc AICc_wt 

DEC -133.724 2 0.005 0.000 0.000 271.525 0.05181 
DEC +J -129.826 3 0.004 0.000 0.008 265.806 0.90415 
DIVALIKE -146.958 2 0.007 0.000 0.000 297.993 9.2665e-08 
DIVALIKE +J -132.856 3 0.004 0.000 0.012 271.866 0.04369 
BAYAREALIKE -178.311 2 0.005 0.036 0.000 360.698 2.2423e-21 
BAYAREALIKE +J -137.687 3 0.003 0.000 0.014 281.528 0.00035 
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Table 6: Results of divergence dating analysis. Time to the most common ancestor (TMRCA) is shown as median in Ma, with 95% highest posterior density 

(HPD). Estimates from previous studies dealing with divergence dating of murid rodents are reviewed here for comparison. 

	
TMRCA median 2.5% 97.5% Steppan et al. 

(2004) 
Lecompte et al. 

(2008) 
Rowe et al. 

(2011) 
Fabre et al. 

(2012) 
Fabre et al. 

(2013) 
Schenk et al. 

(2013) 
Bryja et al. 

(2014) 
Rowe et al. 

(2016b) 
Muridae 19.3 17.06 21.92 22.5   ~33-23  ~21.0   
Lophiomyinae* 18.6 16.35 21.11         
Gerbillinae 12.2 10.46 14.16 9.3   ~23-5  ~10.0   
Deomyinae 14.6 12.68 16.82 13.1   ~23-5  ~13.0   
Murinae 14.2 12.70 16.07 12.0 12.3 13.3 ~23-5  ~14.5  ~14.0 
"core Murinae" 12.3 11.28 13.62 10.3 11.3   11.60 ~12.5  ~12.5 
Phloeomyini 9.8 7.72 11.85  8.6    ~10.0  ~10.5 
Rattini 10.4 9.23 11.93  9.7   8.70 ~11.0  ~11.0 
Hydromyini 10.4 9.31 11.71  8.9    ~11.0  ~11.0 
Malacomyini 3.4 2.35 4.60       4.4  
Apodemini 9.0 7.92 10.13  9.6    ~7.5 9.5 ~7.5 
Murini 7.2 6.24 8.29  6.6 5.3   ~6.0 7.4 ~6.5 
Praomyini 6.8 6.05 7.77  7.6    ~5.0 6.8 ~6.0 
Millardini 9.2 7.72 10.75         
Otomyini 4.9 4.12 5.98      ~6.0 3.8 ~3.0 
Arvicanthini 8.8 7.92 9.72  8.4 7.3   ~7.5 7.8 ~8.5 
 
* offshoot from Gerbillinae + Deomyinae 
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Table 7: Comparison between previous relevant studies. 
 
Author Focus Subfamilies # genera # species Fossils in 

Muridae 
# genetic 
markers 

Fabre et al. (2012) Rodentia 4 105 302 0 11 (8)* 

Schenk et al. (2013) Muroidea 4 85 136 4 4 

our study Muridae 4 82 160 9 15 

Rowe et al. (2008) Hydromyini (outgroup all Murinae + 
Gerbillinae+Deomyinae) 

3 66 78 2 8 

Lecompte et al. (2008) Murinae 3 46 83 2 3 

 
 

* 11 genetic markers for Rodentia, only 8 for Muridae 
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,

Outgroup
Calomyscus baluchiOchrotomys nuttalliMesocricetus auratusOndatra zibethicusOtotylomys phyllotisTylomys nudicaudusLophiomys imhausiDesmodillus auricularisGerbilliscus robustusGerbillurus paebaGerbilliscus gambianusGerbilliscus giffardiGerbillus nanusGerbillus nancillusGerbillus gerbillusGerbillus nigeriaeGerbillus tarabuliUranomys ruddiLophuromys flavopunctatusLophuromys sikapusiDeomys ferrugineusAcomys subspinosusAcomys spinosissimusAcomys russatusAcomys wilsoniAcomys ignitusAcomys cineraceusAcomys chudeauiBatomys grantiPhloeomys cumingiPhloeomys sp.Micromys minutusMaxomys bartelsiiMaxomys suriferMelasmothrix nasoDacnomys millardiLeopoldamys sabanusChiromyscus chiropusNiviventer cremoriventerNiviventer confucianusNiviventer culturatusBerylmys bowersiSundamys muelleriBunomys andrewsiParuromys dominatorDiplothrix legataRattus exulansRattus leucopusRattus norvegicusChiropodomys gliroidesApomys dataeApomys hylocoetesArchboldomys luzonensisChrotomys gonzalesiRhynchomys isarogensisAnisomys imitatorLorentzimys nouhuysiChiruromys vatesMacruromys majorHyomys goliathPogonomys loriaePogonomys macrourusMammelomys lanosusAbeomelomys seviaMallomys rothschildiLeptomys elegansHydromys chrysogasterParahydromys asperPseudohydromys ellermaniXeromys myoidesLeggadina forrestiZyzomys argurusNotomys fuscusMastacomys fuscusConilurus penicillatusLeporillus conditorUromys caudimaculatusParamelomys levipesMelomys rufescensMelomys cervinipesSolomys salebrosusMalacomys edvardsiMalacomys longipesTokudaia osimensisApodemus mystacinusApodemus agrariusApodemus semotusMus cookiiMus musculusMus crociduroidesMus pahariMus platythrixMus haussaMus mattheyiMus minutoidesMus musculoidesPraomys delectorumHeimyscus fumosusHylomyscus parvusPraomys degraaffiPraomys jacksoniPraomys daltoniPraomys misonneiPraomys tullbergiPraomys morioPraomys obscurusPraomys lukolelaeMyomyscus verrauxiiComolys goslingiZelotomys hildegardeaeStenocephalemys griseicaudaStenocephalemys albipesStenocephalemys albocaudataMyomyscus brockmaniMastomys kollmannspergeriMastomys couchaMastomys hubertiMastomys natalensisMastomys awashensisMastomys erythroleucusCremnomys cutchicusMillardia kathleenaeMillardia meltadaOtomys dentiOtomys barbouriOtomys lacustrisParotomys brantsiiParotomys littledaleiOtomys irroratusOtomys angoniensisOtomys typusOtomys occidentalisOtomys orestesOtomys tropicalisOenomys hypoxanthusGolunda elliotiMicaelamys namaquensisPelomys fallaxRhabdomys dilectusRhabdomys pumilioArvicanthis nairobaeArvicanthis rufinusArvicanthis niloticusArvicanthis blickiArvicanthis neumanniLemniscomys striatusLemnsicomys zebraLemnsicomys rosaliaLemnsicomys bellieriLemniscomys macculusHybomys univittatusStochomys longicaudatusAethomys hindeiAethomys chrysophilusAethomys ineptusAethomys silindensisAethomys kaiseriAethomys nyikaeDasymys incomtusThallomys loringiThallomys nigricaudaThallomys paedulcusGrammomys dolichurusGrammomys cometesGrammomys macmillaniGrammomys surdasterBV≥70, PP≥0.95

PP≥0.95
BV≥70

0.04
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,

Outgroup

1 †Antemus chinjiensis

2 †cf. Karnimata sp.

†Parapodemus lugdunensis

†Mus sp.

†Abudhabia pakistanensis

†Gerbilliscus sp.

†Aethomys sp.

†Arvicanthis sp.

3

6

7

8

9

†Karnimata darwini4

1
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3

4
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7

8

9

Calomyscus baluchi
Ochrotomys nuttalli
Mesocricetus auratus
Ondatra zibethicus
Ototylomys phyllotis
Tylomys nudicaudus
Lophiomys imhausi
Desmodillus auricularis
Gerbilliscus robustus
Gerbillurus paeba
Gerbilliscus gambianus
Gerbilliscus giffardi
Gerbillus nanus
Gerbillus nancillus
Gerbillus gerbillus
Gerbillus nigeriae
Gerbillus tarabuli
Uranomys ruddi
Lophuromys flavopunctatus
Lophuromys sikapusi
Deomys ferrugineus
Acomys subspinosus
Acomys spinosissimus
Acomys russatus
Acomys wilsoni
Acomys ignitus
Acomys cineraceus
Acomys chudeaui
Batomys granti
Phloeomys cumingi
Phloeomys sp.
Micromys minutus
Maxomys bartelsii
Maxomys surifer
Melasmothrix naso
Dacnomys millardi
Leopoldamys sabanus
Chiromyscus chiropus
Niviventer cremoriventer
Niviventer confucianus
Niviventer culturatus
Berylmys bowersi
Sundamys muelleri
Bunomys andrewsi
Paruromys dominator
Diplothrix legata
Rattus exulans
Rattus leucopus
Rattus norvegicus
Chiropodomys gliroides
Apomys datae
Apomys hylocoetes
Archboldomys luzonensis
Chrotomys gonzalesi
Rhynchomys isarogensis
Anisomys imitator
Lorentzimys nouhuysi
Chiruromys vates
Macruromys major
Hyomys goliath
Pogonomys loriae
Pogonomys macrourus
Mammelomys lanosus
Abeomelomys sevia
Mallomys rothschildi
Leptomys elegans
Hydromys chrysogaster
Parahydromys asper
Pseudohydromys ellermani
Xeromys myoides
Leggadina forresti
Zyzomys argurus
Notomys fuscus
Mastacomys fuscus
Conilurus penicillatus
Leporillus conditor
Uromys caudimaculatus
Paramelomys levipes
Melomys rufescens
Melomys cervinipes
Solomys salebrosus
Malacomys edvardsi
Malacomys longipes
Tokudaia osimensis
Apodemus mystacinus
Apodemus agrarius
Apodemus semotus
Mus cookii
Mus musculus
Mus crociduroides
Mus pahari
Mus platythrix
Mus haussa
Mus mattheyi
Mus minutoides
Mus musculoides
Praomys delectorum
Heimyscus fumosus
Hylomyscus parvus
Praomys degraaffi
Praomys jacksoni
Praomys daltoni
Praomys misonnei
Praomys tullbergi
Praomys morio
Praomys obscurus
Praomys lukolelae
Myomyscus verrauxii
Comolys goslingi
Zelotomys hildegardeae
Stenocephalemys griseicauda
Stenocephalemys albipes
Stenocephalemys albocaudata
Myomyscus brockmani
Mastomys kollmannspergeri
Mastomys coucha
Mastomys huberti
Mastomys natalensis
Mastomys awashensis
Mastomys erythroleucus
Cremnomys cutchicus
Millardia kathleenae
Millardia meltada
Otomys denti
Otomys barbouri
Otomys lacustris
Parotomys brantsii
Parotomys littledalei
Otomys irroratus
Otomys angoniensis
Otomys typus
Otomys occidentalis
Otomys orestes
Otomys tropicalis
Oenomys hypoxanthus
Golunda ellioti
Micaelamys namaquensis
Pelomys fallax
Rhabdomys dilectus
Rhabdomys pumilio
Arvicanthis nairobae
Arvicanthis rufinus
Arvicanthis niloticus
Arvicanthis blicki
Arvicanthis neumanni
Lemniscomys striatus
Lemnsicomys zebra
Lemnsicomys rosalia
Lemnsicomys bellieri
Lemniscomys macculus
Hybomys univittatus
Stochomys longicaudatus
Aethomys hindei
Aethomys chrysophilus
Aethomys ineptus
Aethomys silindensis
Aethomys kaiseri
Aethomys nyikae
Dasymys incomtus
Thallomys loringi
Thallomys nigricauda
Thallomys paedulcus
Grammomys dolichurus
Grammomys cometes
Grammomys macmillani
Grammomys surdaster
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Rhabdomys pumilio
Rhabdomys dilectus
Pelomys fallax
Micaelamys namaquensis
Golunda ellioti
Oenomys hypoxanthus
Otomys tropicalis
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Otomys typus
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Parotomys littledalei
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Otomys barbouri
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Millardia kathleenae
Cremnomys cutchicus
Mastomys erythroleucus
Mastomys awashensis
Mastomys natalensis
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Mastomys kollmanspergeri
Myomyscus brockmani
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Stenocephalemys albipes
Stenocephalemys griseicauda
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Colomys goslingi
Myomyscus verreauxii
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Leporillus conditor
Conilurus penicillatus
Notomys fuscus
Mastacomys fuscus
Zyzomys argurus
Leggadina forresti
Xeromys myoides
Pseudohydromys ellermani
Parahydromys asper
Hydromys chrysogaster
Leptomys elegans
Mallomys rothschildi
Abeomelomys sevia
Mammelomys lanosus
Pogonomys macrourus
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Hyomys goliath
Macruromys major
Chiruromys vates
Lorentzimys nouhuysi
Anisomys imitator
Rhynchomys isarogensis
Chrotomys gonzalesi
Archboldomys luzonensis
Apomys hylocoetes
Apomys datae
Chiropodomys gliroides
Rattus norvegicus
Rattus leucopus
Rattus exulans
Diplothrix legata
Paruromys dominator
Bunomys andrewsi
Sundamys muelleri
Berylmys bowersi
Niviventer culturatus
Niviventer confucianus
Niviventer cremoriventer
Chiromyscus chiropus
Leopoldamys sabanus
Dacnomys millardi
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Maxomys bartelsii
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Batomys granti
Acomys chudeaui
Acomys cf. cineraceus
Acomys ignitus
Acomys wilsoni
Acomys russatus
Acomys spinosissimus
Acomys subspinosus
Deomys ferrugineus
Lophuromys sikapusi
Lophuromys flavopunctatus
Uranomys ruddi
Gerbillus tarabuli
Gerbillus nigeriae
Gerbillus gerbillus
Gerbillus nancillus
Gerbillus nanus
Gerbilliscus gifardi
Gerbilliscus gambianus
Gerbillurus paeba
Gerbilliscus robustus
Desmodillus auricularis
Lophiomys imhausi
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