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A B S T R A C T

In food safety and public health risk evaluations, microbiological exposure assessment plays a central role as it
provides an estimation of both the likelihood and the level of the microbial hazard in a specified consumer
portion of food and takes microbial behaviour into account. While until now mostly phenotypic data have been
used in exposure assessment, mechanistic cellular information, obtained using omics techniques, will enable the
fine tuning of exposure assessments to move towards the next generation of microbiological risk assessment. In
particular, metagenomics can help in characterizing the food and factory environment microbiota (endogenous
microbiota and potentially pathogens) and the changes over time under the environmental conditions associated
with processing, preservation and storage. The difficulty lies in moving up to a quantitative exposure assessment,
because the development of models that enable the prediction of dynamics of pathogens in a complex food
ecosystem is still in its infancy in the food safety domain. In addition, collecting and storing the environmental
data (metadata) required to inform the models has not yet been organised at a large scale. In contrast, progress in
biomarker identification and characterization has already opened the possibility of making qualitative or even
quantitative connection between process and formulation conditions and microbial responses at the strain level.
In term of modelling approaches, without changing radically the usual model structure, changes in model inputs
are expected: instead of (or as well as) building models upon phenotypic characteristics such as for example
minimal temperature where growth is expected, exposure assessment models could use biomarker response
intensity as inputs. These new generations of strain-level models will bring an added value in predicting the
variability in pathogen behaviour. Altogether, these insights based upon omics techniques will increase our
(quantitative) knowledge on pathogenic strains and consequently will reduce our uncertainty; the exposure
assessment of a specific combination of pathogen and food will be then more accurate. This progress will benefit
the whole community of safety assessors and research scientists from academia, regulatory agencies and in-
dustry.

1. Introduction

In the food safety arena, exposure assessment (EA) is one of the four
steps of risk assessment, itself belonging to the broader risk analysis

paradigm, along with risk management and risk communication
(glossary provided in Table S1). This paradigm was set initially for
chemical risks (National Research Council, 1983) and afterwards
adopted for microbiological risks. The objective of EA is to evaluate
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qualitatively and/or quantitatively the likely intake of biological, che-
mical, and physical agents via food, as well as exposures from other
sources if relevant (Codex Alimentarius Commission, 1999). In micro-
biology, EA includes assessment of both (i) the level (prevalence and
concentration) of microbial pathogens and/or microbial toxins in food
and (ii) food consumption patterns. Factors affecting the level in foods
are numerous. Among them, it is important to highlight the char-
acteristics of the pathogenic agent, the microbial ecology of the food,
the initial contamination of the raw material, the processing, packa-
ging, distribution and storage of the foods (Codex Alimentarius
Commission, 1999).

In 2009, although the separation of risk assessment and risk man-
agement was not challenged, a more interactive and comprehensive
risk analysis framework was introduced (Levy, 2009). In this frame-
work, risk assessment was preceded by an initial step of problem for-
mulation and scoping by risk managers. It was also recommended to
view risk assessment as a method for evaluating the relative merits of
various options for managing risk. The importance of EA was then re-
affirmed as within this step the influence of various operational options
such as factors related to factory environment contamination, raw
material quality, process and formulation design, are quantitatively
evaluated (Lammerding and Fazil, 2000).

Technological developments in the field of microbiology captured
under the term omics have significantly enhanced our understanding of
the behaviour of microorganisms and particularly their physiological
state. Omics technologies include genome-wide sequencing tools,
genome-wide transcript and protein analysis and assessment of the
metabolic profile of microorganisms (Zhang et al., 2010). Most of the
omics studies performed so far have either not been designed for the
purpose of food safety risk assessment (Brul et al., 2012; Pielaat et al.,
2013), or have not been quantitative enough to be of direct use in ex-
posure or risk assessment (Membré and Guillou, 2016). However, omics
approaches could reveal patterns of responses that cannot be detected
by classical methods and have the potential to ultimately uncover new
and powerful methods to control hazards in food and feed (Pielaat
et al., 2013). This may potentially bring more insight than just the usual
‘snapshot’ in the farm-to-fork contamination process analysis and
therefore contribute to the next generation of EA. In particular, omics
approaches could help in progressing towards the characterization of
biological variability, which has a crucial importance in EA (Delignette-
Muller and Rosso, 2000). Variability provides a mechanism for an or-
ganism to increase its range of responses to changing environmental
conditions (Altschuler and Wu, 2010). Indeed the relationship between
differences in gene expression and phenotypic variability gives an in-
creasingly detailed insight into cellular responses to changing en-
vironments (MacNeil and Walhout, 2011).

The objectives of this paper are to illustrate how omics could make a
difference in understanding the dynamics of pathogens in a complex
food ecosystem, and in predicting pathogen behaviour variability.
Advancements in the research activities of these two domains will be
presented and discussed, through examples, with a special focus on
industrial applications.

2. Microbial dynamics along the food chain

2.1. Ecology of food-associated microbial community

The conditions encountered during food processing and storage
shape the composition of the food-associated microbial community and
have a governing influence on the growth, persistence, and inactivation
of a pathogen in the food (Boddy and Wimpenny, 1992). This was de-
monstrated for the microbiota of Italian Grana like cheese during
manufacture and ripening (Alessandria et al., 2016), for seafood storage
until spoilage (Chaillou et al., 2015), for meat (Chaillou et al., 2015;
Ferrocino et al., 2016), beefsteak (De Filippis et al., 2013), beef car-
paccio (Lucquin et al., 2012) and broiler chicken (Nieminen et al.,

2012). The microbial communities interact in different ways. These
interactions were investigated as (i) a win-win relationship or mutu-
alism, where two species would exchange metabolic products to the
benefit of both, (ii) loss-win or predator-prey relationship, such as host-
parasite relationship, or (iii) loss-loss relationship where the species
would produce antagonistic metabolites (Faust and Raes, 2012). In-
teractions between pathogenic species and other ecosystem microbiota
are worth investigating to determine if some specific bacterial eco-
system patterns would favour or, in contrast, prevent the growth, sur-
vival and/or inactivation of pathogens. Indeed, it has been shown that
some bacterial communities in cheese had a significant reducing effect
on the growth of Listeria monocytogenes whereas, on the contrary, L.
monocytogenes did not affect the growth of the other bacteria (Imran
et al., 2013). The presence of some lactic acid bacteria (LAB, see Table
S2 for acronyms) has also been shown to influence the growth or sur-
vival of pathogens (Portella et al., 2009; Szala et al., 2012) by exerting
for instance an antagonistic effect through the production of bacter-
iocins (Arqués et al., 2015). In contrast, another group of spoilage or-
ganisms, namely pseudomonads, enhanced the growth of L. mono-
cytogenes in the case of meat stored under different storage conditions
(Tsigarida et al., 2000). It appears thus relevant to characterize the
influence of the bacterial ecosystem on both the pathogen survival and
growth. Bioprotective bacteria may exert an antagonist action against
pathogens by limiting for example their growth through various in-
hibitory effects (e.g. substrate competition, production of antimicrobial
compounds such as bacteriocins, organic acids, hydrogen peroxide),
quorum sensing, or yet unknown mechanisms (Blana et al., 2011; Blana
et al., 2015; Saraoui et al., 2016). More general studies on interactions
between bacteria in food and along the food chain have just been in-
itiated by assessing co-occurrence and co-exclusion relationships be-
tween predominant species from similarity-based network inference
(Alessandria et al., 2016; Chaillou et al., 2015). In addition to co-oc-
currence and co-exclusion analysis, functional metagenomics techni-
ques could be deployed to characterize the metabolic potential of the
microbial communities and their possible capability to produce antag-
onistic or protective effects against pathogens (Illeghems et al., 2015;
Jung et al., 2011).

For further inclusion in a farm-to-fork EA it is crucial to understand
the link between the factory environment microbial community and
pathogen growth, survival or decline. There are still too few studies in
this research area. Fox et al. (2014) demonstrated the link between the
microbial community of different sections of a food factory and the
persistence/presence of Listeria. Four drains were examined in a meat
manufacturing facility, with two classified as Listeria-positive and two
classified as Listeria-negative. A 16S rRNA gene analysis revealed that
21 bacterial families were found only in Listeria positive drains; in
contrast, Janthinobacterium, Prevotella, and Pseudomonas were more
abundant in Listeria-negative drains. Co-culturing experiments with
specific species supported this effect by demonstrating increased and
decreased biofilm formation of L. monocytogenes in the presence of
identified protagonists and antagonists, respectively. Fig. 1 illustrates
possible pathogen interactions with other microbiota in food and fac-
tory environments, and their role in final exposure levels taking into
account the processing steps. Microbial contaminants can originate
from raw material, airborne contamination or contact surfaces that
were improperly cleaned and/or disinfected. These contaminants can
be commensal bacteria, spoilers or pathogens, and metagenetic analysis
can help to characterize the composition of the food ecosystem
throughout the manufacture and storage steps and to elucidate trans-
mission routes (Fig. 1). The behaviour of each of these contaminants is
known to be influenced by the process and storage conditions such as
pH, aw and temperature. When assessing the compliance with a Food
Safety Objective (FSO), so far the pathogen behaviour (growth or in-
activation) has been often quantified on its own, i.e. independently of
the ecosystem (Fig. 1, “A-pathogen alone”). The next step would be a
more comprehensive assessment of FSO compliance with various
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scenarios depending on the microbiota (Fig. 1, “B-pathogen in an eco-
systemic view”).

The food matrix structure should also be considered in the assess-
ment because the physical structure and the chemical composition in
time and space are heterogeneous. There are environments where
various compounds, e.g. metabolites and/or molecules, are released but
not at the same concentrations over the time and space, meaning that
microbial adaptation to environmental stress in space and in time is a

continuous process (Boddy and Wimpenny, 1992; Skandamis et al.,
2000). The spatial heterogeneity of the food matrix has not often been
taken into account in EA: models have been generally built assuming
that the cells are exposed to the same factor levels, e.g. the same con-
centration of signal molecules, in the whole solid food (Wilson et al.,
2002). Studies on food matrix structure effects that take nutrient dif-
fusion into account as well as individual (local) cell level behaviour will
be definitively beneficial to EA (Bridson and Gould, 2000;

Fig. 1. Top of the figure. Schematic illustration of a food pro-
cess, pointing out various sources of microbial contamination: ①
Contamination from raw materials ② Airborne contamination
and ③ Contamination from equipment and surfaces in factory.
Process parameters such as temperature, food aw and pH, and
concentration of oxygen and carbon dioxide in food packaging
influence microbial growth and survival.
Bottom of the figure. Illustration of growth during the 1st step of
the process and inactivation following the 2nd step of the pro-
cess. A - The pathogen is considered alone and not affected by
the presence of other bacteria. Studies performed on pure pa-
thogen culture predict a FSO exceedance. B – The pathogen is
considered among other bacterial flora A and B, A and C, or B
and D. Growth and survival of the pathogen are differently in-
fluenced by these flora. In some cases (Pathogen + (A,C) or
(B,D)), the presence of the flora are detrimental to growth and/
or survival of the pathogen, which leads to FSO compliance. In
other cases (Pathogen + (A,B)) the presence of the flora favours
growth and survival of the pathogen, which leads to FSO ex-
ceedance.

H.M.W. den Besten et al. International Journal of Food Microbiology xxx (xxxx) xxx–xxx

3



Koutsoumanis and Aspridou, 2017; Abee et al., 2016). However, in-
cluding these extra pieces of information in a quantitative manner
might be complex and difficult to achieve.

2.2. Modelling pathogen dynamics in food microbial ecosystems: Towards
the next generation of predictive models

The first generation of predictive models was based on a simple
principle. It was stated that microbial responses to given environmental
conditions were reproducible and could therefore be further used to
predict microbial growth or inactivation (McKellar and Lu, 2004). In
predictive microbiology terminology, primary models describe micro-
bial evolution with time, based on specific parameters such as the
(growth or inactivation) rate, the lag time and the maximum population
density. Secondary models describe the effects of the environmental
conditions (e.g. temperature, pH, aw, organic acids) on the parameters
of the primary models. Based on this approach, numerous models were
developed for several pathogens to describe their growth and/or in-
activation (Brul et al., 2007; Membré and Valdramidis, 2016). Similar
models were also developed for spoilers, however, models predicting
microbial interactions between pathogens and background food mi-
croorganisms are less common. These models considered the competi-
tion between L. monocytogenes and LAB in several matrices such as
cottage cheese (Østergaard et al., 2015), pork meat products (Cornu
et al., 2011) and lightly preserved seafood (Mejlholm and Dalgaard,
2007). Other studies modelled L. monocytogenes with other competitive
and less characterized microorganisms such as biofilm microorganisms
from wooden shelves of smear cheese (Guillier et al., 2008). Also,
models addressing other pathogens such as Yersinia enterocolitica in co-
culture with LAB (Janssen et al., 2006) and Staphylococcus aureus with
starter culture in milk (Le Marc et al., 2009) were published. Some
scientists modelled the effects of yeasts and moulds in competition with
LAB in different matrices such as olives (Echevarria et al., 2010). These
studies showed that, if the conditions were favourable for growth, the
growth rate and lag time of the pathogen did not change in the presence
of the competitive microorganisms. The maximum population density,
however, was different. This was called the Jameson effect, and it could
be summarized as a race between different microbial populations: when
the environmental resources are depleted, the race is over, and the
growth of each species in the population stops (Mellefont et al., 2008).
The Jameson effect was reported by several authors (Le Marc et al.,
2009; Mejlholm and Dalgaard, 2015). On the other hand, the effect of
competitive microorganisms on pathogen inactivation is usually mod-
elled indirectly. For example, the effect of starter cultures on the in-
activation of Salmonella and L. monocytogenes in fermented dried sau-
sages is taken into account through the pH drop and lactic acid
concentration increase caused by LAB (Coroller et al., 2015; Mataragas
et al., 2015a).

The next generation of predictive microbiology models is likely to
include predictions of the behaviour of the ecosystem as a whole. From
a modelling perspective, there are a number of questions to be an-
swered, chief among these are: can a profile of the microbiota of a food
matrix or other environment be used to predict the presence or absence
of a pathogen or spoilage microorganism? Or given a specific microbial
ecology, what growth dynamics are we likely to observe and can we
predict this? An immediate follow-on question is then whether or not
the microbiota can be modified in order to control the presence of an
undesirable microorganism and can we propose efficient intervention
strategies? More generally, which model adaptation or which new
models are necessary to incorporate the ecosystem information in the
EA? Predictions based on modelling of microbial communities have
been reported for cheese fermentation (Mounier et al., 2008) and
marine phage abundance (Hoffmann et al., 2007) using Lotka-Volterra
equations (corresponding to a nonlinear system of differential equations
to model the predator-prey relationship of a simple ecosystem).
Studying microbial dynamics with generalized Lotka-Volterra equations

requires the cell concentrations of the different taxa, the growth rates of
each taxon and its abundance at different times, and the interaction
strengths of the different community members, which can be estimated
by using network inference (Faust and Raes, 2012). Overall, that means
that realistically a prediction based Lotka-Volterra equation system
cannot be applied to an ecosystem where many species are involved.

Incorporation of abiotic factors in network inference is possible and
it enables the prediction of bacterial community patterns as a function
of both biotic and abiotic factors. However, to be valuable, this means
that database containing genomic, metagenomic or marker gene se-
quence data have to be populated with metadata (e.g. temperature and
other environmental factor values), according to a specific standard
(Yilmaz et al., 2011). Elaborating a format for contextual additional
information has been initiated in the Minimum Information about any
(X) Sequence - Genomic Standards Consortium (MixS-GSC) project
(http://gensc.org/projects/mixs-gsc-project/) in which data describing
15 environments, including one dedicated to microbial material and
biofilm, are available online. In a food safety context, for future use in
EA, gathering metadata describing environmental conditions will re-
quire the definition of a standard for collecting the information and a
very clear definition of the model inputs and outputs to build the da-
tabase. Next, populating the database will involve a tremendous
amount of work, which will require collaborations between different
stakeholders including academia, industry and governments.

One project exploring this route is the Sequencing Alliance for Food
Environments (SAFE) project recently commenced in Ireland. Here,
foods and food environments provided by five contributing companies
will be monitored over two years, examining both the dynamics of the
microbiota (analysed using 16S rRNA metagenetics) and the traits of
specific isolates (analysed using whole genome sequencing (WGS)). As
both the microbiota and the specific isolates will be analysed from the
same samples, there will be an opportunity to try and quantify or model
the link between the two. 16S rRNA metagenetics will be used to
quantify the relative abundance of the different species or genera of
bacteria as a characterization of the microbiome of a particular en-
vironment within a manufacturing facility. WGS will be used to identify
the specific strains of concern that exist in the same environment and
their genotypes, and statistical modelling techniques will be used to
link the two.

3. Predicting behaviour: towards building quantitative models
based on biological insights

3.1. Microbial behaviour in a variable world

Within the biological and life related sciences, the term “behaviour”
can be used to refer to the aggregate of acts, reactions and/or func-
tioning that an organism, as an individual or as part of a system, pro-
duced in response to a particular circumstance and induced by stimuli
or inputs from its internal or external environment (e.g. food char-
acteristics, storage conditions, interaction with other organisms, the
succession of the microbial community in a continuously modified food
matrix). This response can be innate and/or acquired based on previous
exposure. Such general definitions therefore include a wide variety of
events that can be located at transcriptomic, proteomic, metabolomics
and/or fluxomic levels within the cellular compartment (i.e. system
biology). Furthermore, and particularly relevant for microbiological
risk assessment, it also refers to the final outcome of all these cellular
events in relation to phenotypic characteristics, such as resistance,
survival, adaptation, growth, toxin production or virulence. Even if any
of these responses are determined by the genomic potential of the or-
ganism, the environmental influence is crucial to trigger a given be-
haviour. These responses can be considered as input data for risk as-
sessment models. They can be qualitative (e.g. growth is observed;
resistance is acquired) or quantitative (e.g. the probability of observing
growth is 0.01, the enhanced survival is 3 log CFU/g) and depending on
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these, quantitative or qualitative microbiological risk assessments are
performed.

Variability has an essential place in microbiological risk assessments
and variability associated with microbial responses in foods can be
classified into two types. The first type corresponds to environmental
variability, which is a consequence of the natural diversity in food-re-
lated environments (pH, composition, preservative) and differences in
the technological parameters of industrial processes (pasteurization
temperatures, pressure level in HHP, etc.). Regarding variability in key
product and process parameters, these can be measured at the research
and development (R & D) phase to characterize variability and thus be
incorporated into safe design before rolling out a new product to a
manufacturing facility. However, in many cases direct measurement of
certain key parameters is not always possible and other approaches
such as mathematical modelling and biological indicators must be used
(e.g. internal temperature profiles in aseptically processed foods con-
taining particulates). Data on consumer practices and habits is often not
widely available for many regions of the world. Therefore food com-
panies must commission such studies privately. However, where the
consumer phase plays a key role in food safety assurance (e.g. chilled or
frozen microwavable foods containing raw ingredients), it is the re-
sponsibility of the manufacturer to validate the cooking instructions
that will go on the pack during the R &D phase.

The second type of variability associated with microbial responses
in food is the pathogen-related biological variability, which is asso-
ciated with the natural variation existing between microbial sub-
populations and between individuals inside the same microbial popu-
lation. There are many sources of biological variability which must be
considered, including pathogen strain or cell variability, variability in
sources of contamination, and variability in a pathogen's behaviour, i.e.
its ability to resist or adapt to food environment (Membré and Guillou,
2016). This multiplicity of sources of variability affects pathogen con-
tamination level at the time of consumption and therefore has an im-
pact on EA (Koutsoumanis et al., 2016). Extreme individual responses
of single cells behaving as “outliers” (noise) of a larger homogeneous
population and masked by adjacent cells showing an “average” beha-
viour may be revealed when cells are studied individually (Skandamis
and Nychas, 2012; Koutsoumanis and Aspridou, 2017). Genomic simi-
larities do not necessarily imply similarities in behaviour. Additionally,
small genetic changes may result in large phenotypic differences
(Metselaar et al., 2015), which pose a considerable challenge when it
comes to quantitatively associating genomics and cellular behaviour
with the extent of growth, survival or death of a microorganism, taking
into account the biological variability. This has recently been illustrated
by Abee et al. (2016), who simulated the fate of L. monocytogenes in a
model food chain. They found that the population composition of this
pathogen was significantly affected by the stresses encountered along
the chain and the variant types initially present. Currently, it is
common industry practice to use cocktails of microorganisms for
challenge testing or surrogates for process validation. The choice of
such organisms is often on the basis of historical knowledge and aims to
represent the “expected variability” of resilient sub-populations that
have been associated with incidents of contamination (IFT/FDA, 2003).
This safe-side practice does not allow a straightforward re-use of chal-
lenge-test data in quantitative risk assessment studies which aims at
estimating the actual risk, i.e. avoiding over or under estimation of the
risk.

There is a need to understand and quantify the relative importance
of variability factors across the food chain to determine which ones take
higher relevance and have to be considered in EA (Den Besten et al.,
2017). If strain variability was ultimately shown to be decisive among
the other variability factors, the identification of “high risk” bacterial
subpopulations should be first evidenced by omics techniques, to de-
termine their distribution in the whole bacterial population. The as-
sumption is that specific genetic material that renders a strain as “high-
risk” is shared by other subpopulations deemed to be “high-risk” as well

(Berendsen et al., 2016). In this context, one option is to consider that
strains or bacterial subtypes involved in outbreaks are implicitly “high
risk”. When grouping of species in subgroups is justifiable based on
mechanistic insights, then one could fine tune EAs taking into account
the characteristics of these different subgroups following the example of
Afchain et al. (2008). They proposed mean cardinal temperatures for
six genetic groups of Bacillus cereus, and Carlin et al. (2013) reported
the variability in cardinal growth parameters for these genetics groups.
This quantitative information on behaviour of subgroups of species can
be used to estimate the growth performance of the different subgroups,
and when combined with information on robustness to lethal stresses,
this will provide more precision in quantitative EA than when taking
the species as a whole.

3.2. Biomarkers to predict variable behaviour

The drive to use more mechanism-based approaches for predicting
microbial behaviour gave rise to the search for molecular biomarkers.
In the context of food microbiology, a biomarker could be defined as a
cellular compound or a structure of cellular compounds that can be
measured in a food-borne pathogen, which will enable the prediction of
the phenotypic behaviour of this pathogen. A biomarker has to be re-
levant, i.e. provide appropriate information on questions of interest and
importance to food safety decision-makers; it has also to be valid,
knowing that the use of invalid biomarkers can lead to invalid in-
ferences and generalizations and ultimately to erroneous risk assess-
ments (WHO, 2001).

3.2.1. Biomarkers: promises and expectations
Prediction of phenotypic behaviour using cellular indicators is a key

area of research (Brul et al., 2006; Kort et al., 2008; Greppi and
Rantsiou, 2016). Quantitatively correlating microbial responses at the
molecular level to observed phenotypes can provide mechanistic un-
derstanding of the behaviour and can suggest means for identifying
cellular indicators for bacterial performance. Robustness to lethal
stresses is known to vary highly between pathogenic species, and also
between strains belonging to the same species. Recent work of
Berendsen et al. (2015) demonstrated large differences in the heat re-
sistance of spores of Bacillus subtilis, and they could group B. subtilis
strains in two distinct groups based on spore heat resistance. They
provided evidence that this was due to the presence of a mobile genetic
element that was demonstrated to confer high-level heat resistance to
spores. Genetic elements could function as absence/presence bio-
markers for robustness to stresses, and a next step of interest would be
to evaluate whether such genetic fingerprints could also function as
genetic biomarkers for heat resistance in pathogenic sporeformers like
Bacillus cereus. Interestingly, the genetic element that was demonstrated
to be present in B. subtilis strains that produced high-level heat resistant
spores was also found in B. cereus strains, but it needs to be investigated
whether this has an influence on the heat resistance of these spores
(Berendsen et al., 2016).

Adaptation to changing environments encountered along the food
chain is known to induce a lag phase allowing the adaptation required
for bacterial cells to begin to exploit new environmental conditions.
This lag phase is known to be highly variable. The physiology of bac-
terial adaptation during the lag phase to repair damage and to prepare
for growth initiation has not been well characterized (Rolfe et al.,
2012), and metabolic processes involved in getting out of lag phase are
fairly unknown. There is a lack of knowledge on recovery promoting
factors, synthesis of cellular components necessary for growth initia-
tion, and biomarkers that predict ‘coming-out of lag’. These biomarkers
could give us useful mechanistic information on realistically predicting
lag phase duration. However, direct application of this biological
knowledge in practice would be fairly challenging because pathogens
are present in very low concentrations, with high variability among the
cells. Nevertheless, biological insights in lag phase duration might aid
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in the further development and optimization of methods to detect pa-
thogens in foods and environments.

Pathogens are exposed to suboptimal conditions along the food
chain, and adaptation to suboptimal or stressful growth conditions has
received much attention in the last few years, often with molecular
mechanisms underlying stress adaptation during growth being identi-
fied. Mild stress conditions do not inactivate pathogens, but can instead
trigger adaptation mechanisms in the pathogenic cells, which can
confer protection to subsequent exposure to more unfavourable stress
conditions in the environment or in the food (Alvarez-Ordóñez et al.,
2015; Begley and Hill, 2015). The combination of omics technologies,
such as transcriptomics, proteomics and metabolomics, have provided
insight in critical adaptation mechanisms involved in stress adaptation,
and the advantages and disadvantages of various methodologies were
reviewed recently by Greppi and Rantsiou (2016). Alternative sigma
factors such as SigB in Gram-positive pathogens and RpoS in Gram-
negative pathogens play an important role in stress adaptation, and
bacteria defective in sigB or rpoS are highly sensitive to food processing
conditions (Abee and Wouters, 1999). Van Schaik and Abee (2005)
pointed therefore to a potential role for sigma factors as biomarkers for
stress resistance. Indeed, studies that aimed at finding potential stress
response biomarkers demonstrated that the transcript of sigB, the cor-
responding SigB protein, or σB regulon members could function as
biomarkers for stress response in B. cereus (Den Besten et al., 2010),
Bacillus weihenstephanensis (Desriac et al., 2015) and L. monocytogenes
(Mataragas et al., 2015b). Alvarez-Ordóñez et al. (2015) also pointed to
the possible role of rpoS activity as an indicator for bacterial resistance,
among others, in Enterobacteriaceae. Despite the clear role of this reg-
ulator in stress response, several studies described truncated RpoS in
isolates of different pathogenic species of Enterobacteriaceae (Alvarez-
Ordóñez et al., 2012; Robbe-Saule et al., 2003). Mutations in the rpoS
gene are linked to reduced stress tolerance, but on the other hand, have
been demonstrated to provide a growth benefit (King et al., 2004).
Trade-offmechanisms affecting resistance to environmental stresses can
be at the cost of slower growth and thus lower fitness (Ferenci, 2016).
Indeed, these trade-off mechanisms shape intra- and interspecies di-
versity (Ferenci, 2016). Predictive determinants of robustness have
been identified on various cellular levels, namely, transcripts, proteins,
and enzymes (Den Besten et al., 2010; Den Besten et al., 2013; Desriac
et al., 2013; Desriac et al., 2015; Mataragas et al., 2015b). Gene-ex-
pression is the first bacterial response to changing environments, but
the often transient nature of mRNA expression might complicate direct
correlation between expression of biomarkers and gained robustness
(Desriac et al., 2013).

3.2.2. Current attempts of building predictive models based upon
biomarkers

The ultimate goal of moving towards quantitative biomarkers to
predict microbial behaviour is challenged by the inherent complexity of
the regulation of stress response mechanisms and the corresponding
expression of indicators and candidate biomarkers in the cell.
Moreover, it questions the possibility of extrapolation of results be-
tween strains and species. Biomarkers that are quantitatively correlated
to phenotypes of interest in EAs, like fitness and robustness, will be of
indisputable significance for developing tools to screen for resistant or
sensitive cells and will complement our quantitative empirical ap-
proach of predicting microbial behaviour. In terms of modelling ap-
proaches, without changing radically the model structure, this could
lead to changes in the model inputs: instead of (or as well as) building
models upon phenotypic characteristics such as for example minimal
temperature where growth is expected, EA models could use biomarker
response intensity as inputs. This is not yet done in the food micro-
biology domain, but in the medical health domain already numerous
multigene signatures have been identified that aim to outperform tra-
ditional clinical prognostic markers to facilitate decision-making pro-
cesses (Weigel and Dowsett, 2010).

Nonetheless, when different traits or phenotypes are related to dif-
ferent biomarkers, the risk modelling process can become more com-
plex. For example, the study by Den Besten et al. (2010) identified
different biomarkers relating to the adaptive behaviour and the ro-
bustness of B. cereus to lethal treatments. How to combine information
of different biomarkers into EA is an issue that greatly depends on the
level of knowledge that is available in relation to the microbial genome,
metabolic reactions and the interrelation between them. If we assume
independence (i.e. the presence of one does not imply the presence of
the other and vice versa) between two biomarkers and 100% prediction
capacity of biomarkers to determine the probability of finding a bac-
terial population showing two specific phenotypes; e.g., a food con-
taminated with B. cereus from Group VI (low Tmin according classifi-
cation of Guinebretiere et al., 2010) and biomarkers related to adaptive
stress conferring resistance to heat treatments (SigB, ClpC, etc.), the
following generic equation could be applied.

∩ = ∙P A B P A P B( ) ( ) ( )j i j i (1)

where Aj stands for jth phylogenetic group of B. cereus with j = 1, 2,…7,
corresponding with the seven sensu lato groups of B. cereus
(Guinebretiere et al., 2010); Bi corresponds to ith biomarker associated
with adaptive behaviour, with i = 1, 2,… m representing each bio-
marker (SigB, ClpC, etc.).

Nonetheless, biomarkers seldom have a 100% prediction capacity
and therefore, the attendant uncertainty should be considered in EA. In
such cases a Bayesian approach can be a suitable mathematical tech-
nique to consider the level of uncertainty (i.e. belief) in biomarker
prediction capacity (Hernández et al., 2015). Eq. (2) conceptually
summarizes the Bayesian (inference) approach that could be applied in
an EA model to determine the probability (or prevalence) of one phe-
notype (Fp) knowing both the probability (or prevalence) of k bio-
markers (Bk, with k = 1, 2, …, m) and the probability of finding the
biomarker Bk for the phenotype Fp. The former probability (i.e. P(Bk))
would be determined by “field experiments”, while the latter prob-
ability (P(Bk|Fp)) would be derived from “in-vitro” experiments as ex-
plained previously. Bayesian inference derives the posterior prob-
ability, (F|Bk), as the result from a prior probability and a “likelihood
function” estimated from observations (second term in Eq. (2)).
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Models can become even more complicated, if dependencies be-
tween biomarkers exist, i.e. a biomarker is linked to the presence of
other. For example, following our example, a recent study proposed the
hypothesis of divergence of the generalized stress response (SigB)
across the B. cereus sensu lato group (Scott and Dyer, 2012; Toby et al.,
2014). Results from the study suggest that regulon SigB structure differs
between Group 1–7, and strains from these seven groups could be as-
signed to four clades A through D. These differences in SigB are de-
terminant in the stress response. Clades A and B showed an enhanced
stress response to deleterious environmental conditions in comparison
to clades C and D. When these traits are translated into a multi-bio-
marker dimension to take into account the whole system of genes in-
volved, the network becomes more intricate and complex (Qiu et al.,
2007), making a quantitative prediction of the phenotype difficult.

4. Exposure assessment and omics: a double challenge for the food
industry

Several publications demonstrate that major food companies have
adopted the microbiological risk assessment methodology in their
safety assessments (Pujol et al., 2013; Tenenhaus-Aziza et al., 2014;
Membré et al., 2015). Among the microbiological risk assessment ele-
ments, EA is particularly relevant since it allows transparent decision-
making based on information directly related to operational metrics.
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However, accurate EA usually requires a considerable amount of data,
not only regarding intrinsic and extrinsic factors of the food product,
but also related to the prevalence and the behaviour of microbial ha-
zards. With the availability of new miniaturized sequencing equipment,
pathogen surveillance and indicator trend analysis can be facilitated.
That is why, besides academia and regulators, the food industry is also
interested in omics tools, to gain more insight in the microbial ecology
of the factory and how it relates to the product's ecology. This can help
to assess the presence or the emergence of highly resistant micro-or-
ganisms to current preservative systems, and can also give a clear un-
derstanding and preferably, a quantitative estimate of the dominant
species and their changes over time under the environmental conditions
associated with processing, preservation and storage. It is also relevant
to mention that spoilers are also a concern for the industry since their
growth will lead to food that is unfit for consumption, and thus clas-
sified as unsafe according the EU regulation framework (i.e. Regulation
(EC) 178/2002, Art14).

The mechanistic approach for applying WGS in EA will require
translating multidimensional genotypic data into reduced information
on the phenotype to ultimately generate a metric that matches the
stakeholders' requirements (Franz et al., 2016). This will probably need
several future developments. However, an empirical approach can be
foreseen to combine metagenomic outputs and predictive microbiology
models. This can be achieved in two steps (Fig. 2). First, knowledge
building is necessary. For a specific food product, several analyses
would be performed at different stages within the factory then
throughout the food chain. These analysis would include metagenomics
and their corresponding bioinformatic analysis along with plate
counting (or any other enumeration technique), but also food char-
acterization (e.g. pH, aw) and temperature monitoring. The latter is
fundamental metadata that must be collected alongside the metage-
nomic data for meaningful assessments. The metagenomic data can be
used to extract relevant information, e.g. 16S rRNA sequences, to de-
scribe the microbial diversity and the relative abundance of species in
the food product at several time points. When coupled with microbial
enumerations, kinetics will be generated for the most prevalent species.
Predictive microbiology models will then be used to fit the data and
assess the growth or inactivation parameters. Those quantitative data
will be stored in a database as well as some qualitative data to identify
among the initial species of the ecosystem the ones that will be domi-
nant over time given the ecosystem composition and the environmental
conditions. Once this knowledge is built it will be possible to proceed
with the predictions. To do so, the first step will be to run metage-
nomics experiments as well as plate counts (or any other enumeration
technique) on the studied sample at a given point of time. Combining

the relative abundance information with the enumerations, taking into
account the food and environmental characteristics and based on pre-
vious knowledge captured in the database, it will be possible to predict
the dominant species and to simulate their behaviour (growth, in-
activation) over time. However, pathogens, when present, are generally
much less abundant than spoilers, starter or protective cultures, so this
approach may be challenging for food safety assessments.

Delhalle et al. (2013) combined the use of predictive models and
metagenetics to predict bacterial population changes in white pudding.
To do so, the ecology of the product was studied at several times during
the storage at both constant and dynamic temperatures, in the presence
or in the absence of lactic acid and under modified atmosphere. Clas-
sical microbiological plate counting was performed followed by meta-
genetic analysis. The bio-informatic pipeline using Mothur, BLAST and
STAMP was used to assign a taxonomical identity to the sequences and
to obtain the bacterial population proportions of the samples (Schloss
et al., 2009). Then, with the plate count estimates, the proportions were
transformed into quantitative estimates for the dominant populations.
These observations were fitted to predictive microbiological models.
Thus, the growth parameters obtained were used to simulate microbial
behaviour in dynamic temperature conditions, and these simulations
were compared to observations generated by the metagenetic analysis.
Predictions at static temperatures were in line with observations,
whereas predictions obtained at dynamic conditions slightly differed
from observations. The study of Benson et al. (2014) provides another
example of the application of metagenetics to understand the ecology of
complex microbial communities in real food matrices. Analysing the
relative abundances of individual taxa based on 16S rRNA gene se-
quences, this study found reproducible ecological successions over an
80-day shelf life study in fresh pork sausage. Data analyses identified
strong effects of the spice blend on population dynamics and enabled
source-tracking of a single species (Lactobacillus graminis) as the main
causative spoilage organism. Next generation sequencing data was also
able to reconcile an existing gap between culture-based microbial data
and perceivable sensory traits, providing a powerful tool for estab-
lishing causal relationships between the sausage microbiota and re-
levant physico-chemical properties for the manufacturer. The authors
hypothesized that, with enough data, it would be possible to develop
predictive models based on machine learning algorithms capable of
articulating species-specific signatures associated with batch-to-batch
variability.

These case studies show that metagenomics provide valuable in-
formation to perform EA, taking into account the initial bacterial con-
tamination in terms of abundance and diversity as well as several fac-
tors influencing microbial behaviour. This approach will help the food

Fig. 2. Proof of the concept: using both metagenomics and
plate count tools to facilitate exposure assessment. A.
Building the knowledge. For a specific food product, me-
tagenomics analysis, plate counting, food characterization
and temperature monitoring will be performed. Then, ki-
netics will be generated for the most prevalent species and
predictive microbiology models will be built. Quantitative
data will be stored in a database. B. Predicting. Combining
metagenomics, plate count and food characteristic in-
formation collected at a given point of time with knowledge
and model stored in the database, prediction of dominant
species behaviour will be possible.
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industry to evaluate the effects of interventions such as shortening the
distribution chain, considering a supplementary technological step (e.g.
pasteurization, freezing) or adapting the packaging and gas composi-
tion of the products and thus act early in the production chain to
control microbial populations.

5. Conclusion

Microbiological EA plays a central role within public health risk
evaluations, as it provides an estimation of both the likelihood and the
level of the microbial hazard in a specified consumer portion of food,
taking microbial behaviour (e.g. death, survival and growth in the food)
into account. So far, EA has been mainly based on phenotypic data and
predictive models built at the population level. The next generation of
EA will be fine-tuned with mechanistic cellular information that can be
obtained now through omics techniques. For instance, the dynamics of
a pathogen in a complex food eco-system could be better understood
with omics data (e.g. obtained by metagenomics) than with phenotypic
data. Also, omics technologies could make a difference in EA by going a
step further in the prediction of pathogen behaviour variability due to
heterogeneity in physiological states and stress responses. Indeed,
progress in biomarker identification and characterization opens the
possibility of making the connection between process and formulation
conditions and microbial response at the strain level. Nevertheless,
using omics technology to decipher complex food ecosystem dynamics
or strain variability will generate huge sets of data (big data), which
have to be properly analysed, summarized and stored. That could be
both time consuming and resource demanding, as new database struc-
tures have to be conceived, and techniques not yet routinely used in EA
(e.g. ontology) have to be encouraged. Another drawback of omics is the
difficulty of applying these technologies in food and more generally in
real situations (e.g. low concentrations of pathogens).

Nevertheless, despite these limitations, we are confident that omics
will be part of the next generation of microbiological EA since it pro-
vides valuable tools (among others, metagenomics and biomarkers)
which enable better understanding of microbial behaviour and dy-
namics, brings additional knowledge on pathogenic strains and then,
altogether, reduces the uncertainty when conducting an EA for a spe-
cific combination of pathogen and food, and with that, the associated
risk.
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