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Abstract

Backgroud: Populus nigra is a major tree species of ecological and economic importance for which several initiatives
have been set up to create genomic resources. In order to access the large number of Single Nucleotide
Polymorphisms (SNPs) typically needed to carry out a genome scan, the present study aimed at evaluating RNA
sequencing as a tool to discover and type SNPs in genes within natural populations of P. nigra.

Results: We have devised a bioinformatics pipeline to call and type SNPs from RNAseq reads and applied it to P. nigra
transcriptomic data. The accuracy of the resulting RNAseq-based SNP calling and typing has been evaluated by (i)
comparing their position and alleles to those previously reported in candidate genes, (ii) assessing their genotyping
accuracy with respect to a previously available SNP chip and (iii) evaluating their inter-annual repeatability. We found
that a combination of several callers yields a good compromise between the number of variants type and the
accuracy of genotyping. We further used the resulting genotypic data to carry out basic genetic analyses whose
results confirm the quality of the RNAseq-based SNP dataset.

Conclusions: We demonstrated the potential and accuracy of RNAseq as an efficient way to genotype SNPs in P. nigra.
These results open prospects towards the use of this technology for quantitative and population genomics studies.

Keywords: DNA polymorphisms, Bioinformatics pipeline, Black poplar, Transcriptomics

Background
Populus nigra is a major tree species from Eurasian ripar-
ian ecosystems and one of the 3 main parental species
used in poplar breeding programs to develop highly pro-
ductive interspecific cultivated hybrids. For these rea-
sons, several initiatives have recently been set up to
create genomic resources within this species as tools to
improve conservation and breeding strategies [1, 2]. The
main objective of such initiatives is to discover and type
genomic variants like Single Nucleotide Polymorphisms
(SNPs) for various applications, including the identifica-
tion and quantification of introgressions from the culti-
vated compartment, the study of population structure and
the identification of variants associated with economically
or ecologically relevant phenotypes through association
genetics.

*Correspondence: vincent.segura@inra.fr
1BioForA, INRA, ONF, 45075 Orléans, France
Full list of author information is available at the end of the article

Early studies in P. nigra have focused on re-sequencing
specific candidate genes from the lignin pathway [3–5],
but more recent work has broadened the scope of analyses
through the development of a genotyping chip from SNPs
detected by whole-genome sequencing [1, 2]. This geno-
typing tool was successfully used to study the structure
of the genetic diversity of the species [1] and to iden-
tify some genomic regions associated with economically
important traits [6]. However, the genotyping was limited
to 7903 SNPs preferentially located within particular can-
didate regions underlying some Quantitative Trait Loci
(QTLs) previously reported in biparental crosses. More-
over, the frequency of the SNPs within P. nigra populations
appeared to be upwardly biased, limiting the analyses
to common variants [1]. Consequently, the application
of this chip especially in association genetics could be
limited as underlined by the low number of significant
associations reported [6]. Indeed, given the rapid Link-
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age Disequilibrium (LD) decay within this species and
its genome size, an exhaustive genome-wide association
study (GWAS) would require between 67,000 and 134,000
evenly spaced SNPs which is between 8 and 16 times more
than the number of SNPs available from the chip cited
above [7, 8].
In order to access a large number of SNPs, as typi-

cally needed for an exhaustive GWAS in P. nigra, sev-
eral options relying on next-generation sequencing would
be available. If whole genome sequencing appears to be
still too expensive for a fairly large number of geno-
types, reducing the complexity of the genome prior
to sequencing for instance with restriction enzymes
(GBS [9]; RADseq [10]), or sequence capture (exome
sequencing, [11]) seems to be a promising way for-
ward for reaching the objectives. Indeed, sequence cap-
ture has recently successfully been used to genotype
around 350,000 SNPs in P. deltoides and identify puta-
tive regulators of bioenergy traits [12]. RNA sequenc-
ing (RNAseq) represents also a cost-effective way to
reduce complexity while focusing on the expressed frac-
tion of the genome [13]. However, to date, RNAseq
has more often been used for SNP discovery than for
direct genotyping of large populations. For instance,
Geraldes et al. [14] found around 500,000 SNPs through
RNAseq of developing secondary xylem in P. trichocarpa,
and later on, a SNP chip was developed partly from the
previously discovered RNAseq SNPs [8] in order to fur-
ther carry out association scans [15, 16]. Nevertheless,
recent studies have been using RNAseq as a tool for
both discovering and genotyping a large number of
SNPs in populations [17–21], underlining the interest of
this approach for population and quantitative genomics
studies. However, to our knowledge, no study so far
has evaluated the accuracy of SNP genotyping from
RNAseq data.
The present study aims at evaluating RNAseq as

a tool to type a sufficiently large amount of SNPs
within natural populations of P. nigra to carry out
a GWAS. For that purpose, we performed RNAseq
on pools of young differentiated xylem and cambium
collected on 2 biological replicates of 12 genotypes
originated from 6 natural populations. We have fur-
ther developed a dedicated bioinformatic pipeline to
discover and type SNPs within the sequences. The
accuracy of the resulting RNAseq-based SNPs has
also been evaluated by (i) comparing their position
and alleles to those previously reported in candi-
date genes [3, 4], (ii) assessing their genotyping accu-
racy with respect to a SNP chip [1], (iii) evaluating
their interannual repeatability. Finally, the resulting val-
idated SNPs have been used to perform basic genetic
analyses to illustrate the usefulness of the released
SNP dataset.

Methods
Plant material, experimental design and tissue sampling
Trees were sampled in an experimental site estab-
lished in a common garden in 2008 in Central France
(Orléans, Loire Valley, 47°50’N 01°54’E, 108 m above sea
level) at INRA. The experimental site is described in
Guet et al. [22]. Briefly, a P. nigra collection composed
of 1098 cloned genotypes sampled in natural popula-
tions present in 11 river catchments in four European
countries was planted according to a randomized com-
plete block design with a single tree per block and six
replicates per genotype. The trees have been growing
through three short rotations since the planting, they
were cut back in March 2010 and in February 2012.
The experiment was carried out in accordance with local
legislation.
Twelve genotypes belonging to 6 river catchments

(as defined by Guet et al. [22]: Adour, Dranse, Loire,
Ramières, Rhin, Ticino) were selected for the present
study to represent the range of available geographi-
cal origin in France and Northern Italy. The genotypes
from the French populations (Adour: BDX-003, AST-005;
Dranse: DRA-045, DRA-038; Loire: VDL-018, 92510-1;
Ramières: 1-J31, 1-A26; and Rhin: STR-010, RHN-028)
were collected and are owned by INRA (UMR0588-
BioForA), while those from Italy (Ticino: SN-2, SN-7)
are owned and were kindly provided by the Univer-
sity of Tuscia. Two trees per genotype were sampled in
June 2014 (in blocks 2 and 4). The most vigorous stem
of each tree was cut back and the bark was detached
from the trunk in order to scratch young differentiat-
ing xylem and cambium tissues using a scalpel. The tis-
sues were immediately immersed in liquid nitrogen and
crudely ground before storage at -80°C pending the RNA
extraction.

RNA extraction, library preparation and sequencing
For each biological repetition and each tissue, sam-
ples of young differentiating xylem and cambium were
ground with a swing mill (Retsch, Germany) and tung-
stene beads under cryogenic conditions with liquid nitro-
gen during 25 s (frequency 25 cps/s). Powders were
stored at -80°C until RNA extraction. About 100 mg
of ground tissue was used to isolate separately total
RNA from xylem and cambium of each plant with
RNeasy Plant kit (Qiagen, France) according to man-
ufacturer’s recommendations. Treatment with DNase I
(Qiagen, France) to ensure elimination of genomic DNA
was made during this purification step. RNA was eluted
in RNAse-DNAse free water and quantified with a Nan-
odrop spectrophotometer. RNA from xylem and cam-
bium of the same plant were pooled in an equimolar
extract (250 ng/μL) before being sent to the sequencing
platform.
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RNAseq experiment was carried out at the platform
POPS (transcriptOmic Platform of Institute of Plant
Sciences - Paris-Saclay) thanks to IG-CNS Illumina
Hiseq2000. RNAseq libraries were prepared from polyA
RNA selection using TruSeq_Stranded_mRNA_SamplePrep_
Guide_15031047_D protocol (Illumina�, California,
U.S.A.). Eight libraries were multiplexed per lane and
paired-end (PE) sequenced on an Illumina HiSeq2000.
Thus, over 22 million of 100 base pairs (bp) PE-reads
were generated per sample.

Sequencing data processing and variant calling pipeline
We have devised a bioinformatic pipeline for processing
the reads, mapping them to a reference genome and call-
ing the SNPs using several callers (Fig. 1). Each step of this
pipeline is described hereafter.
Read quality control was assessed using FastQC

(v0.11.4; [23]). Cutadapt 1.10 [24] and the FASTX-toolkit
0.0.13 [25] were used to remove adaptor sequences and
low-quality bases. The 13 first 5’ bases were removed, as
well as bases with PHRED score below 20 from the 3’
end of the read. Only reads longer than 35 nucleotides
were kept.
Reads were aligned to the Populus trichocarpa refer-

ence genome version 3.0, retrieved from the JGI Com-
parative Plant Genomics Portal [26, 27]. Alignment was
performed using the short read aligner BWA-MEM 0.7.12
[28] with default parameters using the paired-ends infor-
mation to produce per-tree SAM files that were converted
to BAM files and sorted by aligned position on the ref-
erence with SAMtools 1.3 [29]. As an alternative we also
tested TopHat [30], but BWA-MEM with default settings
yielded the highest percentage of mapping and was thus
selected.
The data pre-processing steps recommended in the

GATK best practices workflow [31, 32] were performed
before variant identification. PCR duplicates were marked
with the MarkDuplicates from Picard tools 2.0.1 utility
[33] to mitigate biases introduced by data generation steps
such as PCR amplification or minimize gene expression
variations. We also performed local realignment around
indels, checked intron-exon junctions and recalibrated the
base quality scores with GATK 3.1 [34].
Four different variant callers were used to perform SNP

and indel discovery and genotyping across all 24 sam-
ples simultaneously (Table 1): (i) GATK 3.1 [31, 32, 34]
using the HaplotypeCaller tool in multi-sample calling
mode (modality “GATK”); (ii) GATK 3.1 using the Haplo-
typeCaller tool in single-sample calling mode followed by
joint genotyping of the samples with the GenotypeGVCFs
tool (modality “gVCF_GATK”); (iii) FreeBayes 0.9.20 [35]
in multi-sample calling mode (modality “FreeBayes”); and
(iv) the mpileup command from SAMtools 1.3 [29] in
multi-sample calling mode followed by bcftools 1.3.1 [36]

Fig. 1 Variant calling pipeline. Schematic representation of the
bioinformatic pipeline devised for variant calling and genotyping
from mRNA sequencing reads. References and parameters for each
tools are indicated in the method section

with the multiallelic calling model (modality “Mpileup”).
Default parameters were used.
We obtained 4 files in a raw Variant Call Format

(VCF) with no filter. The functions vcfallelicprimitives
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Table 1 Number of variants detected for each of the 7 calling
modalities tested in the present study

Variant calling modality Missing value in genotype calls

noNA 2NA anyNA

GATK 464,829 555,828 902,256

gVCF_GATK 407,037 497,314 927,522

FreeBayes 492,073 640,445 795,459

Mpileup 496,688 594,932 949,411

3Callers 341,584 366,123 400,392

4Callers 252,887 262,447 271,399

3CallersConsensus 356,275 442,931 785,377

“noNA”: no missing value; “2NA”: lower or equal to 2 missing values; “anyNA”: no
filter on missing values. “3Callers”: SNPs detected with at least 3 callers; “4Callers”:
SNPs detected with 4 callers; “3CallersConsensus”: SNPs detected with at least 3
callers with correction of the genotype calling when discrepancies existed between
callers (see details in Methods)

and vcfcreatemulti from vcflib [37] were used to decom-
pose the complex variants generated by FreeBayes into a
canonical SNP and indel representation. For each caller
individually, severals filtering parameters were applied
with VCFtools 0.1.15 [38]: selection of biallelic SNPs
(indels and not-biallelic SNPs were removed); SNP quality
threshold ≥ 30; intra-specific polymorphisms (P. nigra).
In order to generate a high-confidence SNP set, the

SNPs identified by 3 or 4 callers were selected using the
vcf-isec tool from VCFtools 0.1.15. We first considered
positions with the same genotype across all individuals
with 3 or 4 callers (modalities “3Callers” and “4Callers”,
Table 1). Because some SNPs could display a difference
between callers for only a limited number of individuals,
we further considered a consensus set between 3 callers
(modality “3CallersConsensus”, Table 1). In this case, for a
given individual, when at least 3 callers agreed, the result-
ing genotype call was set as the consensus between them,
otherwise the genotype call was set as a missing value
for this particular individual. This part was done using
home-made scripts.
In the end, we considered 7 modalities for which we

tested 3 different filters for missing values in the genotype
calls (Table 1): no missing value allowed (“noNA”), up to
2 missing values allowed (“2NA”) and any missing value
allowed (“anyNA”).

Validation of the SNPs detected and genotype calls
A first validation of the SNPs detected and genotyped
by each or by combinations of the callers has been done
through a comparison of the genotype calls with those
previously obtained with a 12k Illumina Infinium Bead-
Chip array [1]. Full details of SNP discovery and selection,
array development and data filtering criteria are given in
Faivre-Rampant et al. [1]. In brief, 852 unrelated P. nigra
accessions (including our 12 genotypes) were successfully

genotyped with this genotyping array, yielding 7903 SNPs
for the validation of genotype calls. For each of the 12
genotypes, genotyping accuracy was calculated as the per-
centage of similarity between chip genotype and RNAseq
genotype at the common positions.
A second validation consisted in comparing the SNPs

detected with those previously identified within 5 candi-
date genes through Sanger and Next-Generation sequenc-
ing (CAD4, HCT1, C3H3, CCR7, and 4CL3; [3, 4]). The
originally reported SNP were repositioned by aligning ref-
erence sequences with the latest P. trichocarpa reference
genome assembly (v3.0; [26, 27]; Additional file 1).
A third validation consisted in evaluating an inter-

annual repeatability of the RNAseq genotype calls by
conducting the same experiment on other ramets of the
same 12 genotypes one year later. Two other ramets of
each genotype were sampled in June 2015 (in blocks 1 and
3 of the same experimental design). The RNA extraction
and library preparation were the same as described above.
The RNAseq samples have been sequenced in Single-Read
(SR) in this second experiment, multiplexing ten samples
per lane. This setup yielded approximately 20 millions
of SRs per sample. The same bioinformatic pipeline was
used on this data, except for the mapping step where we
accounted for the single nature of the reads.
The usefulness and relevance of the resulting SNPs for

basic genetic studies were further assessed as another
form of validation. Minor Allele Frequency (MAF) was
calculated with VCFtools 0.1.15 [38]. Genome-wide dis-
tribution of SNPs was calculated based on a 100-kb win-
dow with custom R scripts [39]. SNP density within a
100-kb window was further correlated with the sum of
the expression of the genes located in the same win-
dow. The SNPs have also been annotated using Annovar
(version 2017Jul16) [40]. We further tested whether the
gene models (with at least 5 SNPs) displayed any enrich-
ment in Gene Ontology (GO) terms using Arabidopsis
thaliana annotation with the R package topReviGO [41].
Finally, population structure was described using a hierar-
chical ascendant clustering on a distancematrix estimated
as d = 1 − IBS, where IBS is the identity by state matrix
between genotypes computed with PLINK 1.07 [42].

Results
Quality control, mapping and post-treatment
The trimming process removed 0.3% of reads and only
7% of duplicated reads were rejected. At the mapping
step, around 99.7% of the reads were mapped against
the reference genome (P. trichocarpa) and 93.3% were
mapped without ambiguous position, even with RNA
extracts from a different species (P. nigra). A first crude
SNP detection and calling on each of the 24 samples with
a single caller (“FreeBayes”) enabled the identification of
between 772,043 and 1,156,297 SNPs depending on the
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sample, of which some were previously genotyped on the
same individuals with a SNP array [1]. These common
SNPs were used to compare the genotype calls and fur-
ther identified that 3 of the 24 samples did not match
perfectly the original genotypes (genotyping accuracy less
than 90%, Additional file 3: Figure S1). These three sam-
ples corresponded to one repetition of the 3 genotypes
“1-A26”, “RHN-28”, and “STR-10”. They were removed
from further analyses. The remaining 21 mapping BAM
files were used for SNP detection and genotyping at the
genotype level (using genotype as a read group). In other
terms, for 9 out of 12 genotypes we used reads from two
samples, increasing the sequencing depth available. Val-
idation of genotype identity has been made afterwards
using the same SNP array as previously (Additional file 3:
Figure S2).

SNP detection and genotyping in 12 genotypes
Between 2,658,024 variants (included intra- and interspe-
cific SNPs and Indels) for “gVCF_GATK” and 3,500,381
variants for “Mpileup” were detected depending on the
caller used (Fig. 2; Additional file 2: Table S1). Among fil-
ters applied, the selection of P. nigra intra-specific SNPs
was the criteria that reduced most drastically the num-
bers of detected SNPs (from 795,459 SNPs for “FreeBayes”
to 949,411 SNPs for “Mpileup”). The final number of
SNPs detected without missing genotype was fairly sim-
ilar for all callers, ranging between 407,037 SNPs for
“gVCF_GATK” to 496,688 for “Mpileup”.
We further compared the P. nigra SNP positions and

genotype calls between each callers as well as combi-
nations of at least two callers (Table 1). As expected
the number of SNPs detected was lower when consid-
ering combinations of callers rather than single ones.
Indeed, the “core” SNP set detected by all callers con-
tained 252,887 SNPs with no missing genotype calls
(“4Callers-noNA”). This number increased to 341,584
SNPs with no missing genotypes when considering at
least 3 callers (“3Callers-noNA”). A further increase could
be obtained when computing a consensus genotypes
between the callers (“3CallersConsensus-noNA”, 356,275
SNPs) but this gain was much more pronounced when
allowing missing genotypes calls (“3CallersConsensus-
2NA”, 442,931 SNPs; “3CallersConsensus-anyNA”, 785,377
SNPs), underlining the interest of computing a consensus
genotyping when combining multiple callers.

SNP validation
A total of 7903 SNPs previously genotyped with a SNP
array [1] were compared with the list of SNPs detected
with each caller, combination of 3 or 4 callers (Fig. 3;
Additional file 2: Table S2; Additional file 3: Figure S3).
Genotyping accuracy, evaluated as the percentage of sim-
ilarity over all common positions, varied from 90 to 99%

and was negatively correlated with the total number of
SNP detected and consequently the number of positions
available for the comparison. Thus, there is a trade-off
between the number of SNPs we are willing to obtain
and the quality of the genotyping information. The neg-
ative relationship between the number of SNPs detected
and the genotyping accuracy appeared to be linear
(R2 = 0.97).
The position of the calling methods with respect to

the regression line provides information on their perfor-
mance for variant detection and genotyping. “FreeBayes”
and “gVCF_GATK” were always below the line and thus
appeared to be the less accurate with respect to the num-
ber of variants detected. “GATK” and the combination of 4
callers were always very close to the line and thus could be
seen as intermediary performing calling methods. Finally,
“Mpileup” and the combination of 3 callers were always
above the line, suggesting that they performed best. Of
note “3CallersConsensus-anyNA” was the most distant
modality above the line, underlining the strength of this
approach for detecting and genotyping variants in our
dataset.
For further analyses and validations, we decided to

focus on the set of SNPs that gave the highest num-
ber of SNPs with at least 98% of accuracy, i.e. the con-
sensus from 3 callers with no missing data (modality
“3CallersConsensus-noNA”). The resulting 356,275 SNP
positions were further compared to previously reported
P. nigra SNPs obtained by Sanger or NGS sequenc-
ing of five candidate genes fragments, which were also
used to compare detected SNP positions [3, 4] (Fig. 4;
Additional file 3: Figure S4). Because these candidate
genes were expressed within our samples, a fairly large
amount of previously identified SNPs were also detected
in our study even within introns. Indeed, the number
of positions also detected with RNAseq varied between
30 to 61%. It is worth noting that a fairly large num-
ber of SNPs were detected in introns in these can-
didate genes (“HCT” : 53/70; “4CL3”: 15/36; “C3H3”:
24/45; “CAD4”: 10/19; “CCR7”: 20/39). Another gene
was analyzed in detail because it included a large num-
ber of SNPs that have been genotyped with the SNP
array (Potri.017G084100): 9 from the 19 SNPs used in
the array were detected with RNAseq (Additional file 3:
Figure S4).
Finally, we carried out an inter-annual repeatability

analysis of the genotyping by RNA sequencing approach.
Because the second sequencing experiment was done in
a single read setting, we detected around twice less posi-
tions than in the first experiment (157,569 vs. 356,275 with
the “3CallersConsensus-noNA” modality). Of note, 88%
of the SNPs detected in the second experiment were also
found at the same position with the same genotype calls
in the first experiment.
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Fig. 2 Variant discovery in 12 Populus nigra genotypes. Number of variants discovered with each of the four callers (“GATK” in red; “gVCF_GATK” in
blue; “FreeBayes” in green and “Mpileup” in purple) after applying different filters (“Raw”: no filters; “Biallelic SNPs”: indel removed; only biallelic SNPs
retained; “QUAL≥ 30”: SNP quality greater than30retained; “Intranigra/anyNA”: SNP polymorphic in P. nigra retained; “Intranigra/2NA”: SNP polymorphic
in P. nigra with at most 2 missing genotype values retained; “noNA”: SNP polymorphic in P. nigra without missing genotype value retained)

SNP characterization and usefulness
We estimated the minor allele frequency for each of
the 356,275 SNPs from the modality “3CallersConsensus-
noNA”. The distribution had an L-shape with an excess of
rare alleles as expected under population genetics models
(Fig. 5a).

To evaluate the genomic distribution of our SNPs, we
computed the density within 100-kb windows of the
351,157 SNPs located on the 19 chromosomes of P.
trichocarpa v3.0. The number of SNPs within 100-kb
windows ranged between 0 and 482 with an average of
89 and a median of 83. Moreover, 92% of the 100-kb

Fig. 3 Relationship between genotyping accuracy and the number of SNPs detected. Number of SNPs detected and genotyping accuracy for 7
calling modalities times 3 options for missing values. See Table 1 for the corresponding denominations
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windows harbored at least 1 SNP, underlining an over-
all good coverage of the genome (Fig. 5b). To further
explain the observed variations in SNP density within 100-
kb windows, we compared this numbers to the sum of
gene expressions within the same windows, estimated as
the log2 of read counts per million. We found a highly
significant positive relationship between gene expres-
sion and the number of SNPs detected (R2 = 0.75,
Fig. 5c).
The automatic annotation of our SNPs highlighted as

expected that the vast majority of them (80%) were located
within exons or 3’ and 5’ UTRs (Fig. 5d). Nevertheless, as
already observed when comparing with SNPs previously
reported within candidate genes, a fairly large amount of
SNPs were located within introns (15%, Fig. 5d). These
intronic SNPs are likely to come from pre-mRNA [43].
Considering exonic SNPs, their annotation highlighted a
very low number of mutations affecting the stop codon
(1%). The remaining exonic SNPs were almost equally
split between synonymous and nonsynonymous sites
(Fig. 5d).

In the end, we found that 19,249 genes were covered
by at least 5 SNPs which corresponds to 47% of gene
models in P. trichocarpa genome annotation. We fur-
ther tested whether these 19,249 gene models dis-
played any enrichment in GO terms using Arabidopsis
thaliana annotation (18,384 orthologs). We found that
few GO terms were enriched within our set, but they
corresponded to biological processes that seem to be
quite generic rather than specific to the tissues sampled
(Additional file 3: Figure S5).
Finally, we used the 250,784 SNPs with a MAF higher

than 5% to evaluate the genetic structure of our 12 geno-
types (Fig. 6). A hierarchical ascendant clustering of the
genotypes clearly highlighted 6 groups corresponding to
the populations to which the genotypes belong to. It is
worth mentioning that the population clustering matched
their geographic origins.

Discussion
We have successfully built a pipeline from multiple
bioinformatics tools for detecting and typing several

a b

c d

Fig. 4 Positions of SNPs discovered and genotyped with RNAseq across 12 Populus nigra individuals and along four genes. a. “HCT1”
(Potri.003G183900); b. “CCR7” (Potri.003G181400); c. “4CL3” (Potri.001G036900); d. “CAD4” (Potri.009G095800). “Coverage” in red refers to the mean
depth at each position among the 12 individuals; “Frag. Marroni” and “SNP Marroni” in blue refer to sequenced fragments and SNPs discovered and
typed in [3, 4]; “SNP RNA-seq” in green refers to SNPs discovered and typed in the present study with the modality “3CallersConsensus-noNA”. Point
symbol size for each SNP is proportional to its MAF across the 12 individuals
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hundred thousand SNPs from RNAseq data. Genotyping
accuracy of the resulting SNPs has been evaluated by (i)
a comparison with genotyping data previously obtained
with a SNP array [1] and (ii) an interannual validation. The
high accuracy (around 95%) underlined the quality of the
genotypic dataset obtained with our pipeline. Addition-
ally, when looking at candidate genes for wood properties
(lignin pathway), many SNPs previously reported by DNA
sequencing could be recovered within our RNAseq data
even if our study focused only on 12 genotypes. This could
be expected because 3 and 7 of our 12 genotypes were
also included in previous sequencing studies [3, 4]. The
resulting variants frequency spectrum followed the expec-
tations from population genetics models and they were
spread across most of the genome. The very few genomic
regions that appeared to be uncovered correspond to pre-
dicted centromeric regions [2] which do not carry many
gene models and thus cannot be tagged in an RNAseq
experiment.
If the vast majority of SNPs were as expected located

within exonic or UTR regions, it is interesting to note that
a fairly large number of SNPs appeared to locate within
introns. Several hypotheses could explain this result. First,
we have used as a reference the genomic annotation from
a different species within the same genus: P. trichocarpa.

If most of our reads mapped to this reference genome,
interspecific variability is likely to have affected the quality
of the annotation of our SNPs. In addition, alternative
splicing has been shown to be frequent in developing
xylem of P. trichocarpa [44]. This phenomenon is likely to
be more frequent at the interspecific level and may thus
have contributed here to the intronic SNPs detected. Sec-
ond, if in RNAseq most of the reads come from mature
mRNA, it has been shown that pre-RNA could as well be
sequenced which would yield reads outside of the exonic
and UTR regions [43]. Actually, the read coverage was not
null in the introns of our candidate genes, providing suf-
ficient information for SNP detection and typing. Thus, it
was not surprising to have intronic SNPs within RNAseq
data, especially for highly expressed genes as expected
here for candidate genes from the lignin pathways, since
we sampled our RNA from young differentiating xylem
and cambium. Indeed, we have also found a highly signif-
icant positive correlation between gene expression level
and SNP density, but this observation did not necessar-
ily pop up when we observed the SNPs detected, their
frequency and the read coverage on the candidate genes
from the lignin pathway. As a matter of fact, the fre-
quency of SNPs did not seem to vary a lot between
highly covered exonic regions and weakly covered intronic

a b

c d

Fig. 5 Description of the final set of discovered SNPs. aMinor Allele Frequency distribution; b. Density of SNPs across the genome (100kb windows);
c. Relationship between SNP density and gene expression; d. Annotation of SNPs



Rogier et al. BMC Genomics          (2018) 19:909 Page 9 of 12

regions. For “HCT1” (Potri.003G183900), the frequency
of SNPs even seems to be higher in introns than exons.
This is consistent with the negative Tajima’s D previ-
ously obtained on the set of candidate genes from the
lignin pathway in P. nigra [3, 4] as well as for genes
associated with a lower lignin content in P. deltoides [12].
In addition, Marroni et al. [3] also reported for “HCT1”
a non-synonymous to synonymous nucleotide diversity
ratio of 0.03 suggesting that this gene is under purify-
ing selection which may explain the pattern observed
here. Consequently, the frequency spectrum of SNPs from
RNAseq reads is likely to be complex as both affected by
gene expression levels as well as evolutionary factors. Care
must thus be taken when using these data for population
genomic analyses and especially for detecting signatures
of selection.
We used several variant callers as well as their combina-

tion. Given the observed and expected trade-off between
genotyping accuracy and the number of SNPs detected,
we found that this strategy was efficient since better
performances could be reached through the combina-
tion of multiple callers rather than using a single one,
except for Mpileup. The gain was mainly due to the

production of consensus genotype calls from the differ-
ent callers, especially when they did not all agree. This
opens the choice between various options along the accu-
racy amount trade-off, which could further be picked
depending on the objectives of downstream analyses. For
instance, if one wishes to obtain the largest number of
SNPs within its dataset for carrying out a GWAS, it may
be a good idea to use the combination of 3 callers with
missing data allowed and then to impute the missing data
with a dedicated tool which make use of linkage disequi-
librium between neighbouring SNPs for the imputation
[45]. If one wants to only use 1 caller, we recommend
the use of “Mpileup”, as it is the only one that pro-
duced a data set at the equilibrium between quantity and
quality of SNPs. Finally, if one wants to have the best
quality of SNPs at the price of a lower number, we recom-
mend the use of the 4 callers data intersection, without
missing data.
In the present work, we have focused on biallelic SNPs

because they constitute the most abundant polymor-
phism in the genome. However, the callers used have also
detected numerous indels or triallelic SNPs which could
prove useful for various analyses and thus would deserve

Fig. 6 Hierarchical ascendant clustering of 12 Populus nigra individuals. The analysis was carried out with 250,784 SNPs from the “3CallersConsensus”
modality after filtering SNPs with a minor allele frequency below 0.05
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further work. Also, because we used a different species
as a reference for mapping our reads and annotating our
SNPs, a large amount of the SNPs detected by each of the
callers displayed interspecific variation as underlined by
the steep decrease in the number of variants when con-
sidering intra-nigra polymorphism only. These polymor-
phisms could also be valuable for species determination
and for studying interspecific hybridization [46].
We sampled our RNA from two tissues, young differen-

tiating xylem and cambium, because our research focuses
on wood production. Combining information from two
tissues has likely increased the number of genes cov-
ered by reads and consequently by SNPs compared to
what would have been obtained when considering a sin-
gle tissue. Using this strategy, we could obtain a geno-
typing dataset with almost half of the gene models of
P. trichocarpa covered by at least 5 SNPs. Morevover,
the GO enrichment analysis suggested that sampling did
not introduce a strong bias into the representativeness
of functional categories that were effectively captured by
the RNAseq experiment. One strategy to increase the
genomic coverage could be to combine RNA from multi-
ple tissues but this would have a cost in term of sequenc-
ing. More generally, because many factors affect gene
expression such as the developmental stage or the tissue
considered, further works are required to assess how this
impacts genotyping with RNAseq.

Conclusion
In order to identify loci which matter for explaining
quantitative trait variation or involved in adaptation to
biotic or abiotic constraints, one needs to investigate a
large number of individuals to reach a sufficient statis-
tical power. But for a given amount of money to be
spent in a sequencing experiment, there is a tradeoff
between the sample size and the extent of the genome
that can be examined [47]. Several methods have been
proposed to reduce the complexity of the genome prior
to sequencing enabling the multiplexing of individu-
als onto a sequencer lane. Here we have used RNAseq
as a ’natural’ alternative to reduce genome complexity
prior to sequencing and have shown with several valida-
tions that it is efficient for the simultaneous discovery
and typing of SNP. If all of these genome complex-
ity reduction techniques have pros and cons [48–51],
we believe that RNAseq has far been underexploited by
comparison to the others and hope that our results will
encourage its future use. One reason for the unpopularity
of RNAseq for genotypingmight be its cost which remains
fairly expensive in comparison to GBS or RADseq, but
one should also note that it also enables the access to the
expression of genes in the tissue sampled which together
with the SNPs generated can be used to detect eQTLs or
ASE [13, 52].
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