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Abstract 24 

1. It is widely agreed that competition regulates plant populations and shapes 25 

communities. Many studies have suggested that crop and grassland competition 26 

can be used for cost-effective sustainable weed control. However, effective weed 27 

management requires a precise knowledge of the effects of agronomic practices 28 

and there is a lack of quantitative indicators to compare and predict the success of 29 

weed biocontrol by competition. 30 

2. We studied weed abundance dynamics over a 12-year period in crop-grassland 31 

rotations (rotation treatments consisted of maize, wheat and barley crops, 32 

alternating with temporary grassland maintained for three or six years in the 33 

rotation and fertilised with two different levels of nitrogen). In addition to 34 

classical statistical analysis of the different aforementioned rotation treatments, 35 

we also modelled weed abundance as a function of the crop and grassland 36 

competition, expressed here by biomasses harvested in the preceding years. 37 

3. We show that weed abundance decreases over the years in grassland and 38 

subsequent crops only if the grassland receives sufficient nitrogen fertiliser. Our 39 

model had a much greater explanatory power than the rotation treatments. This 40 

model estimates a critical biomass level above which weeds are suppressed in 41 

subsequent years, and below which they tend to thrive. This critical biomass level 42 

was 24.3 and 4.7 tonnes ha-1 of dry matter for crops and grassland, respectively, 43 

highlighting the greater competitiveness of grasslands than of crops. Several clear 44 

differences between weed functional groups emerged.  45 

4. Synthesis and applications - This new modelling approach directly links the 46 

interannual dynamics of weed populations to current and previous biomass 47 

production levels. This approach facilitates the development of environment-48 
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friendly weed management strategies and paves the way for comparisons of the 49 

competitiveness against weeds of crops and grassland under various pedoclimatic 50 

conditions and agronomic practices. 51 

 52 

 Keywords: weed management, weed ecology, weed biocontrol, weed modelling, weed 53 

population dynamics  54 

 55 

1. Introduction  56 

Most food and feed production systems worldwide make use of synthetic 57 

herbicides for weed management. In this context, herbicide use has resulted in serious 58 

environmental and ecological problems (Boutin et al., 2014). Highly effective 59 

environment-friendly alternatives to chemical weed control, such as the use of crop and 60 

grassland competition with weeds, could potentially reconcile agricultural production and 61 

environment quality and play a key role in ensure global food security in the future (Petit 62 

et al., 2018; Gaba et al., 2018).  63 

Many previous studies have shown how the manipulation of agronomic practices 64 

(e.g. seed rate, crop cultivar and row spacing and direction) to improve the 65 

competitiveness of the crop can help to control weeds (Sardana et al., 2017). Other studies 66 

have suggested that grassland is more efficient than crops for weed suppression (Meiss et 67 

al., 2010b; Schuster et al., 2018). However, several studies have shown that, in dry 68 

conditions (Miller et al., 2015) or at high grazing intensities (Schuster et al., 2016), the 69 

introduction of grassland into the rotation can have deleterious effects on weed control. 70 

Assessments of the competitiveness of crops and grassland against weeds would help to 71 

explain these divergent results, but quantitative indicators for predicting the success of 72 
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weed biocontrol and comparing competitiveness between studies are lacking. 73 

Furthermore, such studies are often based on a snapshot characterisation of the effects of 74 

crop or grassland competition on weeds, with very few considering the impact over 75 

multiple years.   76 

It is difficult to gain a comprehensive understanding of the dynamics of crop and 77 

grassland competition against weeds, not only due to the interactions between the 78 

grassland or crop and all the intrinsic components of the weed species (e.g. life cycle, leaf 79 

and root type, growth habit; Gaba et al., 2014), but also due to the interactions between 80 

weeds, environment (e.g. time of emergence, growth rate, seed production; Cirillo et al., 81 

2018) and the management (i.e. farmer’s decisions) to which fields are subjected (e.g. 82 

tillage regime, fertilisation rates, crop rotation; Colbach et al., 2014).  83 

We studied weed abundance dynamics in crop-grassland rotations over a 12-year 84 

period, to determine whether and how weed abundance during the crop and grassland 85 

phases of the rotation changes with the duration and fertilisation of grasslands. We also 86 

developed a statistical model with an explicit translation of cultivated plant 87 

competitiveness against weeds. We adjusted this model according to weed abundance 88 

data and tested the hypothesis that the effects of the duration and fertilisation of grassland, 89 

and of rotation schemes and weather conditions over the years can be measured as 90 

variations in grassland and crop biomass production, used as an indicator of competitive 91 

potential. Finally, we characterised the effects of weed traits on the competitiveness of 92 

crops and grassland.        93 

 94 

2. Materials and Methods 95 

 96 
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2.1 Description of the site, management and rotation treatments  97 

The long-term study of cropping systems including temporary grasslands analysed 98 

here is part of SOERE ACBB (Observatory and Experimental System for Environmental 99 

Research - Agroecosystems, Biogeochemical Cycles, and Biodiversity) and is located at 100 

INRA, Lusignan, France (46º25’13” N; 0º07’29” E, 151  m above sea level). This site has 101 

an oceanic climate with a summer drought, a mean air temperature of 12°C and a mean 102 

annual precipitation of 750 mm. The soil is a rubefied brown earth on clay, with traces of 103 

ferruginous shell. 104 

This experiment was started in 2005 and conducted over 12 years. The treatments 105 

studied are rotations of maize, wheat and barley alternating with grassland. The 106 

grasslands were sown in mid-September with a mixture of three grass species: perennial 107 

ryegrass (Lolium perenne cv. Milca: 5 kg.ha-1), tall fescue (Festuca arundinacea cv. Soni: 108 

10 kg.ha-1) and orchard grass (Dactylis glomerata cv. Ludac: 12 kg.ha-1). Grasslands were 109 

mowed to a height of 5 to 7 cm and harvested three to five times per year, depending on 110 

climate and biomass production, and the cut grass was removed from the field. The first 111 

cut took place in the spring (April). Grasslands were fertilised after each cut (see Kunrath 112 

et al. 2015 for more details). The weed species present was described in 113 

Weed_traits_SuppInfo and their management have been described elsewhere (Doisy 114 

2015). Briefly here, in order to control weed invasion, post-emergence herbicide was 115 

applied on annual crops every year during April. No herbicide was applied on grasslands, 116 

except once during grassland installation in 2005.    117 

The five rotation treatments were distributed in four blocks of individual plots of 118 

4000 m2 each (for more details see http://www.soere-acbb.com/demarche-119 

experimentale). The rotation treatments consisted of: cereal-based rotation with repeated 120 

maize/wheat/barley sequences (C); a crop-grassland rotation, in which the cereal 121 
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sequence was followed by three years of grassland (G3C); a grassland-cropping rotation, 122 

beginning with six years of grassland receiving high (~230 kg ha-1 year) or low (~30 kg 123 

ha-1 year) levels of nitrogen fertiliser (G6C and -G6C, respectively) followed by the cereal 124 

sequence; and a continuous grassland with high levels of nitrogen fertilization, as defined 125 

above, (G). 126 

 127 

2.2 Data collection  128 

2.2.1 Field sampling to estimate weed abundance 129 

In each experimental unit, from 2005 to 2017, weed abundance was determined 130 

in the cereal fields in April, before post-emergence herbicide application, and then again 131 

in early autumn, before crop harvest.  In the grasslands, weed abundance was determined 132 

before the first cut (April). In each plot, 13 points were sampled at 12 m intervals along 133 

two 72 m transects laid out in an “X” pattern starting 5 m from the edge of the field. At 134 

each point, the abundance of each weed species was estimated with the Barralis scale 135 

adapted for an area of 0.25 m2, with classes “0” to “4” corresponding to, one, two to five, 136 

six to 12 and more than 12 individual weeds, respectively. When weed abundances were 137 

measured twice a year, we used the maximum abundance by species observed for each 138 

measurement point on both dates. Hereafter, the density per point for a group of weed 139 

species is the sum of the lowest abundance values of the Barralis interval for the species 140 

present at each point, expressed per m2.  141 

 142 

2.2.2 Field sampling to estimate crop and grassland biomass 143 

Biomass production in the fields was estimated by harvesting with an 144 

experimental harvester equipped with an on-board weighing system (Haldrup, Germany), 145 
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and drying to constant weight in an oven at 70°C to determine dry matter content per unit 146 

area (DM t ha-1). We estimated biomass production just before harvest, for both grassland 147 

and crops, at three different sampling points per field. Each sample covered an area of at 148 

least 7.50 m², corresponding to the passage of a harvester with a 1.5 m cutting bar over a 149 

distance of 5 m. The length of the sampling area was increased if smaller amounts of 150 

biomass were produced or if biomass production was heterogeneous. The cutting bar was 151 

set at a height of 5 to 7 cm (the same height as for the mowing of grassland plots). 152 

 153 

2.2.3 Weather data 154 

Yearly rainfall, mean air temperatures and thermal amplitude data at a height of 2 155 

m were measured at the experimental site and are available from the Climatik database 156 

maintained by INRA AgroClim. 157 

  158 

2.3 Data management and general modelling procedures 159 

The abundance of weeds in a field plot was summarised as the sum of the 160 

abundances, expressed per m2, at the 13 sampling points. We modelled this total 161 

abundance by a negative binomial distribution with a log link (Bates et al., 2015). We 162 

compared the models with Akaike’s information criterion (AIC) in R regression packages 163 

(Sakamoto and Akaike, 1978). We checked that the residuals were not autocorrelated 164 

over time, using acf in the R package itsadug (van Rij et al. 2017). The significance of 165 

differences between factor levels, such as the different rotations and crops in place, 166 

according to the models obtained, was assessed in pairwise comparisons with an alpha 167 

risk of 0.05, with Holm–Bonferroni adjustment, as implemented in the R package lsmeans 168 

(Lenth, 2015). The relevance of the models for describing the variability in the data was 169 

assessed with Fisher’s “goodness of fit” test (Fisher, 1924).  170 
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  171 

2.4 Basal model of weed control by crop and grassland biomass  172 

We propose a model connecting weed abundance to the biomass harvested in 173 

previous years and show how this model can be transformed into a generalised linear 174 

model that is easy to fit with statistical software. We assume that, for each year, if the 175 

harvested biomass B (i.e. the total of the three to five harvests over the year for grassland, 176 

and above-ground biomass at harvest for the crops; i.e. grains plus leaves and stems) is 177 

above a crop-specific critical level, Sc, then weed abundance, W, tends to decrease the 178 

following year. By contrast, the weed flora was assumed to increase if the cultivated 179 

biomass (crop and grassland) was below Sc. We account for this effect by considering the 180 

estimated abundance of weeds emerging in year T, (𝑊̂𝑇), to be proportional to a power 181 

of the Sc/B ratios of the preceding years.  182 

We also considered ratios to have a decreasing impact on weed density over time 183 

(years), and we accounted for this decrease by modulating the ratios by a power 184 

coefficient inversely proportional to the number of years elapsed:                 185 

𝑊̂𝑇 ∝ (
𝑆𝑐(𝑇−1)

𝐵(𝑇 − 1)
 )

𝑎

× (
𝑆𝑐(𝑇−2) 

𝐵(𝑇 − 2)
 )

𝑎
2

× … × (
𝑆𝑐(0)

𝐵(0)
 )

𝑎
𝑇

= ∏ (
𝑆𝑐(𝑇−𝑡)

𝐵(𝑇 − 𝑡)
)

𝑎
𝑡

𝑇

𝑡=1

 186 

This can be expressed logarithmically, to obtain a linear formulation:   187 

log(𝑊̂𝑇) = 𝐼 + ∑
𝑎

𝑡

𝑇

𝑡=1

log (
𝑆𝑐(𝑇−𝑡)

𝐵(𝑇 − 𝑡)
 ) 188 

where I is an intercept corresponding to the logarithm of a basal level of weeds. In the 189 

above equation, the biomass over time and the inverse of time are separable:  190 

log(𝑊̂𝑇) = 𝐼 + 𝑎 ∑ −
log (𝐵(𝑇 − 𝑡))

𝑡

𝑇

𝑡=1

+ ∑ (𝑎. log (𝑆𝑐) ∑
1𝑐(𝑡)

𝑡

𝑇

𝑡=1

)

𝑐

 191 
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where 1c(t) is the indicator function for the presence of crop c in year t. The terms of this 192 

linear expression are identifiable with the terms of a negative binomial regression with a 193 

logarithmic link: 194 

𝑊𝑇~ 𝑁𝐵(𝜄 + 𝛼𝑘 + Γ𝑁 ) 195 

- where ι is the intercept of the regression corresponding to I in the initial linear 196 

expression. We use this intercept to account for the block of plots, P, and the 197 

current crop in the plot, C, which we subsequently treat as random effects. 198 

𝜄(𝑃, 𝐶) = 𝜄𝑃 + 𝜄𝐶  199 

- k accounts for previously harvested biomasses: 𝑘 = − ∑
log(𝐵(𝑇−𝑡))

𝑡
𝑇
𝑡=1 , the 200 

sum of the log of the harvested biomasses inversely weighted by the time 201 

elapsed, multiplied by α = a, the corresponding coefficient in the regression.  202 

- N is a vector of crop factors corresponding to the sum of the inverse of the 203 

time elapsed since the presence of the crop: 𝑁𝑐 = ∑
1𝑐(𝑡)

𝑡
𝑇
𝑡=1  , multiplied by Γ, 204 

the vector of the corresponding regression coefficients for each crop, with 205 

Γ𝑐 = 𝑎. 𝑙𝑜𝑔(𝑆𝑐).  206 

Once k and N have been calculated, the model can be fitted, with, for example, the glm.nb 207 

function of the R package MASS. The critical biomass level for each crop c is the 208 

exponential of the ratio of the regression coefficients:   209 

𝑆𝑐 =  exp (
Γ𝑐

𝛼
) 210 

As the order of the cash crops in the rotation was always the same, it was not 211 

possible to determine critical biomass levels for individual crops. We simply 212 

distinguished grassland from cash crops, grouping maize, wheat and barley together to 213 

obtain a common Sc for these crops. The time required to reduce the impact of a given 214 
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year under a given threshold is directly proportional to the coefficient α in the regression 215 

(see supplementary materials “alpha_visualization_SuppInfo.docx”).  216 

We report the confidence intervals for Sc according to the exponentiation of 217 

Fieller's confidence interval for a ratio of parameters (Fieller, 1954). The significance of 218 

the difference between parameter values estimated with different models was assessed by 219 

a million draws from the estimated normal distribution (for α) or transformed multinormal 220 

distributions of Γ𝑐 and α (for Sc), with comparison of the draws obtained, in pairs, for two 221 

different models or crops. If one of the parameters was greater than the other 95% of the 222 

time, we considered the parameters significantly different. 223 

 224 

2.5 Variants of the basal model 225 

We ran the model on subgroups of weeds defined on the basis of their common 226 

traits. Weeds were successively split into groups (see Weed_traits_SuppInfo) according 227 

to their life cycle (annual vs. perennial), taxonomic group (monocots vs. dicots), root 228 

structure (fibrous roots vs. tap roots), and growth habit 229 

(upright/climbing/rosette/creeping).  230 

We used several indicators to characterise the quality of the predictions from the 231 

various models fitted: the root mean square error of prediction (RMSE) and bias, as 232 

implemented in the hydroGOF package (Zambrano-Bigiarini, 2014), and Pseudo-R2 and 233 

Spearman’s rank correlation as implemented in the Hmisc package (Frank and Harrell, 234 

2016). Data assembly, consolidation and analysis were performed in R software for 235 

statistical computing version 3.1.3 (R Development Core Team, 2015). Detailed 236 

statistical codes are provided (CBL_PaperScript_R_SuppInfo and 237 

CBL_functions_R_SuppInfo). 238 

 239 
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3. Results 240 

 241 

3.1 Effects of grassland duration and fertilisation on weed abundance  242 

Weed abundance differed considerably between the crop-grassland rotations 243 

studied, and seemed to follow different trajectories over the years according to the 244 

management system (Figure 1A). Over the last 10 years of the study, mean weed 245 

abundance was systematically lower in the continuous grassland than in the cereal-based 246 

rotation (rotation treatments G vs. C). Mean weed abundance was generally lower in the 247 

rotation treatment including six years of well-fertilised temporary grassland than in the 248 

cereal-based rotation (Figure 1B, rotation treatments G6C vs. C). By contrast, six years 249 

of temporary grassland with low levels of nitrogen fertilisation in the rotation resulted in 250 

higher weed abundances, similar to those obtained in the rotation without grasslands 251 

(Figure 1B, rotation treatments -G6C and C, respectively). Rotation treatments including 252 

well-fertilised grassland maintained over a period of six years had lower weed abundance 253 

than rotation treatments including well-fertilised grassland maintained over only three 254 

years (rotation treatments G6C vs. CG3). Weed abundance declined progressively over 255 

successive years of the grassland phase in rotation treatments receiving high levels of 256 

nitrogen fertiliser (rotation treatments CG3, G6C and G, years 2005-10) but not in the 257 

rotation treatment in which the grassland received low levels of nitrogen fertiliser 258 

(rotation –G6C) (Figure 1A). We assessed the statistical significance of the differences in 259 

weed abundance between these rotation treatments by modelling weed abundance per 260 

field as a function of both the rotation treatment and the crop or grassland in place, 261 

controlling for the plot block (Figure 1B and 1C). As the statistical model includes the 262 

effect of the crop in place, the significance of the effect of rotation treatments reported 263 

here goes beyond the differences in crop type (i.e., grassland or cereal crop). Crop type 264 
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also had a strong effect on weed abundance: weed abundance in maize and wheat crops 265 

was, on average, about three times higher than that in grassland and barley crops (Figure 266 

1C).  267 

 268 

 269 

Figure 1. Weed abundance (mean number of plants.m-2) dynamics (A), and distribution, 270 

by rotation (B) and crop in place (C) during the 12 years of the experiment. The uppercase 271 

letters in panel (A) indicate the crop in place: G=grassland, M=maize, W=wheat and 272 

B=barley; each point corresponding to the mean abundance over the fields of a rotation. 273 

Rotation codes in panel (B): C corresponds to a repeated three-year cereal rotation, G 274 

corresponds to continuous grassland and three or six indicates the number of years of 275 

well-fertilised grassland and the negative sign (–) corresponds to grassland with a lower 276 

level of fertilisation. Different lowercase letters (a, b, c) in panels (B) and (C) indicate 277 

significant differences between rotation systems and crops in place in pairwise 278 

comparisons, after Holm–Bonferroni adjustment (P< 0.05). The boxplots indicate the 279 

median (dark line), the 25 and 75% percentiles (limits of the coloured box), and the 280 
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confidence interval for the median based on an assumption of asymptotic normality of 281 

the median (notch). The length of the whiskers corresponds to the minimum of either the 282 

distance to the extremes or 1.5 times the length of coloured box, with possible outliers 283 

shown as points. 284 

 285 

We evaluated the weed-suppressing effect of well-fertilised grasslands in the 286 

crops following the temporary grassland, by analysing three years in which the crops were 287 

identical in the different rotations. In 2011-2013, all rotations had similar cereal crops in 288 

place (except rotation treatment G, the permanent grassland), and all these crops followed 289 

a period of grassland phase except for the rotation including only cereal crops. During 290 

this three-year period, only rotation treatment G6C, in which the cereal crop followed six 291 

years of well-fertilised grassland had a significantly lower weed abundance, 25 to 50% 292 

lower than the values obtained for the other rotations (Figure 1A and Table 1). During the 293 

next three years (2014 to 2016), grassland was reintroduced in rotation treatments CG3, 294 

G6C and -G6C. During this period, weed abundance was lowest in the continuous 295 

grassland (G). Well-fertilised grasslands left in place for three or six years (CG3 and G6C) 296 

had similar intermediate weed abundances. Finally, weed abundance was higher and 297 

similar in the cereal crops (G) and in grassland with a low level of nitrogen fertilisation 298 

(-G6C; Table 1). 299 

 300 

Table 1. Effects of rotations on weed abundance (GLM coefficient “Estimate”) in three 301 

year periods of cereal crops after grassland (2011-2013) or grassland after crops (2014-302 

2016), with weed abundance in the cereal crop-only rotation as the reference.  303 

Rotation Cereal crop 

after 

grassland 

(2011-2013) 

Grassland 

after cereal 

crop 

(2014-2016) 
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           C* 0 a 0 a 

CG3 -0.141 a -0.682 b 

G6C -0.396 b -0.724 b 

          -G6C  -0.064 a 0.124 a 

           G -1.789 c -1.866 c 

For rotation codes, C corresponds to the repeated three-year cereal crop rotation, G 304 

corresponds to well-fertilised grassland left in place for 3 or 6 years and to grassland with 305 

lower levels of fertilisation and * is the reference rotation. Different lowercase letters (a, 306 

b, c) indicate significant differences between rotations in pairwise comparisons with 307 

Holm–Bonferroni adjustment (P< 0.05).  308 

 309 

3.2 Comparison of models explaining weed abundance 310 

As rotation treatment had a strong impact on weed abundance over the years, we 311 

attempted to model directly the impact on weed abundance of nitrogen fertilisation, 312 

grassland duration (i.e., age of grassland) and the crop in place. Strong variability was 313 

also observed between years. We therefore also took the major weather variables (i.e., 314 

mean precipitation and temperature, and the thermal amplitude of each year) into account. 315 

Hypothesising that biomass production might suppress weeds, we compared the 316 

explanatory power of the biomass produced in the previous year with that of the 317 

aforementioned explanatory factors (AIC differences, Table 2). The biomass of the 318 

crop/grassland in the previous year (model 9) largely outperformed all other predictive 319 

factors, even combined (model 10). 320 

Finally, we evaluated our proposed critical biomass model and compared it with 321 

the other models. The critical biomass model was more than 50 AIC points better than 322 

the model with based on the biomass of the crop/grassland in the previous year, and 256.4 323 

AIC points better than the model with rotation treatment as the only explicative factor. 324 

We also investigated whether the inclusion of weather data, nitrogen rates and grassland 325 
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age could improve the critical biomass model. These inclusions improved the model by 326 

less than 1%, indicating limited statistical support for the use of these more complex 327 

models (≤12.4 AIC points; Table 2) and suggesting that previous crop/grassland biomass 328 

production, as described in the critical biomass model, correctly integrates the impact of 329 

the other factors on weed abundance.  330 

 331 

Table 2. Comparison of the proposed critical biomass model with other models for 332 

explaining weed abundance patterns in the systems studied (the proposed model without 333 

other variables as explanatory factors is highlighted in grey). 334 

Model 

Main 

explanatory 

factor1 

Additional explanatory factors    

 
Weather 

data 

Nitrogen 

rates 

Age of 

grassland 
AIC ▲AIC3 Gof 

1 

Critical biomass 

model2 

Yes - Yes *2765.0 268.8 0.009 
2 - Yes Yes 2768.2 265.6 0.116 
3 - - Yes 2772.1 261.7 0.124 
4 Yes Yes Yes 2772.4 261.4 0.088 
5 - Yes - 2772.5 261.3 0.208 
6 - - - 2775.4 256.4 0.217 
7 Yes Yes - 2777.5 256.3 0.167 
8 Yes - - 2781.0 252.4 0.179 
9 Biomass of 

crop/grassland the 

previous year 
- - - 2832.4 201.4 0.265 

10 - Yes Yes Yes 2989.1 44.7 0.151 
11 - - - Yes *3012.3 21.5 0.012 
12 Rotation treatment - - - 3033.8 - 0.068 
13 - Yes - - 3034.4 -0.6 0.195 
14 - - Yes - 3035.6 -1.8 0.146 
15 Biomass for the 

year concerned 
- - - 3039.3 -5.5 0.165 

1Explanatory factor: in addition, all models took into account the crop in place and plot 335 

as categorical random cofactors; * indicates a model not fitted with these random 336 

variables, in which these variables were treated as fixed effects. 337 

2 See the Materials and Methods section for more information. 338 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 11, 2019. ; https://doi.org/10.1101/572701doi: bioRxiv preprint 

https://doi.org/10.1101/572701


3▲AIC: difference in AIC relative to the model with rotation treatment as an explanatory 339 

factor (model 12). 340 

 341 

3.3 Evaluation and consistency of the critical biomass model  342 

The weed abundances predicted by our critical biomass model closely matched 343 

the observed values (Figure 2A), with a good R² (0.57) and correct ranking (Spearman’s 344 

correlation coefficient of 0.75). The bias test revealed a tendency toward overestimation 345 

of 4.2% and the mean prediction error (root-mean-square deviation, RMSE) was about 346 

21% (Table 3). No autocorrelation of the residuals over time was detected (Figure 2B), 347 

and the residuals displayed no major deviation from a normal distribution (Figure 3C). 348 

The statistical estimates can thus be considered accurate. 349 

 350 
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Figure 2. Assessment of the model. Predicted vs. observed weed abundances (log scale) 351 

for the crop-grassland rotation treatments (A), autocorrelation (autocorrelation and cross-352 

correlation function, ACF) of the residuals over time (B) and distribution of the residuals 353 

of the model (C). Each point represents the weed abundance (over an area of 13 m2) per 354 

plot and per year on a logarithmic scale. For rotation codes, C corresponds to a repeated 355 

three-year cereal rotation, G corresponds to continuous grassland and three or six 356 

indicates the number of years of well-fertilised grassland and the negative sign (–) 357 

corresponds to grassland with a lower level of fertilisation. 358 

 359 

According to the critical biomass model of weed abundance, in the studied crop-360 

grassland rotations, the estimated critical levels of biomass corresponding to a 361 

stabilisation of weed abundance were 24.3 and 4.7 tonnes dry matter.ha-1 for crop and 362 

grassland, respectively (Table 3: General). Comparison with actual above-ground 363 

biomass over the study — average of 12.1 ton.ha-1 for crops (range: 2.7-26.7) and 7.1 364 

ton.ha-1 for grassland (range: 0.2-16.6) — highlighted the difficulty reaching the critical 365 

biomass level (CBL) for cereal crops, whereas grassland biomass values were generally 366 

above the CBL. 367 

 368 

3.4 Weed trait group responses to previous crop and grassland biomass production 369 

We then investigated whether weeds with different traits were affected differently 370 

by the crop and grassland, by fitting the critical biomass model separately to the 371 

abundances of different groups of weeds (Table 3). The “critical biomass model” could 372 

generally be fitted to the abundances of the different weed trait groups but no convergence 373 

of fit could be achieved for weeds with a climbing growth habit.  374 
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For all weed traits, the grassland CBL was significantly lower than the cereal crop 375 

CBL. The biomass required for weed suppression was two to 10 times higher for cereal 376 

crops than for grassland (Table 3). The differences in CBL between weed trait groups 377 

were smaller in grassland than in cereal crops. For example, the CBL for cereal crops was 378 

almost four times higher for annual weeds than for perennial weeds, whereas the CBL for 379 

grassland was 20% lower for annual than for perennial weeds. Consequently, the 380 

confidence intervals for grassland critical biomasses also largely overlapped for the 381 

different weed trait groups, although some groups had significantly different grassland 382 

CBLs. For example, the CBL for monocots in grassland was estimated to be twice that 383 

for dicots. The largest difference in crop critical biomass levels was observed for root 384 

type, with crop critical biomass levels for tap-rooted weeds only one sixth those for weeds 385 

with fibrous roots. By contrast, grassland CBLs for tap-rooted weeds were half those for 386 

weeds with fibrous roots, revealing opposite control potentials for grassland and crops for 387 

these weed groups. Dicots were more easily outcompeted than monocots by both crops 388 

and grassland.  389 

In the critical biomass model, the time required to reduce the impact of a given 390 

year under a given threshold is directly proportional to alpha (hereafter called persistence 391 

rate). For example, a year with a harvested biomass of 14 ton ha-1 and a critical biomass 392 

of 10 ton ha-1 would result in a large decrease in weed abundance in the following years. 393 

This effect would decrease over time and lead to a variation of estimated weed counts of 394 

less than 5% after seven years with a persistence rate of 1, whereas it would take three 395 

times longer (21 years)  to achieve the same result with a persistence rate of 3 (see also 396 

alpha_ visualisation_SuppInfo). The estimated persistence rate did not differ significantly 397 

between weed trait groups except for perennial life cycle and rosette growth habit, which 398 

had persistence rates about twice those of the other weed groups.  399 
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 400 

Table 3. Critical levels of biomass production required to modify (to decrease if higher 401 

and to increase if lower) weed abundance the following year, persistence of the effect 402 

over time (a) and indicators of model quality, as a function of weed trait group. 403 

  Critical biomass level Persistence rate Quality indicator 

Type 
Trait Ton ha-1[confidence intervals]1 

a  Gof 
NRMSE  

group Crop Grassland (%)2 

Life cycle Perennial   11.0 [8.2-16 ] bc   5.5 [4.2-7.2] a 0.80 [0.55-1.10] ab 0.052 22.8 

Annual   44.0 [19->99] efg   4.4 [2.7-6.9] ad 0.37 [0.21-0.52] cd 0.062 22.8 

Taxonomic Monocot   56.0 [21->99] ef   6.4 [4.0-10 ] ah 0.45 [0.23-0.67] cd 0.018 17.3 

group Dicot   16.0 [8.1-45 ] bgi   3.2 [1.4-5.4] d 0.42 [0.19-0.66] cd 0.210 20.4 

Root type Tap-root   14.0 [8.3-26 ] bci   3.4 [2.0-5.0] d 0.55 [0.32-0.79] ac 0.170 14.2 

Fibrous   86.0 [24->99] e   7.0 [3.9-13 ] ach 0.35 [0.16-0.54] cd 0.026 17.1 

Growth Rosette     8.5 [6.1-12 ] ch   4.7 [3.7-5.9] ad 0.97 [0.69-1.20] b 0.030 29.2 

habit Upright   48.0 [23->99] efg   4.6 [2.9-7.0] ad 0.39 [0.22-0.56] cd 0.045 15.8 

 Creeping 110.0 [0.9->99] 

efgi 

  4.2 [0.2-18 ] 

abcdh 

0.21 [ < 0-0.45] d 0.086 

 

18.3 

General -   24.0 [15 - 45 ] fgi   4.7 [3.5-6.4] ad 0.49 [0.34-0.65] c 0.217 21.0 

1 Significance of the difference (p<0.05) between critical biomass levels or persistence 404 

rates are indicated by different letters after the confidence interval. 405 

2 NRMSE: normalised root mean square error: the root mean square error expressed as a 406 

percentage of the difference between the maximum and the minimum observed values. 407 

 408 

4. Discussion 409 

In this 12-year field trial, grassland was more competitive against weeds than 410 

cereal crops, but this effect was dependent on the grassland receiving sufficient nitrogen 411 

fertiliser. Our model suggests that biomass production mediates this conditional 412 

suppressive effect and estimates separate critical biomass levels (CBLs) for crops and 413 

grassland that must be exceeded for weed suppression in subsequent years. These CBL 414 

estimates highlight significant variations of cereal crop and grassland competitiveness 415 

according to the traits of the weeds present. The lasting effects of composition are 416 
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additional to those of the crop in place and are modulated by an estimated persistence rate 417 

that differs between weed types. 418 

 419 

4.1 Factors affecting weed abundance 420 

Weed abundances were lower in grassland than in the maize and wheat phases of 421 

the rotations, despite the use of herbicides only during the years in which cereals were 422 

grown. This result is consistent with the results of Meiss et al. (2010a), and consistent 423 

with grasslands having a greater weed-filtering effect than annual crops. Barley had a low 424 

weed abundance similar to that of grassland, probably due to the reported allelopathic 425 

activity of barley (Jabran, 2017). In addition to these overall effects of the crop in place 426 

on emerged weeds, provided adequate amounts of fertiliser were supplied (i.e., high dry 427 

matter production), weed abundance was lower in older grasslands and in subsequent 428 

crops, as reported in previous studies (e.g., Schuster 2016; Schuster 2018). We also found 429 

that lower levels of nitrogen fertilisation in grassland led to an increase in weed 430 

abundance over time. This implies that the mere introduction of grassland for a few years 431 

is not sufficient to reduce weed abundance in arable land, and that adequate nitrogen 432 

fertilisation is the determinant factor for such a reduction. Nevertheless, it should be borne 433 

in mind that the grassland investigated here was a mixture of three grass species 434 

(perennial ryegrass, tall fescue and orchard grass) and care must be taken when trying to 435 

extrapolate these results to other types of grassland, consisting of monocultures of these 436 

species or mixtures of widespread grassland species, grasses or leguminous plants. 437 

 438 

4.2 Biomass produced as an integrative trait for competitiveness against weeds 439 
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The model developed here integrates different rotations and amounts of nitrogen 440 

fertilizer into a single meaningful biological variable: biomass production in previous 441 

years. Competitiveness, expressed as crop/grassland biomass, may affect different phases 442 

of the weed life cycle, including seed germination and emergence, plant survival and 443 

vegetative growth, and seed production and survival (Colbach et al., 2014). The 444 

abundances reported here were reconstituted from abundance classes susceptible to 445 

threshold effects, but these effects should be limited by the use of 13 samples per plot. In 446 

any case, the use of more precise data would improve the fit of the model. 447 

One remarkable feature of our model is its handling of multiannual history. The 448 

multiplicative impact of previous years on weed abundance is consistent with former 449 

observations that the geometric mean growth rate is more appropriate than the arithmetic 450 

mean for describing long-term changes in weed abundance in variable growing conditions 451 

(Freckleton and Watkinson, 1998). However, this mean is weighted here by the inverse 452 

of the number of years elapsed, and persistence rate could be interpreted as the number 453 

of years characterising the persistent influence of a given year on the dynamics of the 454 

group of weeds considered. This decrease over time in the impact of crop and grassland 455 

competition in a given year may depend on the persistence of both the weed seed bank 456 

and vegetative organs. Strikingly, perennial weeds had significantly higher estimated 457 

persistence rates, consistent with previous observations suggesting that perennial 458 

vegetative organs play an important role in weed persistence (Herben et al., 2014). The 459 

high persistence rate of rosette weeds was also striking, rosettes weeds are not only 460 

perennial (Weed_traits_SuppInfo) but also have, during their vegetative phase, leaves 461 

attached just above soil level below cutting height, thus at least partly escaping defoliation 462 

at mowing. Nevertheless, additional studies are required to disentangle the components 463 

of persistence rate: persistence of the seeds, vegetative organs and asexual reproduction.  464 
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 465 

4.3 Crop and grassland biomass competitiveness and weed traits 466 

Overall, in our crop-grassland rotations, cereal crop biomass did not reduce weed 467 

abundance efficiently, with estimated critical levels higher than biomass production in 468 

most years. Previous studies reported that crop competition reduced weed growth and 469 

fecundity but did not completely prevent weed seed production (Chauhan et al., 2017). 470 

As a consequence, weeds tend to thrive in subsequent years in monocrop systems. 471 

However, the results of our crop-grassland rotations may be specific to seed rate, row 472 

spacing and direction conditions, as previous studies have demonstrated that a modulation 473 

of the competitive ability of crops through these factors to achieve effective weed control 474 

(Sardana et al., 2017). Further studies are required to determine the impact of such 475 

agronomic practices on “critical biomass levels”.   476 

The greater effectiveness of grassland biomass against weeds may be due to the 477 

year-round ground cover in grassland and the absence of soil tillage, preserving a living 478 

and perennial weed-suppressing mulch (Wiens et al., 2006). Furthermore, a closed 479 

canopy is achieved more quickly after mowing in grasslands than during the 480 

establishment of cereal crops, resulting in greater resistance to invaders (Milbau et al., 481 

2003).  482 

Fitting the “critical biomass model” separately for each group of weeds as a 483 

function of their traits revealed large differences in critical biomass levels between weeds, 484 

consistent with previous reports that the traits of weeds are closely related to their 485 

competitiveness (Schwartz et al., 2016). Overall, our results are consistent with former 486 

observations that grassland suppresses dicot weeds more effectively than monocot weeds, 487 

as monocots higher survival rates and grow back more rapidly after grassland cutting 488 

(Meiss et al. 2008), an effect possibly reinforced by the use of dicot-specific herbicides 489 
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in our monocotyledon crops. Our model did not adjust for the climbing growth habit, 490 

consistent with a lower susceptibility of weeds with this growth habit to competition, as 491 

previously reported (Schuster et al., 2016). Such weeds may grow over the crop and 492 

grassland canopy with the help of special structures (e.g. tendrils hooks, twining stems 493 

and leaves), enabling them to absorb sunlight with limited competition (Kissmann and 494 

Groth, 1997). We also expected perennial plants to be more easily controlled by cereal 495 

crops than annual plants, because tillage and weeding could be carried out before the 496 

sowing of the crop. Rosette weeds were not very competitive in cereal crops, probably 497 

due to their lower levels of access to light relative to upright weeds in these tall, very 498 

dense crops. By contrast, critical biomass levels in grasslands were very similar for weeds 499 

with these two habits, and the greater competitiveness of rosettes relative to plants with 500 

erect growth habits in grassland may also be enhanced by their lower sensitivity to 501 

repeated mowing (Meiss et al., 2008). 502 

  503 

5. Conclusion 504 

This study highlights the importance of crop/grassland competitiveness for weed 505 

control. Well-fertilised grasslands are particularly competitive and produce sufficient 506 

amounts of biomass to outcompete weeds. The critical biomass model developed here 507 

can be used to calculate an intuitive metric of this competitiveness with a simple statistical 508 

procedure, paving the way for comparisons of crop and grassland competitiveness against 509 

weeds under various pedoclimatic conditions and agronomic practices. It makes use of a 510 

limited set of readily available variables, such as crop and grassland rotation schemes and 511 

biomass production in previous years. In addition to providing a powerful indicator of 512 

crop/grassland competitiveness against weeds, this model could potentially be used to 513 
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predict weed abundance and to develop environment-friendly weed management 514 

strategies.  515 

 516 
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