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ABSTRACT
Many traditionalmethods for identifying changepoints can struggle in the presence of outliers, or when the
noise is heavy-tailed. Often theywill infer additional changepoints to fit the outliers. To overcome this prob-
lem, data often needs to be preprocessed to remove outliers, though this is difficult for applications where
the data needs to be analyzed online. We present an approach to changepoint detection that is robust to
the presence of outliers. The idea is to adapt existing penalized cost approaches for detecting changes so
that they use loss functions that are less sensitive to outliers. We argue that loss functions that are bounded,
such as the classical biweight loss, are particularly suitable—as we show that only bounded loss functions
are robust to arbitrarily extreme outliers. We present an efficient dynamic programming algorithm that can
find the optimal segmentation under our penalized cost criteria. Importantly, this algorithm can be used in
settingswhere thedata needs tobe analyzedonline.We show thatwe can consistently estimate thenumber
of changepoints, and accurately estimate their locations, using the biweight loss function. We demonstrate
the usefulness of our approach for applications such as analyzing well-log data, detecting copy number
variation, and detecting tampering of wireless devices. Supplementary materials for this article are avail-
able online.

1. Introduction

Changepoint detection has been identified as one of the major
challenges for modern, big data applications (National Research
Council 2013). The problem arises when analyzing data that can
be ordered, for example, time-series or genomics data where
observations are ordered by time or position on a chromosome,
respectively. Changepoint detection refers to locating points in
time or position where some aspect of the data of interest, such
as location, scale, or distribution, changes. There has been an
explosion in methods for detecting changes (e.g., Frick, Munk,
and Sieling 2014; Fryzlewicz 2014; Cao and Wu 2015; Ma and
Yau 2016; Haynes, Fearnhead, and Eckley 2017b, and references
therein) in recent years, in part motivated by the range of appli-
cations for which changepoint detection is important. Exemplar
areas of application include bioinformatics (Olshen et al. 2004;
Futschik et al. 2014), ion channels (Hotz et al. 2013), climate
records (Reeves et al. 2007), oceonagraphic data (Killick et al.
2010; Killick, Fearnhead, and Eckley 2012), and finance (Kim,
Morley, and Nelson 2005).

What has received less attention is the problem of distin-
guishing between changepoints and outliers. To give an example
of the issue outliers can cause when attempting to detect change-
points, consider the problem of detecting changes in well-log
data. An example of such data, taken originally from Ó Rua-
naidh and Fitzgerald (1996), is shown in Figure 1. This data was
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collected from a probe being lowered into a bore-hole. As it is
lowered, the probe takesmeasurements of the rock that it is pass-
ing through. As the probe moves from one type of rock strata
to another, there is an abrupt change in the measurements. It
is these changes in rock strata that we wish to detect. The real
motivation for collecting this data was to detect these changes
in real time. This would enable changes in rock strata that are
being drilled through to be quickly detected, so that appropriate
changes to the settings of the drill can be made.

The data in the top-left plot in Figure 1 has been analyzed
by many different change detection methods (e.g., Ó Ruanaidh
and Fitzgerald 1996; Fearnhead 2006; Adams andMacKay 2007;
Wyse et al. 2011; Ruggieri and Antonellis 2016). However, this
plot actually shows data that has been preprocessed to remove
outliers. The real data that was collected by the probe is shown
in the top-right plot of Figure 1. There are a number of short
periods of time where the probe misfunctions, and very low
measurements are recorded. These are examples of what we are
calling outliers. The real challenge with detecting the changes is
to distinguish between actual changes and these outliers. Most
existing methods for changepoint detection are unable to do so;
hence, the reason that most analyses of this data has used the
“cleaned” dataset in the top-left plot. For example, in the bottom
row of Figure 1, we show the results of estimating the change-
points based on minimizing a square-error-loss criteria with a
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Figure . Well-log data: data with outliers removed (left column) and original data (right column). Bottom row shows segmentations of the data under a least squares loss.

penalty for each detected changepoint. While this method per-
forms well when analyzing the cleaned dataset, it is unable to
distinguish between changes and outliers when analyzing the
real data.

This lack of robustness for detecting a change in mean in the
presence of outliers for many changepoint methods stems from
explicit or implicit assumptions of Gaussian noise. For example,
methods based on a likelihood-ratio test for detecting a change
(Worsley 1979), or that use a penalized likelihood approach to
detect multiple changes (Killick, Fearnhead, and Eckley 2012),
or that do a Bayesian analysis (Yao 1984), may be based on a
Gaussian likelihood and thus explicitly assume Gaussian noise.
Alternative methods, such as using an L2 (square error) loss
or a cusum-based approach (Page 1954), may not make such
an assumption explicitly. However, the resulting methods are
closely related to those based on a Gaussian likelihood (see, e.g.,
Hinkley 1971), and thus are implicitly making similar assump-
tions. While these methods show some robustness to heavier
tailed noise (Lavielle and Moulines 2000), in practice they can
seriously over-estimate the number of changes in the presence
of outliers.

Our approach is based on the ideas from robust statistics,
namely replacing an L2 loss with an alternative loss function
that is less sensitive to outliers. We then use such a loss function
within a penalized cost approach to estimatingmultiple change-
points. The use of alternative loss functions as a way to make
changepoint detection robust to ouliers has been considered
before (e.g., Hušková and Sen 1989; Hušková 1991; Hušková and
Picek 2005; Hušková 2013). That work derives cusum-like tests
for a single changepoint. Such a test for a single changepoint can
then be used with binary segmentation to findmultiple changes.
As we discuss more fully in Section 2.3, this approach suffers
from the drawback that the test statistic is based upon how well
the data can be modeled as not having a change, and does not
directly compare this with how well we can fit the data with one
or more changepoints. Thus, it could spuriously infer a change

if we have a cluster of outliers at consecutive time-points, even if
the value of those outliers are not consistent with them coming
from the same distribution.

One challenge with the penalized cost approach that we sug-
gest is minimizing this cost, which we need to do to infer the
changepoints. We show how recent efficient dynamic program-
ming algorithms (Rigaill 2015; Maidstone et al. 2017) can be
adapted to solve this minimization problem. Our algorithm can
use any loss function provided we are interested in the change
of univariate parameter, such as the location parameter for uni-
variate data, and the loss function is piecewise quadratic. Impor-
tantly, these algorithms are sequential in nature, and thus can be
directly applied in situations, which need an online analysis of
the data.

While our approach can be used with a range of loss func-
tions, we particularly recommend using a loss function that is
bounded. We present a theoretical result which shows that we
need a bounded loss function if we wish our method to be
robust to any single outlier. The simplest such loss function is the
biweight loss (Huber 2011), which is the pointwise minimum
of an L2 loss and a constant. We show that, under mild condi-
tions, we can consistently estimate the number of changepoints,
and accurately estimate their locations, if we use a penalized cost
approach with the biweight loss.

To illustrate the usefulness of our approach with the biweight
loss, we present its use for three distinct applications. The first is
for the online analysis of thewell-log data of Figure 1. Second,we
show that it out-performs existing methods for detecting copy
number (CN) variation. This includes performing better than
methods that preprocess the data in an attempt to remove out-
liers. By comparison, our approach is easier to implement as it
does not require any preprocessing steps. Finally, we consider
the problem of detecting tampering of wireless security devices.
Results here show our method can reliably distinguish between
actual tampering events and changes in the data caused by short-
term environmental factors.
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Proofs of results are given in the Appendices in the supple-
mentary material. Code implementing the new methods in this
article is available from https://github.com/guillemr/robust-fpop.

2. Model Definition

Assume, we have data ordered by some covariate, such as
time or position along a chromosome. Denote the data by y =
(y1, . . . , yn). We will use the notation that, for s ≤ t , the set of
observations from time s to time t is ys:t = (ys, . . . , yt ). If we
assume that there are k changepoints in the data, this will corre-
spond to the data being split into k + 1 distinct segments.We let
the location of the jth changepoint be τ j for j = 1, . . . , k, and
set τ0 = 0 and τk+1 = n. The jth segment will consist of data
points yτ j−1+1, . . . , yτ j . We let τ = (τ0, . . . , τk+1) be the set of
changepoints.

The statistical problem we are considering is how to infer
both the number of changepoints and their locations. We
assume the changepoints correspond to abrupt changes in
the location, that is mean, median, or other quantile, of the
data. We will focus on a minimum penalized cost approach to
the problem. This approach encompasses penalized likelihood
approaches to changepoint detection among others.

To define our penalized cost, we first introduce a loss func-
tion for a single observation, y, and a segment-specific location
parameter θ . We denote this as γ (y; θ ). For a penalized like-
lihood approach, this loss would be equal to minus the log-
likelihood. The class of losses, we will consider are discussed
below.

We can now define the cost associated with a segment of data,
ys:t . This is

C(ys:t ) = min
θ

t∑
i=s

γ (yi; θ ),

the minimum, over the segment-specific parameter θ , of the
sum of the losses associated with each observation in the seg-
ment. The penalized cost for a segmentation is then

Q(y1:n; τ1:k) =
k∑

i=0

{C(yτi+1:τi+1 ) + β
}

(1)

where β > 0 is a chosen constant that penalizes the introduc-
tion of changepoints. We estimate the number and position of
the changepoints by the value of k and τ1:k that minimize this
penalized cost. The value of β has a substantial impact on the
number of changepoints that are estimated (see Haynes, Eckley,
and Fearnhead 2017a, for examples of this), with larger values of
β leading to fewer estimated changepoints.

For inferring changes in the mean of the data, it is common
to use the square-error-loss function (e.g., Yao and Au 1989;
Lavielle and Moulines 2000).

γ (y; θ ) = (y − θ )2.

In this case, the penalized cost approach corresponds to a penal-
ized likelihood approach, where the data within a segment are
iid Gaussian with common variance. Minimizing a penalized
cost of this form is closely related to binary segmentation proce-
dures based on cusum statistics (e.g., Vostrikova 1981; Bai 1997;
Fryzlewicz 2014), as discussed in Killick, Fearnhead, and Eck-
ley (2012). Use of the square-error-loss function results in an
approach that is very sensitive to outliers. For example, this loss
function was the one used in the analysis of the well-log data in
Figure 1, where we saw that it struggles to distinguish outliers
from actual changes of interest.

2.1. Penalized Costs Based onM-Estimation

To develop a changepoint approach that can reliably detect
changepoints in the presence of outliers we need a loss func-
tion that increases at a slower rate in |y − θ |. Standard examples
(Huber 2011) are absolute error, γ (y; θ ) = |y − θ |, Huber loss

γ (y; θ ) =
{

(y − θ )2 if |y − θ | < K,

2K|y − θ | − K2 otherwise,

and the biweight loss

γ (y; θ ) =
{

(y − θ )2 if |y − θ | < K,

K2 otherwise, (2)

or if interest lies in changes in the uth quantile for 0 < u < 1

γ (y; θ ) =
{
2u(y − θ ) if y > θ,

2(1 − u)(θ − y) otherwise.

These are summarized in Figure 2.

Figure . Example of different losses. (a) The square error loss (full-line), and the related Huber loss (red dashed) and biweight loss (blue dotted). (b) The absolute error loss
(full-line), and its generalization for detecting change in quantiles for u = 0.1 (red dashed) and u = 0.25 (blue dotted).
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We will develop an algorithm for finding the best segmen-
tation under a penalized cost criteria that can deal with any of
these choices for the loss. In practice, we particularly advocate
the use of the biweight loss. For a penalized cost approach to
detecting changepoints to be robust to extreme outliers we will
need the loss function to be bounded. For unbounded loss func-
tions, such as the absolute error loss or Huber loss, a penalized
cost approach will place an outlier in a segment on its own if
that outlier is sufficiently extreme. This is shown by the follow-
ing result.

Theorem 1. Assume that the loss function satisfies γ (y; θ ) =
g(|y − θ |), where g(0) = 0 and g(·) is an unbounded, increas-
ing function. Choose any t ∈ {1, . . . , n} and fix the set of other
observations, ys for s �= t . Then, there exists values of yt such
that the segmentation that minimizes the penalized cost (1) will
have changepoints at t − 1 and t .

If we choose a loss function, such as the biweight loss, that is
bounded, then this will impose a minimum segment length on
the segmentations that we infer using the penalized cost func-
tion. Providing this minimum segment length is greater than
1, our inference procedure will be robust to the presence of
extreme outliers—unless these outliers cluster at similar values,
and for a number of consecutive time-points greater than our
minimum segment length.

Theorem 2. If the loss function satisfies 0 ≤ γ (y; θ ) ≤ K, and
we infer changepoints by minimizing the penalized cost func-
tion (1) with penalty β for adding a changepoint, then all
inferred segments will be of length greater than β/K.

The other conclusion to draw from this result is that, for any
choice ofK and β , we would want theminimum segment length
to be smaller than any segment we expect, or that we wish to
detect, in the data. Any real segments shorter than theminimum
segment length are unlikely to be detected, with the observations
in such short segments being identified as outliers instead. Fur-
thermore, our procedure can lose power to detect real segments
that are only slightly longer than the minimum segment length
(see empirical results for scenario 4 in Section 5.2).

2.2. Consistency Under Biweight Loss

As mentioned above, and as suggested by Theorem 1, a particu-
lar focus will be on the use of the biweight loss (2). Here, we give
conditions under which we can consistently estimate the num-
ber and location of changepoints when using this loss.

Wewill consider the standard in-fill asymptotics, as we let the
number of data points,n, increase. To be able to consistently esti-
mate the number of changepoints, we will need the penalty for
adding a changepoint, β in (1), to increase with n. We will thus
denote the choice of penalty for a given number of data points
to be βn.

Data-Generating Model: We assume a fixed number of
changepoints, k0, and fixed constants 0 < u1 < · · · < uk0 < 1
so that for a dataset of size n, we have the ith changepoint at
τi = �nui�, for i = 1, . . . , k0. As above, we let τ0 = 0 and
τk0+1 = n. We further assume fixed segment-specific location
parameters, μ0, . . . , μk0 , with the obvious constraint that μi �=

μi−1 for i = 1, . . . , k0. Finally, we let Z1,Z2, . . . be iid noise ran-
dom variables, so that for t = 1, . . . , n the observations are real-
izations of

Yt = μi + Zt

where i is such that τi < t ≤ τi+1.
Our results require twomild conditions on the distribution of

the noise random variables. First, introduce the mean of the loss
function,M(θ ) = E{γ (Zi; θ )}. We assumeM(θ ) takes it mini-
mum value at θ = 0. We can make this assumption without loss
of generality, as ifM(θ ) has its minimum at θ∗ we can just repa-
rameterize our model with new noise random variables set to
Zi − θ∗ and with location parameters redefined to be μi + θ∗.

Condition 1: Our first condition is that there exists constants
c1 > 0 and c2 > 0 such that

M(θ ) = E
[
min

{
(Zi − θ )2,K2}] ≥ M(0) + min

{
c1θ2, c2

}
.

(3)
This is a weak assumption, and will hold ifM(θ ) has a positive
second derivative for all θ in a neighborhood around 0 and that
M(θ ) − M(0) ≥ c2 > 0 for all θ outside this region. The latter
requirement is a common assumption made to ensure identifi-
ability of estimates of a location parameter when using a given
loss function.

Condition 2: Our second condition is slightly stronger. Let
p = Pr(|Zi| > K) and σ 2 = E(Z2

i | |Zi| ≤ K), then we need

K2(1 − 2p) − (1 − p)σ 2 > 0. (4)

This condition can be achieved by taking K large enough. If
the noise has finite variance then, using Chebyshev’s inequal-
ity, it is easy to show that any choice with K >

√
3E(Z2

i ) will
ensure this condition holds. However, we do not need the noise
to have a variance. For example, it is sufficient to choose K >√
3E(min{Z2

i ,K2}), or, if Zi has a unimodal density function
with mode at 0, then σ 2 ≤ K2/3 and it suffices to choose K so
that p = Pr(|Zi| > K) < 2/5. By comparison, we would recom-
mend taking K sufficiently large that |Zi| > K is relatively rare,
and thus p ≈ 0. In line with Theorem 1, this condition does not
depend on the distribution of the noise conditional on |Zi| > K.

Theorem 3. Consider the data generating model described
above, and suppose conditions 1 and 2 hold. For a given n, let k̂n
be the estimate of the number of changepoints, and τ̂1, . . . , τ̂k̂n
their estimated locations, obtained byminimizing the penalized
cost (1) using the biweight loss function and a penalty βn. Then,
there exists constantsC1 > 0 andC2 > 0 such that

Pr

[
k̂n = k0 and max

i=1,...,k0

{
min

j=1,...,k̂n

∣∣τi − τ̂ j
∣∣} ≤ C2 log(n)

]

→ 1, as n → ∞,

provided thatC1 log(n) < βn = o(n).

The theorem shows that for an appropriate choice of βn, we
can obtain a consistent estimate of the true number of param-
eters, and that the error in estimating any of the changepoint
locationswill be less thanC2 log(n)with probability tending to 1.
The latter order of error is in line with asymptotic results for the
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accuracy of changepoint estimates using wild binary segmen-
tation with the cusum test Fryzlewicz (2014). We require much
weaker conditions on the distribution of the noise, but our result
assumes stronger conditions on the number of changes, the seg-
ment lengths and the size of change ofmean at each changepoint
than, for example, results in Fryzlewicz (2014) and Baranowski,
Chen, and Fryzlewicz (2016). The result supports the use of a
penalty, βn, that is proportional to log(n), a choice that is com-
mon for other penalized cost procedures, but it does not specify
the constant of proportionality.

2.3. Alternative Robust ChangepointMethods

There have been other proposedM-procedures for robust detec-
tion of changepoints (Hušková and Sen 1989; Hušková 1991;
Hušková and Picek 2005; Hušková 2013). These differ from our
approach in that they are based on sequentially applying tests for
single changepoints.One approach is to use aWald-type test. For
a convex loss function, γ (y; θ ), which depends only on y − θ ,
define γ (y; θ ) = ρ(y − θ ) and define φ to be the first deriva-
tive of ρ. Then, we can estimate a common θ for data y1:n by
minimizing

n∑
i=1

ρ(yi − θ ),

with respect to θ . In many cases, this is equivalent to solving
n∑

i=1

φ(yi − θ ) = 0.

If θ̂ denotes the estimate we obtain, we can define residuals as
φ(yi − θ̂ ), and their partial sums, or cusums, by

Sm =
m∑
i=1

φ(yi − θ̂ ).

AWald-type test is then based on a test-statistic of the form

Tn = max
1≤m≤n−1

n
m(n − m)

S2m,

where the term n/(m(n − m)) is introduced so that the vari-
ability of the term on the right-hand side will be similar for
each value of m. Large values of Tn are taken as evidence for
a change. The position of a changepoint is then inferred at the
position m that maximizes the right-hand side. To detect mul-
tiple changepoints, this Wald-type test needs is currently used
within a binary segmentation procedure; though it can also be
used with improved versions of binary segmentation, such as
wild binary segmentation (Fryzlewicz 2014).

There are two main differences between the Wald-type test
approach and our penalized cost approach. The first is that the
Wald-type test statistic is appropriate only for convex loss func-
tions. So, for example, the biweight loss is not appropriate for
use with this approach. To see this note that the derivative of the
biweight loss satisfies φ(x) = 0 for |x| > K. Thus, large abrupt
changes in the data will lead to M-residuals which are 0, and
hence provide no evidence for a change in the test statistic.

Second, any loss function that increases linearly in |y − θ | for
sufficiently large |y − θ | will result in φ(yi − θ ) being constant

for large |yi − θ |. Thus, large residuals will have a bounded con-
tribution to the test statistic. To see this, consider theWald-type
test with the Huber loss. To calculate this test statistic, we first
calculate our estimate of the location parameter for the data,
θ̂ , assuming the data is from a single segment. The ith resid-
ual is then K if yi > θ̂ + K, −K if yi < θ̂ − K, and yi − θ̂ other-
wise. The cusum statistic is just the sum of these residuals. This
is equivalent to winsorizing the data, where we shrink extreme
positive or negative values to be K above or below our esti-
mate of the location parameter, and then using a cusum test
for detecting a changepoint. The actual value of the data points
that are above θ̂ + K or below θ̂ − K will not affect the cusum
values, and hence not affect the value of the Wald-type test
statistic.

The use of Huber loss within a Wald-type test will thus have
a similar robustness to extreme outliers that bounded loss func-
tions have for the penalized cost approach. The main difference
is that theWald-type test statistic does not consider whether the
data after a putative changepoint is consistent with data from a
single segment. Thus, a cluster of outliers of the same sign that
occur concurrently but which are very different in value, such
as we observe for the well-log data, will produce a similar value
for the test-statistic as a set of concurrent observations that are
very different to the other data points but are also very similar to
one another. By comparison, the penalized cost based approach
would, correctly, say the latter provided substantially more evi-
dence for the presence of a change.

3. Minimizing the Penalized Cost

An issue with detecting changepoints using any of these loss
functions, is how can we efficiently minimize the resulting
penalized cost over all segmentations? We present an efficient
dynamic programming algorithm for performing this mini-
mization exactly. This algorithm is an extension of the pruned
dynamic programming algorithm of Rigaill (2015) and the
FPOP algorithm of Maidstone et al. (2017) (see also Johnson
2013) to the robust loss functions.Wewill call the resulting algo-
rithm R-FPOP .

3.1. A Dynamic Programming Recursion

We develop a recursion for finding the minimum cost (1) of
segmenting data y1:t for t = 1, . . . , n. In the following, we let τ

denote a vector of changepoints. Furthermore, we let St denote
the set of possible changepoints for the y1:t , so

St = {τ = τ1:k : 0 < τ1 < · · · < τk < t} .

Note that St has 2t−1 elements. Define

Qt = min
τ∈St

Q(y1:t; τ1:k) = min
τ∈St

k∑
i=0

{C(yτi+1:τi+1 ) + β
}
,

where here and later we use the convention that k is the num-
ber of changepoints in τ, and that τ0 = 0 and τk+1 = t . First, we
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introduce the minimum penalized cost of segmenting y1:t con-
ditional on the most recent segment having parameter θ ,

Qt (θ ) = min
τ∈St

⎡
⎣ k−1∑

i=0

{C(yτi+1:τi+1 ) + β
} +

t∑
j=τk+1

γ (y j; θ ) + β

⎤
⎦ ,

where we take the first summation on the right-hand side to
be 0 if k = 0. Trivially, we have Qt = minθ Qt (θ ) and Q1(θ ) =
γ (y1; θ ) + β .

The idea is to recursively calculate Qt (θ ) for increasing val-
ues of t . To do this, we note that each element in St is either
an element in St−1 or an element in St−1 with the addition of a
changepoint at t − 1. So

Qt (θ ) = min
τ∈St−1

⎡
⎣min

⎧⎨
⎩

k−1∑
i=0

(C(yτi+1:τi+1 ) + β
) +

t∑
j=τk+1

γ (y j; θ ) + β,

k∑
i=0

(C(yτi+1:τi+1 ) + β
) + γ (yt ; θ ) + β

}]

= min

⎧⎨
⎩ min

τ∈St−1

⎡
⎣ k−1∑

i=0

(C(yτi+1:τi+1 ) + β
) +

t−1∑
j=τk+1

γ (y j; θ ) + β

⎤
⎦ ,

min
τ∈St−1

[ k∑
i=0

(C(yτi+1:τi+1 ) + β
) + β

]}
+ γ (yt ; θ )

= min {Qt−1(θ ),Qt−1 + β} + γ (yt ; θ ). (5)

The first equality comes from splitting theminimization into the
minimization over the changepoints for y1:t−1 and then whether
there is or is not a changepoint at t − 1. The second equality
comes from interchanging the order of the minimizations, and
taking out the common γ (yt; θ ) term. The final equality comes
from the definitions of Qt−1(θ ) and Qt−1. The right-hand side
just depends on Qt−1(θ ), as Qt−1 = minθ Qt−1(θ ).

3.2. Solving the Recursion

We now show how we can efficiently solve the dynamic pro-
gramming recursion from the previous section for loss func-
tions like those introduced in Section 2. We make the assump-
tion that the loss for any observation, γ (yt; θ ), viewed as func-
tion of θ , can be written as a piecewise quadratic in θ . Note that
by quadratic, we include the special cases of linear or constant
functions of θ , and this definition covers all the loss functions
introduced in Section 2.

As the set of piecewise quadratics is closed under the both
addition andminimzation, it follows thatCt (θ ) can bewritten as
a piecewise quadratic for all t . We summarizeCt (θ ) byNt inter-
vals (a(t )

i , b(t )
i ], and associated quadratics q(t )

i (θ ). We assume
that the intervals are ordered, so a(t )

1 = −∞, a(t )
i = b(t )

i−1 for
i = 2, . . . ,Nt and b(t )

Nt
= ∞. To make this summary of Ct (θ )

unique, we further assume that q(t )
i (θ ) �= q(t )

i−1(θ ) for i =
2, . . . ,Nt . If this were not the case, we could merge the neigh-
boring intervals.

We can split Equation (5) into two steps. The first is

Q∗
t (θ ) = min {Qt−1(θ ),Qt−1 + β} , (6)

and the second is

Qt (θ ) = Q∗
t (θ ) + γ (yt; θ ).

For the first step, we calculate Qt−1 by minimizing the Nt−1
quadratics defining Qt−1(θ ) on their respective intervals, and
then calculating the minimum of these minima. We then solve
the minimization problem (6) on each of theNt−1 intervals. For
interval i, the solution will either be q(t )

i (θ ),Qt−1 + β , or we will
need to split the interval into two or three smaller intervals, on
which the solution will change between q(t )

i (θ ) and Qt−1 + β .
Thus, we will end with a set of Nt−1, or more, ordered intervals
and corresponding quadratics that defineQ∗

t (θ ). We then prune
these intervals by checking whether any neighboring intervals
both take the valueQt−1 + β , andmerging these if they do. This
will lead to a new set ofN∗

t , say, ordered intervals, and associated
quadratics, q∗

t,i(θ ) say.
For each of the N∗

t intervals from the output of the mini-
mization problem, we then add γ (yt; θ ) to the corresponding
q∗
t,i(θ ). This may involve splitting the ith interval into two or
more smaller intervals if one or more of the points of change of
the function γ (yt; θ ) are contained in it. This will lead to theNt
intervals and corresponding quadratics that define Qt (θ ).

The above describes how we recursively calculate Qt (θ ). In
practice, we also want to then extract the optimal segmenta-
tion under our criteria. This is straightforward to do. For each
of the intervals corresponding to different pieces of Qt (θ ), we
can associate a value of the most recent changepoint prior to
t . When we evaluate Qt , we need to find which interval con-
tains this value, and then the optimal value for the most recent
changepoint prior to t is the value associated with that interval.
We can store these optimal values for all t , and after process-
ing all data we can recursively track back through these values
to extract the optimal segmentation. So, we would first find the
value of the most recent changepoint prior to n, τ say, then find
the value of the most recent changepoint prior to τ . We repeat
this until the most recent changepoint is at 0, corresponding to
no earlier changepoints.

Pseudo-code for R-FPOP is given in Appendix D. An exam-
ple of the steps involved in one iteration is given in Figure 3.

4. Computational Cost of R-FPOP

We now present results that bound the computational cost and
storage requirements of R-FPOP. As above, we will assume that
γ (y; θ ) can be written as a piecewise quadratic with L pieces.
The bounds that we get differ depending on whether γ (y; θ ) is
convex in θ . We first consider the convex case, which includes
all the examples in Section 2 except the biweight loss.

Theorem 4. If γ is convex in θ and defined in L pieces R-FPOP
stores at most 2t − 1 + t(L − 1) quadratics and intervals at step
t .

Corollary 1. If γ is convex in θ and defined in L pieces, the
space complexity of R-FPOP isO(n), and the time complexity of
R-FPOP isO(n2).

For the biweight loss, which is not convex, we get worse
bounds on the complexity of R-FPOP.
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Figure . Example of one iteration of R-FPOP: (a)Qt−1(θ ) (black solid line), and set of intervals stored (split by vertical red lines) at start of iteration. (b) Find the pointwise
minimum of Qt−1(θ ) and Qt−1 + β (blue dashed line). (c) This is done by solving the minimization on each interval, which splits some intervals into two or three. New
splits are shown by blue dashed vertical lines. (d) Merge neighboring intervals if they both take the value Qt−1 + β . (e) Now add the loss for the new observation (blue
dashed curve). (f ) This further splits intervals at the points where the form of γ (yt ; θ ) changes, the blue vertical lines in plot (e). Shown is the final representation ofQt (θ ).
At all stages only piecewise quadratic functions need to be stored.

Theorem 5. For the biweight loss R-FPOP storesO(t2) intervals
at step t .

Corollary 2. For the biweight loss R-FPOP has worst-case space
complexity that isO(n2), and time complexity that isO(n3).

These results give worst-case bounds on the time and stor-
age complexity of R-FPOP. Below, we investigate empirically the
time and storage cost and observe an average computational cost
that is linear in n when the number of changepoints is large and
less than quadratic when there is no changepoint.

5. Results

5.1. Simulation Study: Computational Cost

This article is mostly concerned with the statistical perfor-
mances of our robust estimators. Thus, an in-depth analysis of
the runtime of our approach is outside the scope of this article.
In this section, we just aim at showing that our approach is easily
applicable to large profiles (n = 103 to n = 106) in the sense that
its runtime is comparable to other commonly used approach like
FPOP (Maidstone et al. 2017), PELT (Killick, Fearnhead, and
Eckley 2012), Wild Binary Segmentation (WBS) (Fryzlewicz
2014), or smuceR (Frick, Munk, and Sieling 2014).

We used a standard laptop with an Intel Core i7-3687U CPU
with 2.10 GHz × 4 Core and 7.7 Gb of RAM. For the biweight
loss, for a profile of length n = 106 and in the absence of any true
change the runtime is around 4 sec (slightly larger than FPOP,

see Figure 4, left L2). As a matter of comparison on the same
computer the runtime of competitor methods WBS, PELT, and
smuceR for a profile of length n = 105 are, respectively, around
7 sec, 40 sec, and 175 sec. For an increasing number of changes
runtimes are smaller (see Figure 4, right). Runtimes for the L1
and Huber loss are quite a bit larger: in the absence of changes
and for n = 106 the L1 runtime is around 500 sec and the Huber
runtime is around 200 sec (see Figure 4, left).

Most importantly, we see that with many changepoints, the
average CPU cost of all penalized cost approaches increases only
linearly with the number of data points (parallel to the dashed
black line in Figure 4, right). With no changepoints, the aver-
age CPU cost increases faster in particular for the L1 and Huber
losses, however, it is less than quadratic (slopes smaller than the
dotted black line in Figure 4, left). The CPU cost of the biweight
loss is very close to the CPU cost of the L2 loss.

5.2. Simulation Study: Accuracy

We assessed the performance of our robust estimators using the
simulation benchmark proposed in theWBS article (Fryzlewicz
2014). In that article, five scenarios are considered. These vary in
length from n = 150 to n = 2048 and contain a variety of short
and long segments, and a variety of sizes of the change in loca-
tion from one segment to the next. We considered an additional
scenario from Frick,Munk, and Sieling (2014) corresponding to
scenario 2 of WBS with a standard deviation of 0.2 rather than
0.3. In our simulation study, we are interested to see how the
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Figure . Runtime in seconds of R-FPOP for different loss functions. We simulated profiles with n going from  to ,,, with or without changes and using iid
Gaussian noise. The axes use a log-scale, and we have added lines of slope  (dashed) and  (dotted).

presence of outliers or heavy-tailed noise affect different change-
point methods, and so we will test each method assuming t-
distributed noise. The underlying signals and example data for
the three scenarios are shown in Figure 5.

For all approaches, we need to choose the value K in
the loss function and the penalty/threshold for adding a
changepoint. These will depend on the standard deviation of
the noise. Our approach is to estimate this standard deviation
using the median absolute deviation of the differenced time-
series, as in Fryzlewicz (2014), which we denote as σ̂ . We com-
pared our various robust estimators (Huber and biweight loss) to
binary segmentation using the robust cusum test (Hušková and
Sen 1989), described in Section 2.3 (Cusum). For the biweight
loss, we chose K = 3σ̂ , so that extreme residuals according to
a Gaussian model are treated as outliers. For the Huber loss,

we chose K = 1.345σ̂ , a standard choice for trading statisti-
cal efficiency of estimation with robustness. We further set the
penalty/threshold to beβ = 2σ̂ 2 log(n)E(φ(Z)2), whereφ is the
gradient of the loss function and Z is a standard Gaussian ran-
dom variable. This is based on the Schwarz information criteria,
adapted to account for the variability of loss function that is used
(see, e.g., theoretical results in Hušková and Marušiaková 2012,
for further justification of this), and for the biweight loss this
is inline with Theorem 3, which suggested the use of a penalty
that is proportional to log(n). We also compared to just using
the standard square-error loss: implemented using FPOP (Maid-
stone et al. 2017); and to the WBS (Fryzlewicz 2014) approach
that uses a standard cusum test statistic for detecting change-
points. Again, we used β = 2σ̂ 2 log(n)E(φ(Z)2), which in this
case simplifies to the standard Bayesian Information Criteria

Figure . The signal, and example data, for each of the scenarios considered for the simulation study. Data were generated with the noise having a t-distribution with five
degrees of freedom.
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(BIC) penalty β = 2σ̂ 2 log(n), and is the value that gave the best
results for these methods across the six scenarios when there is
normal noise (see Maidstone et al. 2017).

We consider analyzing data where the noise was from a t-
distribution. We vary the degrees of freedom from 3 to 100 to
see of how varying how heavy-tailed the noise is affects the per-
formance of different methods.

In Figures 6 and 7, we show the results of all approaches as a
function of the degrees of freedom.We compare methods based
on how they well estimate the underlying piecewise constant
mean function, measured in terms of mean square error; and
how well they estimate the segmentation, measured using the
normalized rand-index. The normalized rand-index measures
the overlap between the true segmentation and the inferred seg-
mentation, with larger values indicating a better estimation of
the segmentation.

In terms of mean square error, for almost all scenarios, we
consider the biweight loss performs the best when the degrees
of freedom are small. It also appears to lose little in terms of
accuracy when the degrees of freedom is large, and the noise
is close to Gaussian. The robust cusum approach also performs
well when the degrees of freedom are small, but in most cases
it shows a marked drop in accuracy relative to the alternative
methods when the noise is close to Gaussian. The one scenario
where the biweight loss performs poorly when the noise is close
to Gaussian is Scenario 4. In this case, we have short segments,
only slightly larger than the minimum segment length for the
biweight loss, with the segment mean being the same for all odd
segments. We can get a reasonable fit under the biweight loss by,
for example, ignoring the changepoints and treating all obser-
vations in the even segments as outliers. The problem of distin-
guishing between this case and the presence of actual change-
points causes the poor performance.

The results in terms of the quality of the segmentation, as
measured using the rand-index, are more mixed. The biweight
loss is clearly best in scenarios 1 and 2, but performs poorly for
scenario 3. Here, the use of the Huber loss appears to give the
best results across the different scenarios. Again, we see that the
use of the L2 loss, using either FPOP or WBS, performs poorly
when the degrees of freedom are small.

5.3. Online Analysis ofWell-Log Data

We return to the well-log data of Figure 1. For this data, due
to the presence of substantial outliers, we choose to use the
biweight loss function.We set the threshold,K in (2), to be twice
an estimate of the standard deviation of the observation noise.
We set β to be 70 times the estimated variance of the noise. This
is larger than that of the BIC penalty, but this is needed due to the
presence of autocorrelation in the observation noise (Lavielle
andMoulines 2000), and is the same penalty used for the analy-
sis presented in Figure 1.

Figure 8 shows the estimated changepoints, we obtain from
a batch analysis of the data. As we can see, using the biweight
penalty makes the changepoint detection robust to the presence
of the outliers. All obvious changes are detected, and we do not
detect a change at any point where the outliers cluster.

As mentioned in the introduction, the motivation for analyz-
ing this data requires an online analysis.We present output from

such an online analysis in the right-hand plot of Figure 8. Here,
we plot the estimate of the most recent changepoint prior to t ,
given data y1:t , as a function of t . To help interpret the result, we
also show the locations of the changepoints inferred from the
batch analysis. We see that we are able to quickly detect changes
when they happen, and we have only one region where there is
some fluctuation in where we estimate the most recent change-
point. While by eye the plot may suggest we immediately detect
the changes, there is actually some lag. This is inevitable when
using the biweight loss, due to the presence of a minimum seg-
ment length that can be inferred (see Theorem 2). The lag in
detecting the changepoint is between 21 and 27 observations
for all except the final changepoint. The final inferred change-
point is less pronounced, and is not detected until after a lag of 40
observations. This lag can be reduced by increasingK, but at the
expense of less robustness to outliers. The region of fluctuation
over the estimate of the most recent changepoint corresponds
to uncertainty about whether there are changepoints in the last
inferred segment (corresponding to the final two changepoints
inferred in the bottom-left plot of Figure 1). One disadvantage of
detectionmethods that involveminimizing a penalized cost, and
of other methods that produce a single estimate of the change-
point locations, is that they do not quantify the uncertainty in
the estimate.

5.4. Estimating Copy Number Variation

Healthy human cells have two copies of DNA. In tumor cells,
parts of chromosomes of various sizes (from kilobases to a
chromosome arm) may be deleted or amplified several times,
and this can lead to the copy number (CN) of the DNA from
such regions being different from 2. CN can be measured using
microarray or sequencing experiments. They are piecewise con-
stant along the genome, and interest lies in detecting whether,
and where, the CN changes. For many samples, we would have a
mixture of healthy and tumor cells, and the signal-to-noise ratio
for changes in CN will go down with the tumor fraction. The
detection of changes in CN is further complicated by the pres-
ence of outliers. We illustrate this in Figure 9 using output from
the jointseg package (Pierre-Jean, Rigaill, andNeuvial 2015) that
enables simulation of realistic CN profiles by resampling real
datasets for which the truth is known.

A standard way to analyze such data is to use the smooth.
CNA function of the well-known DNAcopy package (Bengts-
son et al. 2016). This function shrinks outliers toward the value
of its neighbors. Once this is done one can run a preferred seg-
mentation approach. As we will see below, this heuristic prepro-
cessing procedure greatly improves changepoint detection. We
want to compare such a two-stage approach to a simpler anal-
ysis, where we analyze data using our penalized cost approach
with the biweight loss.

To assess the performance of our approach onDNACNdata,
we used the jointseg package. We simulated profiles of length
n = 4000 with 10 change-points with segments of at least 40
data-points. The package propose two real datasets, GSE11976
and GSE29172, to resample from. For both, we considered four
levels of difficulty corresponding to different tumor fractions:
0.34, 0.50, 0.79, and 1 for GSE11976; and 0.3, 0.5, 0.7, and 1 for
GSE29172.
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Figure . Smoothed log mean square error (MSE) of all tested approaches on the six scenarios using a student-noise with the degrees of freedom ranging from  to .
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Figure . Smoothed normalized Rand-index of all tested approaches on the six scenarios using student-noise with the degrees of freedom varying from  to .
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Figure . Estimated changepoints from batch analysis of the well-log data (left-hand plot) under biweight loss. Estimate of location of most-recent changepoint from
online analysis (right-hand plot). The black line shows the estimate of themost-recent changepoint against the number of data points analyzed. The red dashed horizontal
lines show the locations of the changepoints detected from the batch analysis.

We consider four approaches: FPOP (L2), FPOP after using
smooth. CNA to remove outliers (Rout L2), robust binary seg-
mentation (Cusum), and our biweight loss with a threshold
value of 3. All approaches are implemented for a range of penalty
values. For every simulated profile and each run of amethod, we
computed the number of true positive (TP) and false positive
(FP) change-points. For all true change-point, we counted one
TP if there is at least one change-point identified within a win-
dow of 15 data-points. We then computed the number of FPs as
the number of predicted changes minus the number of TPs. We
then average, over 200 simulated profiles, the number of TPs and
FPs per approach, penalty value and difficulty to recover receiver
operating characteristic (ROC) curves.

Overall our robust biweight loss outperforms the L2 loss
following outlier removal and the Cusum approach. For low
tumor fractions (0.3 and 0.5 GSE29172 and 0.34 GSE11976),
the biweight loss is possibly slightly better than the Cusum
approach. For a tumor fraction of 1, the biweight loss is slightly
better than the L2 following outlier removal. In other cases, it is
clearly better. Results are shown for the two datasets and a tumor
fraction of 0.7 and 0.79 in Figure 10. Results for other tumor
fractions are provided in figures in Appendix E.

5.5. Wireless Tampering

We now consider an application that looks at security of the
Internet of Things (IoT). Many IoT devices use WiFi to com-
municate. Often, for example, with surveillance systems, these
need a high level of security. Thus, it is important to be able to
detect if a device has been tampered with. WiFi signals include
a “preamble,” which is used by the receiver to determine chan-
nel state. One approach that can be used to detect tampering is to
monitor channel state variation (Bagci 2016). Abrupt changes in
it could indicate some tampering event. However, changes can
also be caused by less sinister events, such as movement of peo-
plewithin the communication environment. Thus, the challenge
is to detect a change caused by tampering as opposed to any “out-
liers” caused by such temporary environmental factors.

Figure 11 shows some time-series of channel state informa-
tion (CSI) that has been extracted from the preamable from a
signal sent by a single IoT device. This data is taken from Bagci
et al. (2015), where a controlled experiment was performed,
with an actual tampering event occurring after 22 min. Before
this tampering event, there was movement of people around the
device, which has a short-term effect on the time-series data.

Figure . Two DNA copy number profiles obtained using the jointseg package with a tumor fraction of  (left) and . (right). The true changepoints are represented with
red dotted lines. It can be seen that a number of data-points are quite far from the blue line. The size of each jump is larger when the tumor fraction is larger.
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Figure . Average ROC curve on the GSE and GSE datasets for a tumor fraction of, respectively, . and ., for the Cusum, L, L with outlier removal (Rout L)
and our robust biweight loss (Biweight ).

In practice, the CSI from an IoT device is multi-dimensional,
and we show time-series for 6 out of 90 dimensions. While ide-
ally, we would jointly analyze the data from all 90 time-series
that we get from the device, we will just consider analyzing each
time-series individually. Our interest is to see how viable it is
to use our approach, with the biweight loss, to accurately dis-
tinguish between tampering event and any effects due to tem-
porary environmental factors. The six time-series we show each
show different patterns, both in terms of the change caused by
tampering, and the effect of people walking near the device. As
such they give a thorough testing of any approach. We imple-
mented the biweight loss with the Schwarz Information Criteria
penalty for a change, and with K chosen so that the minimum
segment length (see Theorem 2) corresponds to a period of 20
sec. Results are shown in Figure 11, where we see that we accu-
rately only detect the change that corresponds to the tampering
event in all cases.

6. Discussion

We have presented an algorithm for detecting changepoints by
minimizing a penalized cost, which measures fit to the data by a
loss function that is piecewise quadratic. In particular, we have
shown that by using bounded loss functions we can develop
algorithms that are robust to the presence of arbitrarily large
outliers. We particular recommend the use of the biweight loss
function, and have shown that using such a loss function can
lead to the consistent estimation of the number of changepoints
and accurate estimation of their location under weak conditions
on the noise distribution.

If we use the biweight loss, we have to choose an appropriate
value for K. To some extent this is a modeling decision, but a
reasonable default is to choose this to be around 2–3 times an
estimate of the standard deviation of the noise. This will mean
the loss performs similarly to the square-error loss, as most

Figure . Examples from the analysis of the wireless tampering data. We show six examples of the data, with different structure before and after a change, and with
different patterns of outliers caused by temporary environmental factors. In each case, there is a single changepoint, after  min (denoted by the triangle). The inferred
changepoint (vertical dashed line) and inferred mean function (green full horizonal line) from our method with the biweight loss function are shown in each case.
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observationswill bewithinK of the segment location parameter,
but with the added benefit of robustness to extreme outliers.

We have shown that using the biweight loss with a penalty for
adding a changepoint that isC1 log(n) for some suitable constant
C1 can lead to consistent estimation of the number of change-
points. IfK is chosen as suggested, it is natural to chooseC1 to be
similar to choices that are known to work well with the square-
error loss, as we did within Section 5.2. Such choices are not
guaranteed to produce large enough constants to ensure consis-
tency. If this is a concern, it is possible to use the idea behind that
strengthened Schwarz information criteria of Fryzlewicz (2014),
and choose a penaltyC1(log n)1+ε for some small ε > 0.

Care must be taken if there are violations of the iid assump-
tion for the noise. In such cases, it is known that consistent
estimation of the number of changepoints is still possible if we
appropriately inflate the penalty (Lavielle and Moulines 2000),
and we would suggest using a similar inflation when using the
biweight loss. Choosing how much to inflate is difficult in prac-
tice, and thus it makes sense to try a range of penalties (which
can be done efficiently, e.g., using the CROPS algorithm of
Haynes, Eckley, and Fearnhead 2017a). For applications that
involve analyzing multiple similar datasets, we would recom-
mend using a small set of training data to help choose an appro-
priate constant (see, e.g., Rigaill et al. 2013).

Finally, the joint choice of K and β can be informed by the
minimum segment length that can be inferred for such a choice;
see Theorem 2. To have robustness to extreme outliers we need
this minimum segment length to be greater than 1. Equally, it
should be chosen to be smaller than the shortest segment we
wish to identify. This choice is linked to the question of how
many similar observations would we require before we would
classify them as coming from anew segment as opposed to being
correlated outliers.

SupplementaryMaterial
The supplementarymaterial contains Appendices in which proofs of results
are given.
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