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Streptococcus thermophilus, an extensively used lactic starter, is generally produced
in yeast extract-based media containing a complex mixture of peptides whose exact
composition remains elusive. In this work, we aimed at investigating the peptide content
of a commercial yeast extract (YE) and identifying dynamics of peptide utilization during
the growth of the industrial S. thermophilus N4L strain, cultivated in 1 l bioreactors under
pH-regulation. To reach that goal, we set up a complete analytical workflow based on
mass spectrometry (peptidomics). About 4,600 different oligopeptides ranging from 6
to more than 30 amino acids in length were identified during the time-course of the
experiment. Due to the low spectral abundance of individual peptides, we performed a
clustering approach to decipher the rules of peptide utilization during fermentation. The
physicochemical characteristics of consumed peptides perfectly matched the known
affinities of the oligopeptide transport system of S. thermophilus. Moreover, by analyzing
such a large number of peptides, we were able to establish that peptide net charge is
the major factor for oligopeptide transport in S. thermophilus N4L.

Keywords: Streptococcus thermophilus, yeast extract, peptidomics, oligopeptide, transport

INTRODUCTION

Lactic acid bacteria (LAB) are a group of microorganisms displaying a wide range of properties
making them suitable for various applications in fields such as health (Hill et al., 2017), chemistry
(Othman et al., 2017; Sauer et al., 2017), or cosmetics (Izawa and Sone, 2014). However, they
have been historically used for food production (Salque et al., 2013), and it still remains their
main outcome, in particular for dairy starters. Therefore, detailed information is available about
the growth of LAB in milk, especially regarding the proteolytic system responsible for their
amino nitrogen nutrition (Kunji et al., 1996; Christensen et al., 1999). When considering the
whole lifetime of dairy starters, the culture medium in which they are industrially produced also
represents an important substrate for these bacteria. In contrast to milk culture, less information
has been published on this particular step, although it is of great importance as it impacts both
production yields and technological functionalities of the starter (Ummadi and Curic-Bawden,
2008). Production media usually contain complex substrates such as cell or protein hydrolysates
that notably include yeast extracts (YEs), which are widely used for LAB industrial production.
YEs correspond to the soluble fraction of molecules released after either yeast autolysis or
controlled enzymatic lysis (Pasupuleti and Braun, 2008). They contain several classes of nutrients
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among which peptides that can represent more than 50% of
the total YE mass, depending on the manufacturing process.
They are thus mainly employed as amino nitrogen sources. If
the importance of peptides in milk cultures has been extensively
covered – especially with the LAB model Lactococcus lactis
(Juillard et al., 1995, 1998; Kunji et al., 1995; Helinck et al., 2003) –
less is known about their utilization in YE-based media.

On one hand, peptide utilization in YE naturally depends
on the composition of the peptide fraction, which precisely
constitutes the main hurdle to this study due to the abundance
and diversity of peptides composing these substrates. To the
best of our knowledge, the YE peptide fraction has only been
characterized up to now via filtration or chromatographic
fractionation strategies (Mosser et al., 2011, 2015; Spearman et al.,
2014, 2016), or by analyzing the composition in peptide-bound
amino acids (Kevvai et al., 2014, 2016). Nonetheless, the exact
nature of the peptides composing YEs still remains elusive, these
compounds are therefore commonly considered as black boxes
containing a complex mixture of undefined peptides.

On the other hand, peptide utilization is also dependent on
the transport machinery of the cultivated LAB. Indeed, the only
known LAB peptidases able to convert peptides into free amino
acids are intracellularly located (Christensen et al., 1999; Savijoki
et al., 2006). Several peptide transport systems are available in
LAB among which two are particularly well documented and
present in various species. The first one is the di- and tri-
peptide transporter DtpT, a secondary transporter belonging to
the PTR (peptide transport) family. It is a protein encoded by
a single gene and constituted of 12 transmembrane domains
that couples peptide transport with the proton gradient (Hagting
et al., 1997). It has been identified in several LAB, among which
L. lactis (Hagting et al., 1994), Lactobacillus helveticus (Nakajima
et al., 1997), or Streptococcus thermophilus (Hols et al., 2005;
Goh et al., 2011). The second well-known system for peptide
uptake is an ABC (ATP-binding cassette) transporter dedicated
to oligopeptides (3 residues and more). It is known as Opp in
many LAB species, in particular in L. lactis where it has first
been characterized (Tynkkynen et al., 1993). It has also been
found in S. thermophilus where it has been named Ami due to
its high sequence homology with other streptococcal transporters
(Garault et al., 2002). Both Opp and Ami share a similar overall
genetic organization. They consist of five conserved proteins
organized in a single operon: OppDFBCA and AmiACDEF,
respectively. OppA and AmiA are lipoproteins anchored to
the cell membrane and devoted to peptide binding and
delivery to the translocon formed by OppBC/AmiCD. Peptide
internalization is enabled by the cytoplasmic membrane-bound
ATPases OppDF/AmiEF that energize the whole system upon
ATP binding and hydrolysis. However, the Ami system possesses
supplementary AmiA proteins, in opposition to OppA present
in only one copy, which is a characteristics of streptococci. Extra
AmiA proteins are located in other parts of the genome, and their
number is strain-dependent.

These two combined systems, DtpT and Opp/Ami, allow
for a large supply of various peptides to the bacterial cells.
However, peptide length is not the sole factor upon which
these carriers operate, as peptides are not indiscriminately

transported even when belonging to the adequate size range.
In the case of DtpT, it has been evidenced in several
species that it had a higher affinity for dipeptides over
tripeptides, preferred hydrophobic substrates and worked less
efficiently with cationic peptides (Nakajima et al., 1997; Fang
et al., 2000; Solcan et al., 2012; Martinez Molledo et al.,
2018). Concerning the oligopeptide carrier specificity, extensive
information is available about L. lactis Opp. Specifically,
in vivo, in vitro, and structural characterization data are
available (Tynkkynen et al., 1993; Juillard et al., 1995, 1998;
Detmers et al., 1998, 2000; Kunji et al., 1998; Lanfermeijer
et al., 2000; Charbonnel et al., 2003; Helinck et al., 2003;
Doeven et al., 2004, 2005; Berntsson et al., 2009, 2011).
In comparison, apart from its initial genetic identification
and characterization (Garault et al., 2002), only one in vivo
study has been performed on S. thermophilus Ami transporter
to determine its substrate preferences (Juille et al., 2005).
Complementary approaches based on the use of mixtures
of milk peptides showed that transport seemed to be in
favor of hydrophobic and positively charged oligopeptides,
whereas long anionic ones were never taken up. However,
this study was based on a limited number of peptides
notably resulting from the tryptic digestion of αs2-casein and
therefore presenting biochemical similarities such as a positively
charged C-terminal residue (Lys or Arg). One can therefore
question whether the trends shown by the consumption of
such limited and specific peptide mixtures are representative of
the Ami oligopeptide transporter specificities, and furthermore
whether they can be extended to a YE-based medium where
oligopeptides are abundant and available in the form of a
large complex mix.

In this study, we specifically aimed at qualitatively
characterizing the oligopeptide fraction of a YE-based growth
medium and monitoring the dynamics of oligopeptide utilization
occurring during the growth of an industrial S. thermophilus
strain. For that purpose, we developed a specific peptidomics-
based analytical pipeline combined with a dedicated data analysis
workflow. This whole approach revealed the complexity of the
YE peptide fractions as well as peptide utilization dynamics
that notably reflected the activity and the specificity of the
oligopeptide transporter Ami.

MATERIALS AND METHODS

Strain and Preculture Conditions
This work used S. thermophilus N4L (Proust et al., 2018), a PrtS-
positive, AmiA2-negative and AmiA3-positive industrial starter.
This strain also contains the gene encoding the DtpT transporter,
and does not possess the Ots peptide transport system present
in some other S. thermophilus strains (Goh et al., 2011; Jameh
et al., 2016). Therefore, DtpT and Ami are the only known
peptide transport systems identified in this strain. It was stored
at−80◦C in M17 broth (Terzaghi and Sandine, 1975) containing
1% (w/v) lactose and supplemented with 20% (v/v) glycerol. The
strain was routinely pre-cultured in M17 broth containing 5%
lactose at 42◦C.
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Bioreactor Culture Conditions
Bioreactor cultures were performed in a 1 l bioreactor system
BIOSTAT R© Qplus (Sartorius Stedim Biotech, Germany). Two
successive precultures were performed prior to inoculating
at 2% (v/v) the fermenters. The culture medium contained
(w/v) 6% lactose, 0.01% calcium chloride and 2% of YE
provided by Procelys (Maisons-Alfort, France) belonging to
the Nucell R© range notably dedicated to dairy starters. A pool
of vitamins as used in S. thermophilus chemically defined
medium (Letort and Juillard, 2001) was also added in the
culture medium in order to ensure repeatable and optimal
growth performances similar to those obtained with equivalent
Tween 80-containing media (data not shown). Tween 80 is a
growth factor widely used for LAB cultures (Williams et al.,
1947). However, it is a highly ionizable compound known
to disrupt mass spectrometry analyses (Jäpelt et al., 2016)
and thus was not useable in this study. The YE fraction of
the medium was sterilized by heat treatment along with the
bioreactors for 20 min at 120◦C. The other components were
sterilized by a 0.22 µm pore-sized polyethersulfone membrane
(Millipore, Guyancourt, France). The initial pH was adjusted
beforehand to 6.6 with sodium hydroxide 2 M. The batch
fermentations were carried out during 6 h at 40◦C, the stirring
was fixed at 50 rpm and the pH regulated at 6.0 with sodium
hydroxide 2 M. Pseudo anaerobic conditions were set up by
sparging nitrogen at 0.2 l/min in the growth medium for
1 h before inoculation, and in the headspace at the same
flow rate thereafter. Growth was followed by optical density
(600 nm) measurement and by online monitoring of the
volume of base added.

Three independent cultures were carried out during which
samples were collected each hour for the first repetition. In order
to maximize reproducibility, samples from the two subsequent
repetitions were taken when the added volumes of base reached
the corresponding levels of the first repetition.

Yeast Peptide Identification
YE peptides in the culture medium were identified using an
approach adapted from a previous work (Guillot et al., 2016).
Bacterial cells were first discarded from the fermentation samples
by centrifugation (3000 g, 10 min, 4◦C). The peptide-containing
supernatants were filtered using a 0.22 µm pore-sized PVDF
membrane with low protein binding properties (Millipore).
Trifluoroacetic acid (TFA) and acetonitrile (ACN) were then
added at final concentrations of, respectively, 0.1 and 5% (v/v).
The mixes were centrifuged (3000 g, 10 min, 4◦C) after a one-
night storage at 4◦C, then ultrafiltered successively through
10 and 3 kDa cut-off Amicon R© Ultra-15 devices (Ultracel R©-
10K and Ultracel R©-3K membranes, resp., Millipore). The final
permeates went through a solid phase extraction step using a
200 mg StrataX R© cartridge according to manufacturer procedure
(Phenomenex, Le Pecq, France). Briefly, the activated cartridge
was loaded with 4 ml of sample, washed with 5% ACN
and 0.1% TFA, and peptides were finally eluted with 1.5 ml
of 50% ACN and 0.1% TFA in MilliQ water (Waters, St-
Quentin-en-Yvelines, France). The eluted fractions obtained were

then dried overnight in a Speed-Vac system (Savant, Thermo
Fisher Scientific France, Illkirch, France) and resolubilized in
400 µl of 0.1% TFA. Finally, the concentrates were ultrafiltered
once again through a 3 kDa cut-off Amicon R© Ultra-4 device
to remove potential insoluble materials which might clogg
column and spectrometer prior to a double chromatographic
separation (Figure 1A).

The first separation was performed on a Nucleoshell RP
18plus reversed-phase column (150 × 4.6 mm, 2.7 µm, 87.5 Å,
Macherey-Nagel, Germany) at 40◦C with an injection volume
of 25 µl corresponding to 250 µl of the initial supernatant.
A linear gradient of acetonitrile (1.6% per min) in ammonium
formate (20 mM, pH 6.2) was applied with a 0.7 ml per
min flow rate and fractions were collected every minute.
Preliminary analyses showed that the initial and last fractions
collected, respectively, before 5 min and after 25 min of the
chromatographic run contained less than 5% of the identified
peptides (data not shown) and thus were discarded. The
remaining 21 fractions were subsequently dried overnight in
a SpeedVac system and resuspended in 30 µl of 0.1% TFA
and 2% ACN in MilliQ water. Aliquots of 5 µl were analyzed
by a data-dependent tandem mass spectrometry approach on
the PAPPSO platform (INRA, Jouy-en-Josas). All the modus
operandi of the second chromatographic separation and peptide
m/z detection were the same as those previously described
(Guillot et al., 2016). Peptides were separated on a Pepmap C18
column (150 mm × 0.75 mm) at 300 nl/min with a gradient
of ACN in formic acid. Eluted peptides were analyzed online
on an LTQ-Orbitrap Discovery mass spectrometer (Thermo
Fisher Scientific). Peptide ionization was performed with a
spray voltage of 1.3 kV. Peptide ions were analyzed by the
data-dependent method as follows: full MS scan (m/z 350–
1,600) was performed on the Orbitrap mass analyzer and the
six most abundant doubly and triply charged peptides were
submitted to MS/MS analysis with a collision energy of 35%.
An exclusion window of 40 s was applied. Peptide identification
was performed with X!Tandem version 2015.12.15.2 (Vengeance)
and X!TandemPipeline (C++) version 0.2.16 (Langella et al.,
2016) on the protein sequence of Saccharomyces cerevisiae
S288C (version 2015-01-13)1. The main peptide identification
parameters were the following: no cleavage specificity, variable
methionine oxidation state and mass tolerance for parent and
fragment ions of ± 10 ppm and ± 0.4 Da, respectively.
Peptides were conserved when showing an E-value ≤ 0.05,
and only one peptide per parental protein was considered as
sufficient to enable identification. Contaminant peptides were
discarded using a standard proteomic contaminant database,
and the False Discovery Rate was estimated using the reversed
protein database.

Peptide Physicochemical
Characterization and Class Assignment
Peptides were characterized by nine different physicochemical
properties listed in Table 1. At the exception of the proportions of
aromatic residues and proline which were manually calculated, all

1www.yeastgenome.org
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FIGURE 1 | General workflow of the peptidomics analytical pipeline, starting from the experimental part (A) to the bioinformatic (B) and statistical analyses (C).
XTPC++, X!Tandem Pipeline (C++).

TABLE 1 | Peptide physicochemical properties and interval division used for
peptide barcoding.

Peptide
property

Details Interval 1 Interval 2 Interval 3

Length Number of amino acids ≤9 [10; 12] ≥13

GRAVY Grand average of
hydropathy index (Kyte and
Doolittle, 1982)

≤−2 ]-2; -0.5] >−0.5

Bulkiness Average section of amino
acid side chains, in Å2

(Zimmerman et al., 1968)

≤12.6 ]12.6; 14.7] >14.7

Polarity Average polarity of amino
acids (Grantham, 1974)

≤8.7 ]8.7; 10.1] >10.1

Net charge Normalized net charge
calculated at pH = 6.0
(Moore, 1985)

<0 [0;1] >1

Basic residues Proportion of lysine,
arginine and histidine

=0 ]0; 0. 12] >0. 12

Acidic residues Proportion of aspartic and
glutamic acids

=0 ]0; 0. 12] >0. 12

Aromatic
residues

Proportion of phenylalanine,
tryptophan and tyrosine

=0 ]0; 0. 12] >0. 12

Proline Proportion of proline =0 ]0; 0. 12] >0. 12

other properties were computed using the aminoAcidProperties
function of the R package “alakazam” version 0.2.8 (Gupta
et al., 2015). Default settings were kept for scaling and
normalization procedures.

Prior to differential analysis, peptides were grouped
together in classes based on their physicochemical closeness
(Figure 1B). For that purpose, a specific procedure was
performed in order to assign every identified peptide to a
unique physicochemical class. The range of each descriptor
was divided into three intervals (Table 1 and Figure 2).
For each physicochemical criterion, a given peptide can
belong to only one interval. The physicochemical class or
“barcode” of the peptide is then defined as the combination

of the respective intervals of the nine descriptors. As an
example, the peptide KGSIDEQHPRYGG belongs to the
class “321223322.” It is 13-residues long, therefore it belongs
to the interval 3 of length, its GRAVY index value is -1.73:
interval 2, and so on.

Statistical Analyses
Wilcoxon–Mann–Whitney (Wilcoxon, 1945; Mann and
Whitney, 1947) and Kruskal–Wallis (Kruskal and Wallis, 1952)
non-parametric tests were used in order to detect statistical
differences in peptide property distributions between 2 or
more than 2 groups, respectively. For that purpose, the ad hoc
functions of the R package “stats” version 3.4.3 were employed.

Differential analysis over time was performed on the
abundance of peptide classes with the R script MassChroqR
(version 0.3.8) of the MassChroQ pipeline (Valot et al., 2011).
A contingency table was generated beforehand that contained
the total spectral counts of each physicochemical class – i.e.,
the sum of the spectral counts of their constitutive peptides –
in each analyzed sample. Classes showing low abundance (<5
spectra in all samples) and little variations (less than 50% of
variation between the minimal and maximal average abundance
observed in the different samples) were discarded. Finally,
spectral count data of remaining classes were modeled via a
generalized linear model with a Poisson distribution. An analysis
of variance (ANOVA) was then performed using a Chi2 test to
detect significant variations in peptide class abundances with time
considered as factor of analysis. The generated p-values were
adjusted by a FDR procedure (Benjamini and Hochberg, 1995).
Classes showing an adjusted p ≤ 0.01 were considered as varying
significantly over time (Figure 1C). A kinetic profiling was
then manually performed in order to separate classes showing
either a decrease, increase or fluctuating variations over-time.
The physicochemical properties of peptides belonging to the
different kinetic profiles were then discriminated by a principal
component analysis (PCA) (R package “FactoMineR” version
1.41, Lê et al., 2008).
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FIGURE 2 | Physicochemical properties of the peptides initially present in YE before inoculation (t = 0 h). The three repetitions are represented separately. The x-axes
correspond to the scales specific to each physicochemical property. The y-axes represent the number of spectra observed. Vertical dashed lines indicate the limits
chosen for the definition of the intervals used for peptide barcoding (Table 1). As peptide length, hydrophobicity, bulkiness, polarity, and net charge show a
bell-shaped distribution, the limits were chosen so that they framed the profile peak. The remaining properties correspond to frequencies of specific types of residues
in the peptide amino acid composition. The first limit defines the “zero sub-class”: absence of the considered residues in the peptide composition, and the second
limit was arbitrarily fixed at 12%.

RESULTS

S. thermophilus N4L was cultivated in a YE-based medium in
1 l bioreactors. The peptide content of the culture supernatants
was monitored during growth using mass spectrometry. Peptide
identification was performed on the initial medium before
inoculation (t = 0 h) and then each hour from 3 to 6 h of growth,
corresponding to the exponential and the early stationary growth
phases (Supplementary Figure S1).

YE Contains a Large Number of Peptides
With Different Levels of Abundance
Between 1,300 and 1,700 distinct peptides were identified
per analyzed time point from approximately 1,900 to 2,600

TABLE 2 | Summary of peptide identification during growth of S. thermophilus
N4L in a YE-based medium.

t = 0 h t = 3 h t = 4 h t = 5 h t = 6 h

Peptides 1560 ± 69 1742 ± 63 1514 ± 123 1402 ± 124 1290 ± 107

Total spectra 2294 ± 86 2596 ± 119 2211 ± 157 2010 ± 198 1863 ± 190

Means of 3 independent repetitions ± standard deviation.

fragmentation spectra, depending on the point considered
(Table 2). These values were consistent within biological
repetitions as indicated by the low coefficients of variation
(average variation around the mean of 7% both at peptide
and spectra levels), showing a good reproducibility in terms
of number of identified peptides. Nevertheless, the qualitative
identification of peptides was not as effective, as, for a given
time, only an average of 55% of the peptides was identified
in all three repetitions. This confirms that non-tryptic peptide
identification in complex mixtures is still technically challenging,
as already discussed (Guillot et al., 2016). Combining all the
identifications from all time points and repetitions resulted in a
total of 4,598 distinct peptides identified (FDR < 1%) from 32,920
fragmentation spectra during the course of the growth.

To estimate peptide relative abundance, spectral counting is
considered as the simplest method in a label-free approach (Liu
et al., 2004; Colinge et al., 2005). Table 3 shows that the majority
of peptides (close to 80%) was actually scarcely identified with
only one spectrum per peptide. Even though label-free mass
spectrometry only allows relative quantification, these peptides
are likely to be either the less abundant ones, or to have poor
yields of detection. Nevertheless, some peptides generated larger
numbers of spectra. In particular, the top ones (more than 10
spectra per peptide) represented less than 1% of the identified
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TABLE 3 | Average number of peptides identified as a function of their
relative abundance.

Number of
spectra per
peptides

t = 0 h t = 3 h t = 4 h t = 5 h t = 6 h

More than 10 11 ± 0 14 ± 9 9 ± 1 11 ± 2 10 ± 4

From 5 to 9 40 ± 5 44 ± 8 37 ± 4 25 ± 5 27 ± 1

From 2 to 4 272 ± 18 316 ± 5 273 ± 22 252 ± 37 230 ± 40

1 1236 ± 55 1369 ± 60 1195 ± 102 1113 ± 86 1023 ± 67

Means of 3 independent repetitions ± standard deviation.

peptides in each sample but 5–10% of the total number of spectra.
Thus, they are likely to be the most abundant in the medium. All
these data provide evidence that this YE contains a high peptide
diversity with a few of them being over-abundant.

Peptide Physicochemical Properties
Each identified peptide was characterized by a combination of
nine physicochemical properties. These properties have been
chosen to describe comprehensively YE peptide diversity. They
are summarized in Table 1. The internal distributions of each
property calculated from the initial medium peptidome (before
inoculation, t = 0 h) are represented in Figure 2. No significant
difference could be detected (p ≤ 0.01) between the three
repetitions, and the other time points of analysis showed good
reproducibility as well (Supplementary Figure S2).

Most of the nine physicochemical properties of the peptides
initially identified were distributed within a relatively broad
range, reflecting a large physicochemical diversity. The detected
peptides were mostly hydrophilic, had a median net charge
slightly positive, and their average bulkiness was close to 14
Å2 which is moderately inferior to that of the mean of the 20
standard amino acids, ca. 15.4 Å2 (Zimmerman et al., 1968). This
last finding suggests a slight over-representation in the yeast-
derived peptide sequences of relatively small residues. Finally,
these identified peptides showed an average length of 10 residues,
although this observation has to be tempered by the specificities
of the analytical pipeline. Indeed, the upper length limit was
driven by the purification process employed and more specifically
by the 3 kDa ultrafiltration steps, while the lower limit – no
detection of peptides shorter than 6 residues – was a direct
consequence of the chosen mass spectrometry range detection
(350–1,600 m/z).

Identification of Peptide Kinetic
Dynamics
The YE is composed of a large number of peptides displaying
various physicochemical properties. This inherent diversity made
it suitable to study peptide utilization dynamics during the strain
growth. However, as previously described, most of the identified
peptides showed intermediate to low levels of spectral abundance
(Table 3), which limits the relevance of a kinetic study directly
at the single peptide scale. Therefore, in order to identify which
peptides were utilized and on which physicochemical basis, a
specific analytical workflow was developed. The underlying idea

was to pool peptides showing close physicochemical properties
into groups in order to combine their spectral counts and
therefore perform the study not with individual peptides but
on a larger scale (see section Materials and Methods section
for explanations about the grouping procedure). The limits of
each interval chosen during the grouping were fixed according
to the internal distribution of each physicochemical property
established from the initial peptidome (t = 0 h) before inoculation
(see Figure 2 for the representation of these intervals and
the general rules regarding their constitution). Theoretically,
there are 39 = 19,683 different possible classes or “barcodes.”
Practically, not all are physically possible or exist biologically, and
experimentally only 1,308 were identified here. On this total, 612
classes (47%) contained only one peptide, whereas the top three
most abundant classes pooled 41, 45 (two ex aequo classes) and
53 peptides, respectively.

After determining their relative abundance by summing the
spectral counts of their constitutive peptides, these classes were
submitted to statistical analyses (Figure 1C). A first filter was
applied to remove all classes showing low levels of abundance
(less than 5 spectra per class) as their quantification over time
would not be relevant. At this step, 1,040 classes were discarded,
i.e., 80% of the total. Then, a second filter was used on the 268
remaining abundant classes in order to remove those considered
largely constant, i.e., showing less than 50% of variation between
their minimal and maximal abundance values in the different
samples. A total of 45 classes (3%) matched this description
and were not included in the following differential analysis. An
analysis of variance was finally performed on the 223 remaining
abundant classes that showed sufficient variation amplitude.

A total of 49 classes were declared as varying significantly
over time at the threshold of an adjusted p ≤ 0.01. Their
kinetic profiles are depicted in Supplementary Figure S3. These
profiles were classified into 3 different groups: classes showing an
unambiguous decrease (36 classes) or increase (2 classes) over
time, and classes whose time-course evolution was fluctuating
(11 classes). However, on a bacterial physiology point of view,
it is of interest to characterize not only peptides that are
utilized by the strain but also those that are left aside in the
external medium. On this basis, the former 45 constant classes
that were discarded during the second filtering procedure were
therefore reintegrated with the 49 others for the last part of
the analysis. In total, 94 classes were selected and can thus be
classified into four different profiles whose main characteristics
are given in Table 4. They enclosed a total of 1,060 different
peptides, which represents about 23% of the total identified
peptides (4,598), but enclosed about one third (10,412) of the
total spectra (32,920) assigned during the whole experiment.

TABLE 4 | Characteristics of the kinetic profiles.

Decreasing Increasing Constant Fluctuating

Number of classes 36 2 45 11

Total number of peptides 342 50 584 84

Total number of spectra 2785 617 6374 636
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The remaining classes corresponded to the combination of low
abundance classes and abundant ones whose variations were not
detected as significant.

Linking Kinetic Profiles to Peptide
Composition
In an attempt to correlate those different kinetic dynamics
with the physicochemical properties used to design the former
selected classes, a PCA was performed (Figure 3A). The
two first components explained more than 60% of the total
inertia. With the exception of peptide bulkiness and proline
content, all other peptide properties were well represented
with correlation coefficients > |0.6| on these axes. In order
of importance, the first axis separated the peptides according
to their polarity, acidic content, charge, hydrophobicity and,
to a lesser extent, peptide bulkiness. The second axis mostly
wore the information of the basic and aromatic content as well
as peptide length. Proline frequency was equally supported by
both axes. This representation allowed the segregation of the
four kinetic profiles previously identified (increasing, decreasing,
constant, fluctuating).

Peptides belonging to both constant and fluctuating profiles
were spread in wide and partially overlapping areas, reflecting a
common high physicochemical diversity. In contrast, decreasing
and increasing profiles were located in two specific and
distinct zones. Strikingly, decreasing profile corresponded to
exclusively positively charged peptides (Figure 3B) that were
also significantly shorter than average (p ≤ 0.01, median length
of 8 amino acids). The positive charge was the result of both
a higher and/or lower proportion of basic and acidic residues
than other peptides, respectively. Moreover, these peptides
were less polar, and they also contained a higher proportion
of hydrophobic residues. Their aromatic and proline content
was more variable and did not seem to constitute a relevant
discriminative factor. In contrast, increasing profile was made
up of exclusively negatively charged peptides that were also
significantly longer (median length of 11 amino acids) and
contained a higher amount of proline (median content = 18%).
Finally, peptides enclosed in constant and fluctuating profiles
displayed intermediate distributions regarding their length and
net charge. Their overall hydrophobicity was not significantly
different to that of increasing profile, and both displayed low and
similar proline content. As an illustration, the most abundant
peptides belonging to each of these kinetic profiles as well as their
spectral abundance evolution are given in Table 5.

DISCUSSION

By using a mass spectrometry-based approach coupled with
appropriate statistical tools, we were able to shed light on the
peptide content of a yeast extract-based fermentation medium,
but also to identify on a large scale distinct patterns of
peptide abundance variations during the growth of Streptococcus
thermophilus. The YE displayed a high peptide diversity with
more than 4,000 distinct peptides identified. It possibly contains
even more peptides, as the identification of some of them is

still technically challenging (Guillot et al., 2016; Bingeman et al.,
2017). It seems to be a general feature of YEs, as similar results
have been obtained using another Nucell R© YE provided by
Procelys (data not shown). The number of identified peptides was
large enough with an appropriate physicochemical diversity to
enable a robust analysis of peptide utilization by S. thermophilus
N4L. By pooling peptides into physicochemical classes, we
were able (i) to identify consistent kinetic profiles, and (ii) to
compensate partially for the overall low relative abundance levels
of individual peptides. As this grouping procedure was based
on peptide physicochemical properties, which are known to be
leading factors for their use by bacteria, the temporal evolutions
observed in selected classes can reasonably be considered to
mainly reflect peptide utilization dynamics of the strain N4L.

Four relevant kinetic profiles of peptide utilization have
been observed: stagnation, decrease, increase and fluctuation
of spectral counts over time. These patterns might come from
two plausible origins: transport inside the cells, and/or peptide
cleavage mediated by an extracellular hydrolytic activity. This
last case is especially suggested by the presence of increasing
profiles. Indeed, as the fermentation was performed in batch
mode, the most likely explanation is that some peptides must have
been gradually hydrolyzed by the strain into smaller fragments.
These fragments can share the same barcodes as other peptides
of the initial medium. Some of them are likely to be used by the
strain, and do not accumulate in large amounts in the medium.
Some others are not, and progressively accumulate in the external
medium during the growth. This hypothesis is supported by the
fact that increasing classes are constituted of numerous scarce
peptides, many of which were only detected in the latter stages of
fermentation. The cell-envelope located protease PrtS is the most
plausible effector of this increase but the membrane-anchored
protease HtrA could also play a role (Guillot et al., 2016). The
hypothesis of a variation of some spectral counts due to cell lysis
cannot be completely ruled out. However, considering the high
number of intracellular peptidases in S. thermophilus and their
overall large panel of specificities (Christensen et al., 1999; Hols
et al., 2005; Savijoki et al., 2006), the hypothesis of a significant
peptide cleavage by intracellular peptidases released during cell
lysis is very unlikely. Otherwise, all classes of peptides would
have been impacted, regardless of their biochemical properties.
Therefore, the observed peptide dynamics can be explained as
follows: (i) decrease: transport and/or cleavage of initially present
peptides; (ii) increase: accumulation of cleavage products at a
higher rate than their transport (if any transport); (iii) stagnation:
neither transport/cleavage nor accumulation, or both at similar
rates; (iv) fluctuating profile: combination of transport/cleavage
and accumulation within the same physicochemical class at
various changing rates over time, or artifactual noise (peptide
identification variability).

In that respect, the presence of a large group of decreasing
basic peptides is noteworthy, and it is sensible to assume that
this decrease is predominantly the consequence of transport.
As a first reason, the decrease depended on the global
physicochemical property of the peptides, and not on their
amino acid sequence. This observation does not argue in
favor of hydrolysis by serine-proteases such as PrtS and HtrA,
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FIGURE 3 | (A) PCA representation of peptides enclosed within the different kinetic profiles observed. Each point represents a unique peptide. (B) Physicochemical
properties of the peptides constituting the four kinetic profiles identified. Each box plot displays the distribution of the values taken by all unique peptides included in
each kinetic profile. The boxes display the range between the first and third quartile of each distribution, and the central bold lines their median value. Individual
points are peptides considered as outliers.
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TABLE 5 | Spectral abundance of the most abundant peptides enclosed within the kinetic profiles.

Profile Peptide Class t = 0 h t = 3 h t = 4 h t = 5 h t = 6 h

Decreasing GTWQRPH 112233133 8 ± 3 4 ± 2 2 ± 1 0 ± 1 0 ± 0

KDIPVPKPK 123233213 11 ± 1 9 ± 2 8 ± 3 1 ± 1 1 ± 0

GFGRIGR 131133131 11 ± 2 4 ± 1 3 ± 3 3 ± 1 4 ± 1

RDEDKSKWMGK 212333321 8 ± 1 6 ± 2 5 ± 2 2 ± 1 1 ± 1

KYDSTHGRYAGE 221223331 17 ± 2 13 ± 4 3 ± 1 1 ± 1 0 ± 0

Increasing PVGNPEGPEKPN 222212313 3 ± 0 5 ± 3 9 ± 1 11 ± 2 11 ± 1

GNPIDGKGPID 222212313 2 ± 2 1 ± 1 2 ± 1 4 ± 2 3 ± 2

QERDPANLPWGSSN 322212323 2 ± 1 4 ± 3 6 ± 2 11 ± 2 9 ± 2

QERDPANLPWGSS 322212323 2 ± 1 1 ± 1 1 ± 1 7 ± 2 6 ± 3

Fluctuating YFHEDDKF 123213331 0 ± 0 9 ± 2 7 ± 0 2 ± 0 1 ± 0

SSKTNPKRDWF 223233232 1 ± 1 3 ± 1 2 ± 1 1 ± 1 2 ± 1

GKKLEDHPKF 223233322 0 ± 0 7 ± 1 5 ± 2 2 ± 0 2 ± 1

Constant IDAPGHRDF 122213322 9 ± 2 7 ± 1 9 ± 0 8 ± 3 7 ± 2

EKNVPLYKH 123233222 13 ± 1 12 ± 4 10 ± 1 9 ± 2 8 ± 3

YDSTHGRYAGE 221213331 12 ± 2 11 ± 3 11 ± 2 12 ± 2 11 ± 1

PLVGGHEGAGV 231112212 23 ± 2 30 ± 3 23 ± 4 28 ± 2 21 ± 0

PLVGGHEGAG 231112212 8 ± 1 10 ± 2 12 ± 1 13 ± 3 13 ± 1

Means of 3 independent repetitions ± standard deviation.

whose activity is known to be strongly dependent on the
amino acid sequence flanking the cleavage site (Perona and
Craik, 1995; Siezen and Leunissen, 1997). Then, the main
conclusion of our study is that this decreasing profile is firstly
linked to a systematic presence of a global positive net charge
combined with a significantly shorter length and a higher
proportion of hydrophobic residues. This description perfectly
matches that of the previously mentioned study performed
with a protease-negative strain on a small number of milk-
derived peptides (Juille et al., 2005). Our work, by relying
on a vastly higher number of peptides, not only consolidates
these former results but also suggests a dominant role of a
positive net charge for peptide transport. It is thus reasonable to
assume that most, if not all, of these decreasing peptides were
actually preferentially consumed by the strain and transported
inside the cells.

This transport was mediated by the Ami system which
is the only oligopeptide carrier identified in the strain. It
has been demonstrated in L. lactis that the oligopeptide-
binding protein (OppA) primarily determines the overall peptide
specificity of its cognate transporter (Doeven et al., 2004).
Similarly, the consumption of positively charged peptides by
S. thermophilus N4L is likely to be essentially dictated by
its own oligopeptide-binding proteins, namely AmiA1 and
AmiA3. Moreover, it has been formerly established in vivo
that peptide transport in both species displayed very similar
specificities (Juillard et al., 1998; Juille et al., 2005). Indeed, it
was shown that L. lactis also preferentially used hydrophobic
basic peptides ranging between 600 and 1,100 Da, although
this bacterium can accommodate surprisingly long peptides
up to 35 residues (Doeven et al., 2005), which is even
longer than the maximal size (24 residues) observed with
S. thermophilus (Garault et al., 2002). The ability of L. lactis
to carry various sizes of peptides and its preference for

hydrophobic peptides containing branched-chain amino acids –
in particular isoleucine – were explained later on thanks to the
crystallization of OppA (Berntsson et al., 2011, 2009). However,
an apparent discrepancy remains in the literature between
in vivo studies and structural characterization concerning
the role of peptide net charge in L. lactis OppA-based
selection. If this factor was determined in vivo as a major
feature for transport (Juillard et al., 1998), it has not been
identified as coming into play regarding binding mechanisms
in structural data. In that perspective, it is noteworthy that
the crystal structure of unliganded E. coli OppA binding site
had revealed a negatively charged surface responsible for the
preferential binding of basic peptides (Klepsch et al., 2011).
This finding was subsequently found to apply as well to
S. typhimurium OppA. Therefore, further work is needed to
elucidate the role of peptide charge both in L. lactis and
S. thermophilus, as corroborating evidence seems to indicate
that this factor may be a widespread requisite feature for
peptide transport.

Milk is considered as the natural ecological niche of
S. thermophilus. The main source of amino acids during growth
of S. thermophilus in milk are caseins. Analysis of amino acid
composition of ß- and k-caseins (the caseins mainly cleaved by
PrtS) reports a high prevalence of branched-chain amino acids
(22.5% of the total amino acids of the two proteins), suggesting an
efficient correlation between this amino acid composition and the
preferences of the Ami transport system underlined in the present
study. However, the frequency of positively charged amino acids
in the casein sequences is in the same range as that of negatively
charged amino acids (9.5 and 9.3%, respectively). As the positive
net charge of peptides exerts a key role for peptide transport,
it not anymore possible to connect the composition of charged
amino acids in caseins to the preferences of the Ami system. It
therefore indicates that the specificity of casein cleavage by PrtS
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will determine the capability of released peptides to be used by
S. thermophilus during growth in milk.

CONCLUSION

In conclusion, the identification of complex mixtures of peptides
by mass spectrometry, although still technically challenging, is
progressively gaining attention (Bingeman et al., 2017) and is
proving to be an excellent exploratory approach to unravel the
peptide content of complex media but also to study the diverse
oligopeptide utilization patterns of a bacterial species during its
growth. Combined with complementary approaches, it opens
avenues for further characterization and optimization of protein
hydrolysate-based culture media and could also be used to deepen
our knowledge of bacterial physiology.
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