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The ability to recognize an individual from their voice is a widespread ability with a long

evolutionary history. Yet, the perceptual representation of familiar voices is ill-defined.

In two experiments, we explored the neuropsychological processes involved in the

perception of voice identity. We specifically explored the hypothesis that familiar voices

(trained-to-familiar (Experiment 1), and famous voices (Experiment 2)) are represented

as a whole complex pattern, well approximated by the average of multiple utterances

produced by a single speaker. In experiment 1, participants learned three voices over

several sessions, and performed a three-alternative forced-choice identification task on

original voice samples and several “speaker averages,” created by morphing across

varying numbers of different vowels (e.g., [a] and [i]) produced by the same speaker.

In experiment 2, the same participants performed the same task on voice samples

produced by familiar speakers. The two experiments showed that for famous voices,

but not for trained-to-familiar voices, identification performance increased and response

times decreased as a function of the number of utterances in the averages. This study

sheds light on the perceptual representation of familiar voices, and demonstrates the

power of average in recognizing familiar voices. The speaker average captures the unique

characteristics of a speaker, and thus retains the information essential for recognition; it

acts as a prototype of the speaker.

Keywords: familiarity, voice, identity, average, speech, recognition, prototypes, vowels

INTRODUCTION

Voice production involves the whole body, and as such the voice captures the physical
characteristics of a speaker, making it uniquely individual (Kreiman and Sidtis, 2011). Voices
are primary social signals used for the recognition of familiar individuals—a key aspect of social
interaction. Recognition of familiar voices, which transmit crucial information about a person, is a
widespread ability that has evolved in response to different environmental and behavioral demands
(Sidtis and Kreiman, 2012). Over a lifetime, human listeners encode hundreds of voices, and
maintain them in long-termmemory. Despite being of interest to a large variety of disciplines, from
psychology to forensic sciences through technology, the bases of this remarkable ability are not fully
understood (Kreiman and Sidtis, 2011; Podesva and Callier, 2015). We report two experiments in
which we investigated the neuropsychological processes involved in voice identity recognition.

Voice identity perception refers to both the recognition of unfamiliar and familiar voices (Van
Lancker and Kreiman, 1987; Van Lancker et al., 1989). While familiar voice recognition refers to
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the act of identifying a known voice, unfamiliar voice recognition
refers either to the act of deciding whether a previously heard but
unknown voice is presented again or the act of discriminating
between two voices presented successively. Familiar voice
recognition encompasses several levels of familiarity (Kreiman
and Sidtis, 2011; Blank et al., 2014) among them personally-
familiar voices and famous voices are those voices a listeners
has known for a long period of time, heard in different contexts
and associated with multiple pieces of semantic information and
feelings. To overcome difficulties in using personally-familiar or
famous voices, researchers often rely on the use of voices learned
during the course of an experiment (e.g., Von Kriegstein and
Giraud, 2006; Winters et al., 2008; Andics et al., 2010; Latinus
and Belin, 2011; Latinus et al., 2011). In general, voice learning
paradigms involve participants learning to associate names or
corresponding faces to the vocal material produced by different
speakers (Von Kriegstein and Giraud, 2006; Winters et al., 2008;
Andics et al., 2010; Latinus and Belin, 2011; Latinus et al., 2011).
Voice learning durations vary greatly across studies: from a
single training session lasting about 30 min (Von Kriegstein and
Giraud, 2006), to multiple training sessions spanning several
days (Winters et al., 2008; Andics et al., 2010; Latinus and
Belin, 2011; Latinus et al., 2011). Training sessions often include
several steps: (1) a familiarization step in which participants
learn the association between the voice and name/face; (2), a
recognition task in which participants perform an identification
task; (3) an evaluation phase, identical to the recognition phase
except that participants do not receive feedback. Training stops
either after participants reach a predefined number of training
sessions, or after they reach a pre-defined criterion in their
performance. Thus, laboratory learned voices, also referred to
as “trained-to-familiar voices” (Kreiman and Sidtis, 2011), form
a third level of familiarity, for which familiarity is acquired
from a learning phase, over a relatively short amount of time
(days/weeks) and little semantic information. Familiar voice
recognition and unfamiliar voice discrimination are separate
abilities that can be selectively impaired (Van Lancker and
Kreiman, 1987; Van Lancker et al., 1989). At the time, Van
Lancker and colleagues argued that familiar voice recognition
was impaired by lesions to the right parietal cortex, while a
deficit in unfamiliar voice discrimination was associated with
lesion of the temporal lobe of either hemisphere. Familiar voice
recognition, despite becoming increasingly more efficient during
development (Spence et al., 2002), is present at birth (Decasper
and Fifer, 1980) while voice discrimination is only mature at
the age of 10 (Mann et al., 1979). Therefore, multiple studies
agree that the perception of familiar and unfamiliar voices is
the result of different mechanisms. Yet, whether laboratory
training is rich enough to create artificially-learned voices that
match everyday learning remains an open question. A partial
answer comes from a recent review of neuroimaging studies
in healthy adults, which highlights different neural substrates
involved in the recognition of trained-to-familiar voices and
familiar person recognition (including both personally-familiar
and famous individuals; Blank et al., 2014). Familiar person
recognition involved an extended brain network in the bilateral
anterior temporal lobe and right posterior cingulate cortex; on

the contrary trained-to-familiar voices activated bilateral frontal,
temporal and parietal regions. Thus, it appears that trained-
to-familiar voices do not behave as truly familiar voices. The
studies presented here aim at strengthening our understanding
of voice perception by looking at how voices are encoded in the
brain, and how different types of familiarity influence this. In
two experiments we investigated the perceptual representation of
voices of varying degrees of familiarity.

Despite high intraspeaker variability, listeners are relatively
good at perceiving voice identity even across large variations
in sound quality and content (Van Lancker et al., 1985;
Schweinberger et al., 1997a; Nakamura et al., 2001; Belin
et al., 2011; Kreiman and Sidtis, 2011). The combination of
acoustic cues carrying information about a speaker’s identity
is complex and largely unknown. Most research assumed and
sought to identify a fixed set of acoustic cues implicated in voice
recognition (e.g., Murry and Singh, 1980; Lavner et al., 2000;
Schweinberger, 2001; reviewed in Kreiman and Sidtis, 2011).
For instance, it has been proposed that familiar speaker identity
is mainly conveyed by three acoustic features: the fundamental
frequency and the third and fourth formants (Lavner et al.,
2001). More recently, a study using professional impersonators
demonstrated that voice identity was mainly associated with
acoustic features reflecting the anatomy of the vocal tract, such as
the difference between the fourth and fifth formants (Lopez et al.,
2013). Using trained-to-familiar voices, adaptation to identity
was found only when the original configuration of the voice
was preserved, suggesting that voice identity is represented in
a complex pattern encompassing multiple acoustic information
(Latinus and Belin, 2012). To date, no studies have been able
to describe a universal set of acoustical parameters that could
reliably allow the identification of a human voice, suggesting that
familiar voices are rather encoded as a “Gestalt-like” complex
pattern (Kuwabara and Sagisak, 1995; Belin et al., 2011; Kreiman
and Sidtis, 2011; Sidtis and Kreiman, 2012; Schweinberger et al.,
2014). Consistently, identity priming in which the probe and
test stimuli differed physically only facilitates familiar voice
recognition, suggesting that familiar, but not unfamiliar, voices
are represented as a complex abstract pattern independent
of phonetic and linguistic information (Schweinberger et al.,
1997b). Yet, the nature of the processes involved in representing
familiar voices remains unknown. Here, we asked whether this
unique voice pattern could be approximated by the average of
varied utterances produced by a single speaker. This question was
addressed for both famous and trained-to-familiar voices.

We explored the processes involved in familiar and trained-
to-familiar voice recognition from very short voice samples.
We predicted that listeners would recognize familiar voices in
reference to a unique vocal pattern, well approximated by the
average of multiple utterances produced by a single speaker,
e.g., the “speaker average.” This speaker average combines all
characteristics of a speaker’s voice and represents the unique
vocal pattern of familiar speakers. Based on prior work on
face perception (Burton et al., 2005; Jenkins and Burton,
2011), we proposed that averaging several utterances from the
same speaker could approximate the speaker’s vocal pattern by
preserving the idiosyncratic information about the speaker, while
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eliminating environmental and intraspeaker variability. Under
this assumption, identity recognition performance is expected
to be better for speaker averages created artificially than for
original voice samples. Because there are differences in the neural
networks involved in processing trained-to-familiar and familiar
voices (e.g., Blank et al., 2014), this hypothesis was tested for both
learned (experiment 1) and famous (experiment 2) voices.

Here we investigated the neuropsychological processes
involved in voice identity perception. In two experiments, we
tested the hypothesis that familiar voice recognition involves
speaker averages. Participants performed three-alternative
forced-choice (3AFC) identification tasks on short voice samples
including original vowels uttered by the familiar speakers and
the speaker averages created through morphing several different
vowels uttered by the same speaker. In experiment 1, the voice
samples were from three trained-to-familiar female speakers.
In experiment 2, the voices were from three famous French
public personalities. We predicted that identity recognition on
the speaker average would be facilitated with respect to the
original voice samples (accuracy increases and/or response times
decrease). To this aim, we manipulated the number of utterances
included in the speaker averages by averaging together different
numbers of vowels uttered by a single speaker, expecting a linear
relationship between behavior (reaction times and accuracy) and
level of averageness (number of different vowels averaged). All
the studies described in the current manuscript have been carried
out in accordance with The Code of Ethics of the World Medical
Association (Declaration of Helsinski) and were approved by the
local ethics committee (Comité de Protection des Personnes Sud
Méditerranée I).

EXPERIMENT 1: INDIVIDUAL AVERAGES
IN TRAINED-TO-FAMILIAR VOICE
RECOGNITION

Methods
Participants
Thirteen native French speakers (mean age ± standard
error of mean (s.e.m.): 21.9 ± 1.17; 5 males) with self-
reported normal audition, normal vision and without cognitive
disorders, participated in the experiment. They provided written
informed consent and received monetary compensation for their
participation.

Stimuli
Voice samples were drawn from a database of native French-
Canadian voices (Baumann and Belin, 2010). Original recordings
were made in the multi-channel recording studio of Secteur
ElectroAcoustique in the Faculté de musique, Université de
Montréal. The speakers were instructed to utter multiple
vocalizations from sentences to vowels, through nonverbal
vocalizations. For the purpose of the experiment, we extracted
French vowels (IPA: [a], [e], [i], [o], [y], [u]) produced in isolation
manually with Audacity (Copyright (C) 1989, 1991 Free Software
Foundation, Inc.) from the original recordings of three female
voices. For the three to-be-learned voices, we extracted from

the original recordings 6 stimuli (one version of each of the 6
vowels, used in the experiment) as well as stories (n = 2) and
words produced in isolation (n= 23); the same words and stories
were used in the training phase for all trained-to-familiar voices.
The first story comprised 43 words and lasted on average 16.77 s
(±0.35 s); the second story comprised 59 words and lasted on
average 20.704 s (±0.25 s). All stimuli were normalized in energy
with Matlab-R2013 (The MathWorks, Inc., Natick, MA, USA).
Vowel duration for the three to-be-learned voices was 464 ms ±
(SD) 31 ms. Average duration of vowel [a] across the 10 speakers
was 427ms± (SD) 108ms.

Speaker averages
For each of the three speakers, five speaker averages, with
varying level of averageness, were created by morphing 2, 3,
4, 5, or 6 different vowels ([a], [e], [i], [o], [y], [u]) produced
by a single speaker using STRAIGHT (Speech Transformation
and Representation by Adaptative Interpolation of weiGHTed
spectrogram; Kawahara and Matsui, 2003) operating in the
Matlab2013 environment (MATHWORKS Inc., Natick, MA).
STRAIGHT performs an instantaneous pitch-adaptive spectral
smoothing in each stimulus to separate the contributions of
the glottal source and the supralaryngeal filtering to the voice
signal. Voice stimuli are decomposed by STRAIGHT into
five parameters that can be manipulated independently: f0,
i.e., the perceived pitch, formant frequency, duration (ms),
spectrotemporal density and aperiodicity. Landmarks to be put
in correspondence across the different vowels were manually
identified in the time-frequency space. Temporal anchors were
the beginning and end of production. Frequency anchors were
the first, second, third and fourth formants at onset and offset
of phonation; Praat (http://www.praat.org/) was used to ease the
identification of the first four formants (Boersma and Weenink,
2017). Speaker averages were then generated based on the
interpolation (linear for time and aperiodicity, and logarithmic
for the other parameters) of these time-frequency landmarks. For
each vowel included in the average, all parameters extracted by
STRAIGHT, but duration, were given equal weight e.g., a weight
of 1/2 on vowels [a] and [u] for speaker 1 was used to generate
the speaker average with an averageness level of 2; following the
same logic, a weight of 1/3, 1/4, 1/5, and 1/6 was used to create
speaker average of 3, 4, 5, and 6 vowels, respectively). The same
weight of 1/60 was applied to the duration parameter, resulting in
all speaker averages having the same duration of 471ms. For each
level of averageness, only one combination of vowels was used
and this was held constant across speakers, e.g., the individual
average of 2 vowels was always created by morphing [a] and [u].

Acoustic measurements (fundamental frequency, formant
dispersion and HNR) for the learned and famous voices are
reported in Table 1.

Procedure
Subjects sat in front of a screen in a quiet room. The
experiment was presented using Psychtoolbox in the Matlab
2007 environment. Stimuli were delivered binaurally through
Beyerdynamics (DT770 pro, beyerdynamic GmbH & Co. KG,
Heilbronn, Germany) headphones with a Steinberg UR22
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TABLE 1 | Acoustic measurements for trained-to-familiar voices and famous voices.

Trained-to-familiar voices Famous voices

F0 (Hz) FD (Hz) HNR (dB) F0 (Hz) FD (Hz) HNR (dB)

VOICE 1 VOICE 1

Original Vowel 220 1,132 17 Original Vowel 141 1,048 15

Morphs - 2 222 1,107 21 Morphs - 2 108 1,026 17

Morphs - 3 225 1,024 20 Morphs - 3 126 1,039 16

Morphs - 4 223 1,092 21 Morphs - 4 122 1,002 16

Morphs - 5 223 1,139 22 Morphs - 5 119 1,023 18

Morphs - 6 223 1,107 22

VOICE 2 VOICE 2

Original Vowel 243 1,088 27 Original Vowel 141 1,048 15

Morphs - 2 251 1,216 36 Morphs - 2 108 1,026 17

Morphs - 3 233 948 26 Morphs - 3 126 1,039 16

Morphs - 4 243 1,116 34 Morphs - 4 122 1,002 16

Morphs - 5 242 1,156 33 Morphs - 5 119 1,023 18

Morphs - 6 242 1,135 34

VOICE 3 VOICE 3

Original Vowel 214 1,089 14 Original Vowel 144 1,067 18

Morphs - 2 223 1,126 19 Morphs - 2 114 1,080 20

Morphs - 3 207 1,094 19 Morphs - 3 146 1,028 17

Morphs - 4 214 1,110 20 Morphs - 4 138 1,072 20

Morphs - 5 216 1,126 20 Morphs - 5 132 1,053 20

Morphs - 6 214 1,113 20

Note that famous voices were that of male speakers and trained-to-familiar voices were from female speakers.

(Steinberg Media Technologies GmbH, Hamburg, Germany)
soundcard.

Voice learning
Participants initially learned to recognize the same three female
voices (chosen at random from the 10 female voices) using a
standard three-step learning procedure, repeated over several
days until a predefined criterion (global performance above
66%—corresponding to the discrimination threshold in a 3-AFC
task; Kingdom and Prins, 2010) was reached (Latinus et al.,
2011). The three-step training session lasted about 20 min. In
an attempt to produce a relatively ecological learning of vocal
identity, participants heard different vocal items produced by the
three speakers, including sentences, words and vowels. The three-
steps were as follows: (1) a familiarization phase during which
subjects were instructed to listen carefully to stories voiced by
each speaker and learned to associate a name presented on the
screen with a particular voice; (2) a learning phase, during which,
subjects performed a 3-AFC identification task on both words
(n = 23) and vowels (n = 6), presented once—visual feedback
was provided on their response. After an incorrect response the
sound was repeated and the correct answer given; (3) a test phase
in which only vowels were presented and subjects performed the
3-AFC without feedback; each token was repeated 9 times. In
phase 2 and 3, stimuli were presented in random order with a
stimulus onset asynchrony (SOA) varying between 2.1 and 2.5 s.
Participants were instructed to respond as fast and accurately

as possible. On average, training lasted 5.8 days (range 3–10).
Performance at the last session (mean ± s.e.m. [bootstrapped
95% confidence interval - 95%CI] = 71% ± 1.17 [69% 73%])
was well above chance level [33%; T(12) = 32.46, p < 0.001],
confirming that participant learned to recognize the three female
voices.

Identification task
After voice learning, participants took part in a 3-AFC
identification task on vowels and speaker averages (averageness
levels 2, 3, 4, 5, and 6). Stimuli were repeated in order to keep
the number of trials per condition constant. Original vowels (N
= 6) were repeated 3 times, leading to 18 trials for the vowel
condition. For each level of averageness (2, 3, 4, 5, or 6), we
generated one speaker average, which was then repeated 18 times.
There were a total of 324 trials (6 vowels repeated 3 times ∗

3 voices, 5 averages repeated 18 times ∗ 3 voices) presented
randomly to the participants; ISI varied randomly between 2
and 2.3 s. Participants were asked to press one of three keyboard
keys corresponding to the learned identities. The response keys
were the same as those used in the training procedure and
corresponded to the first letter of the learned names. They were
instructed to respond as fast and accurately as possible; decision
did not interrupt the presentation of the voice. The experiment
took approximately 20 min including short breaks every 5 min.

Accuracy and response times, recorded from voice onset, were
collected for each participant.
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Statistical Analysis
In order to confirm that participants did indeed recognize the
voices, we assessed participants’ accuracy against chance level
(33%); to do so one sample t-tests were run for each of the 6
average levels (Table 2).

In order to test the hypothesis of a linear relationship between
performance and level of averageness (e.g., number of utterances
per average), which would indicate that familiar voice recognition
involved speaker averages, response times and performance were
analyzed using a regression coefficient analysis (e.g., Pfister
et al., 2013). A linear regression between level of averageness
(predictor or independent variable) and the dependent variable
(i.e., accuracy and RTs) was calculated for each participant. For
each individual participant; we extracted the coefficients (slope
and intercept) resulting from the linear regression. Note that
for accuracy, a positive slope reflects that performance improved
with level of averageness, that is voice morphs, with increasing
number of vowels, were recognized more accurately than original
voices; conversely, a negative slope indicates that voice morphs
were recognized less accurately than original voices. For RTs, a
positive slope indicates shorter RTs for the voice morphs than the
original vowels.

Slopes of the regression analysis were then tested against a
population mean of 0 (no slope) via one-sample t-tests (one
for accuracy, one for RTs) to assess the significance of the
linear regression at the group level. Statistical significance of
the one sample T-test was assessed via bootstrapping because
the regression coefficient distributions violated the normality
assumption: participants were sampled with replacement, a
T-value was estimated for the random sample and this
operation was repeated 10,000 times. Threshold T-values were
extracted by taking bootstrap values corresponding to the 95%
confidence interval of the sorted bootstrapped T values (accuracy
threshold [−3.07 1.82], RTs threshold [−2.66 1.92]). The test
was considered significant if the real T-value fell outside the
95%CI obtained by bootstrapping. P values were calculated
by counting the number of times the random samples gave
value of T greater than the empirical one. Reported effect
size is the Cohen’s dz, e.g., the standardized mean difference
effect size for within-subject designs as described in Lakens
(2013).

TABLE 2 | Recognition of trained-to-familiar and familiar voices.

Vowels per prototype

1 2 3 4 5 6

TRAINED-TO FAMILIAR VOICES

T (12) 10.19 2.88 4.85 3.83 4.58 2.97

p <0.0001 0.014 0.004 0.002 0.0006 0.012

Cohen’s dz 2.8266 0.7996 1.3440 1.0609 1.2691 0.8224

FAMILIAR VOICES

T (12) 7.52 5.2 14.8 8.65 8.62

p <0.0001 0.0002 <0.0001 <0.0001 <0.0001

Cohen’s dz 2.0858 1.442 4.1036 2.3984 2.3916

One-sample t-test against chance level.

Results and Discussion
Participants performed a 3-AFC identification task on
vowels and speaker averages. Speaker averages were built
by morphing together 2, 3 4, 5, or 6 different vowels
produced by the same speaker. Speaker identification was
significantly above chance level (33%) in all conditions [all
T(12)s > 2.88; all ps < 0.015–Table 2]. This result highlights
the robustness of speaker recognition by demonstrating
that listeners were able to identify speakers on brief
vowels, and generalize their strategy to stimuli that have
never been heard before, as is the case of the speaker
averages.

Correct responses and reaction times were analyzed by means
of a linear regression at the participant’s level. A negative linear
relationship occurred between the number of utterances per
speaker average and percent of correct identification {average
slope ± s.e.m. [95% CI] = −2.53 ± 0.44 [−3.32 −1.66]; T(12)

= −5.71; p = 0.0011; Cohen’s dz = 1.58–Figure 1A}: accuracy
decreased with an increasing number of vowels per average.
Response times were not significantly correlated with number
of utterances making up the speaker averages {average slope
± s.e.m. [95% CI] = −0.87 ± 8.35 [−15.86 15.704]; T(12)

= −0.104; p = 0.92; Cohen’s dz = 0.03–Figure 1B}. These
results show that, contrarily to our expectations, speaker averages
were not better recognized than original vowels, at least for
trained-to-familiar voices; they were actually more often wrongly
identified.

As previous research has highlighted differences in the
processing of familiar and trained-to-familiar voices, in the
next experiment, we explored the same hypothesis with famous
voices; that is we tested whether famous voices are represented
globally as complex patterns, well approximated by the average
of multiple utterances produced by a single speaker.

FIGURE 1 | Performance in the recognition of trained-to-familiar voices.

Percent correct (A) and response times (B; ms) are represented as a function

of the level of averageness (i.e., number of utterances per voice average). Gray

dots represent each participant’s data point. The black square represents the

average performance across listeners. In (A), the dotted line indicates chance

level. Black lines: linear regression built using the average slope and intercept

values obtained after performing the linear regression in each subject. The

slope was significantly decreasing in (A) indicating that performance worsened

with increasing number of utterances per average.
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EXPERIMENT 2: INDIVIDUAL AVERAGE IN
FAMOUS VOICE RECOGNITION

Methods
Participants
The same 13 participants participated in the experiment.

Stimuli
Voice samples in experiment 2 were extracted from speeches
found in video or radio sources from three famous male French
people. Five different vowels ([a], [e], [@], [o], [u]) were extracted
from continuous speech downloaded from the Internet, and
were normalized for energy. The five vowels were then morphed
together to create speaker averages comprising 2, 3, 4, or 5 vowels
following the procedure described in Section Speaker averages.
Stimulus duration was 362ms. For each level of averageness
(2−5), only one combination of vowels was used and this was
held constant across speakers.

Procedure and Analysis
Procedure was similar to that of Experiment 1. Participants
were exposed to the famous voices in order to freshen-up their
memories as follows: (1) they listened to a short sentence from
the 3 famous speakers, (2) they performed a 3AFC identification
task on vocal samples (15 trials) that were not used in the actual
experiment. Behavior was not recorded during training.

After this first exposure, participants took part in the 3AFC
identification task on vowels and speaker averages comprising 2,
3, 4, or 5 different vowels. Original vowels were repeated 3 times,
and each speaker average was presented 15 times, leading to a
total of 225 stimuli (5 vowels ∗ 3 times ∗ 3 voices+ 4 averages # 15
times ∗ 3 voices). Stimuli were presented in a random order with
an ISI varying randomly between 2 and 2.3 s. Participants were
asked to press one of three keyboard keys different from those
used for the learned identities; the key/identity association was
presented during exposure. The experiment took approximately
15 min with a break every 5 min.

Accuracy and response times, recorded from voice onset,
were collected for each participant. Statistical analyses were the
same as in experiment 1, but with 5 averageness levels (Table 2;
Figure 2). Threshold T-values were extracted by taking bootstrap
values corresponding to the 95% confidence interval of the sorted
bootstrapped T values (accuracy threshold [−1.96 2.29], RTs
threshold [−1.92 2.41]).

Results and Discussion
Speaker recognition was above chance level (33%) in all
conditions [all Ts(12) > 5.2; all ps < 0.001–Table 2]. A
linear regression analysis revealed a significant positive linear
relationship between the level of averageness and percent of
correct identification {average slope ± s.e.m. [95% CI] =

4.45 ± 0.89 [2.74 6.11]; T(12) = 4.997; p = 0.0006; Cohen’s
dz = 1.39–Figure 2A}: participants’ accuracy improved with
increasing number of vowels per average. Conversely, response
times decreased linearly with increasing number of vowels per
prototype {average slope ± s.e.m. [95% CI] = −29.14 ± 6.58

FIGURE 2 | Performance in the recognition of famous voices. Percent correct

(A) and response times (B;ms) are represented as a function of the level of

averageness (i.e., number of utterances per voice average). Gray dots

represent each participant’s data point. The black square represents the

average performance across listeners. In (A), the dotted line indicates chance

level. Black lines: linear regression built using the average slope and intercept

values obtained after performing the linear regression in each and every

subject. For famous voices, performance increased and RTs decreased

significantly with increasing number of utterances per average.

[−42.27−17.43]; T(12) =−4.43, p= 0.0017; Cohen’s dz= 1.23–
Figure 2B}. Speaker identification for famous persons was both
more accurate and faster for artificially created speaker averages
than for the original voices actually uttered by the speakers: the
more vowels were averaged the better was recognition.

COMPARISON OF EXPERIMENT 1 AND 2

To compare regression coefficients across experiments, we
performed paired-samples t-tests. Significant differences between
experiments 1 and 2 on accuracy {T(12) = −6.83; p < 0.001;
threshold T: [−2.11 2.34]} and RTs {T(12) = 3.37; p = 0.086;
threshold T: [−2.39 2.02]} were found. The slope for accuracy
was positive in experiment 2 while it was negative in experiment
1, showing that while performance improved with level of
averageness for familiar faces, it worsened for trained to familiar
voices. For RTs, the slope was significantly larger for familiar
voices than trained-to-familiar voices reflecting a significant
decrease of RTs with level of averageness for familiar voice
recognition only.

In order to test whether differences between experiment 1
and 2 could be attributed to (1) differences in recognition
threshold and (2) acoustic characteristics between the famous
and trained-to-familiar voices, we performed further analysis.
First, we compared recognition accuracy on the original vowel
sounds across experiment 1 and 2; this comparison showed no
significant difference in the recognition of trained-to-familiar
and famous voices [T(12) = 1.28; p = 0.23]. Then, we analyzed
three acoustical parameters (F0, formant dispersion, HNR) of the
original voices used in the experiments with Praats (Boersma and
Weenink, 2017). Voices are encoded in a multidimensional voice
space, which is an acoustic-based representation of voices whose
dimensions can be approximated by the fundamental frequency
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(F0), formant dispersion (i.e., average distance between formants
– FD), and the harmonic-noise-ratio (HNR; Latinus et al., 2013);
thus, wemeasured the distances between all the original tokens in
that space, in order to ensure that the physical distance between
stimuli did not account for the results. For each original vowel
we measured the three acoustical parameters, which were then
z-scored with respect to the average F0, formant dispersion and
HNR across all tokens produced by speakers of the same sex. The
Euclidean distance between vowels was then measured; a two
sample t-test on the Euclidean distance within the voice space
showed no differences in physical distance between the trained-
to-familiar voices and the famous voices [T(256) = −0.094;
p= 0.92].

GENERAL DISCUSSION

Understanding how the human brain recognizes familiar voices
is of crucial interest for psychological, and forensic sciences
but also for the development of automatic speaker recognition
technology. A challenge for these domains outside of psychology
is in developing short utterance speaker recognition systems in
order to facilitate speaker recognition when only small amounts
of data are available (Fatima and Fang Zheng, 2012). Here,
we investigated the cognitive mechanisms that enable efficient
speaker recognition from very short voice samples. In two
experiments, we tested the hypothesis that human listeners rely
on speaker averages, built through experience with multiple
utterances of a speaker, to recognize familiar speakers. As
previous studies have highlighted differences in laboratory-
learned and famous voices (Blank et al., 2014), this hypothesis
was investigated for both trained-to-familiar voices (Experiment
1) and for voices from public personalities (Experiment 2).
We found an advantage of speaker vocal averages over original
tokens for the recognition of famous, but not trained-to-familiar,
voices.

Our results confirmed that listeners are fairly good at
perceiving identity from very short voice sample (less than
500 ms; Van Lancker et al., 1985). Although voice recognition
performance is in general, well above chance, voice identification
is not infallible (Sherrin, 2015) and performance can appear
relatively poor. A large variability in identification performance
has been reported across studies, speakers and listeners (Papcun
et al., 1989; Lavner et al., 2001; Skuk and Schweinberger, 2013;
Sherrin, 2015). In particular, listeners’ performance strongly
depends on sample duration with longer samples yielding higher
accuracy (Schweinberger et al., 1997a; Kreiman and Sidtis, 2011;
Skuk and Schweinberger, 2013), with a peak of performance
observed for durations between 500 and 1,000 ms (Van Lancker
et al., 1985; Schweinberger et al., 1997a). Nevertheless, here
participants consistently performed above chance level, even for
the speaker averages. Recognition performance on the original
vowels was similar across the famous and trained-to-familiar
voices, suggesting that the training procedure was sufficient to
reach recognition levels similar to real-world familiarized voices.
Yet, results of the linear regression analysis suggest a qualitative
difference in the recognition of famous and trained-to-familiar

voices. For learned voices, performance decreasedwith increasing
numbers of voice samples in the averages, suggesting that,
for these voices, participants had not extracted/created an
abstract representation of the speakers. However, famous voice
recognition improved with increasing level of averageness. Even
though participants had never heard the averages, their accuracy
increased and their reaction times decreased as a function of
level of averageness. Andics et al. (2007) previously showed
that participants’ performance in a voice discrimination task
varied with the phoneme used to assess recognition. Better
performance was consistently observed for the neutral vowel
(the schwa – [@]) — a relaxed vowel pronunciation produced
when the vocal tract is in its neutral state (Andics et al.,
2007). In the current study, speaker averages, built by averaging
several vowel sounds, resemble the schwa (see Supplementary
Material). The schwa is produced by the vocal tract in its
neutral state, thus, representative of a speaker’s unique vocal
tract anatomy, regardless of noise, and environmental factors.
The smoothing of intraspeaker variability, naturally occurring
due to environmental noise and emotional expressions, during
voice averaging achieves the same result (e.g., a neutral, noise-
free, voice). This smoothing amplifies the diagnostic information
of an individual and results in more stable and robust person
representation (Burton et al., 2011; Jenkins and Burton, 2011). A
similar advantage of average was described for face recognition:
performance of human observers and automatic face recognition
improved with face prototypes (Jenkins and Burton, 2008, 2011).
The current study demonstrates for the first time the importance
of averages in recognizing familiar individuals from their voice.

These studies shed light on the mechanisms involved in
the recognition of familiar voices. While previous studies have
assumed that voice recognition relies on either a single acoustic
feature (e.g., F0) or a universal set of acoustic features (e.g. F0 and
first formant; Baumann and Belin, 2010), multiple studies have
failed in finding this common set (Lavner et al., 2000; Belin et al.,
2011; Kreiman and Sidtis, 2011). This led researchers to suggest
that neither a single parameter (Kuwabara and Sagisak, 1995)
nor a universal set of parameters (Kreiman and Sidtis, 2011) can
account for the perception of voice identity; reasoning instead
that voices are recognized as Gestalt-like patterns whereby all
acoustical features of an individual voice are processed as a whole
and integrated in a voice configuration (Kreiman and Sidtis,
2011; Latinus and Belin, 2012). Results of the studies described
here suggest that these patterns can be well approximated by
the average of multiple utterances produced by a single speaker.
Recognition of famous voices relies on matching incoming vocal
sounds to stored representations; we propose that this stored
representation, well approximated by the average of multiple
utterances of a speaker, corresponds to the individual prototype
of a speaker. Thus, familiar voices appear to be encoded as one
prototype rather than as a multiple of exemplars under different
environmental conditions.

We failed to show a similar effect with the trained-to-
familiar voices. This is surprising as participants’ performance
in the recognition of the trained voices was similar to that
observed for famous voice recognition. Moreover, previous
studies using a similar learning procedure have demonstrated
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that the procedure enabled an abstract representation of
a speaker’s identity, relatively independent from low-level
acoustical information, of the speaker’s identity (Latinus and
Belin, 2011, 2012; Latinus et al., 2011). Despite this, in the current
study, trained-to-familiar voice recognition did not improve
on individual averages, suggesting that the learning procedure
was not sufficient to emulate long-term memory storage of
the speaker prototype. Participants were better at recognizing
identity from tokens they had heard previously suggesting
a more exemplar-based representation of trained-to-familiar
voices. Differences between learned and famous voices suggest
that in order to become expert in recognizing an individual
from his voice, and to be able to generalize across various
utterances, one needs to build a robust representation of a
vocal identity—an individual norm. It could be hypothesized
that with the right amount of exposure to an unfamiliar voice
and social motivation, these features may be integrated into
a whole and stored in long-term memory as a prototype.
The current study does not test this hypothesis, however, it
demonstrated that voice learning as it was performed here,
despite extensive training and exposure to a large variety of
items produced by the speakers, was not enough to enable
the construction of stable, norm-based, representations of the
speakers.

Questions remain as to why voice learning, despite being
efficient in allowing a recognition abstracted from low-level
acoustical information, was inefficient in mimicking real-life
voice learning, and in creating a prototype: was the duration
too short? Or was it a lack of social motivation or interest
(Kreiman and Sidtis, 2011)? Indeed one caveat of using voice-
learning procedures is that the to-be-learned voices present no
personal relevance to the listeners and are not associated to any
semantic information. Voice learning has been shown to improve
by the concomitant presentation of a face (Sheffert and Olson,
2004; Von Kriegstein et al., 2008). It could be asked whether a
voice learning procedure in which the listener is provided with
more semantic information about the speaker, thereby raising
the social motivation for learning the voice would lead to the

emergence of norm-based representation of speaker and to the
modulation of the voice space. Possibly, varying the items used
in the learning procedure between training sessions would enable
the emergence of the prototype, by increasing the demands for a
robust representation generalizable across varying items.

CONCLUSION

Every speaker produces a signature vocal pattern, in which
acoustical features have a specific configuration. Listeners
naturally derive important social information from this vocal
signature. In the studies described here, we have shown that
this signature is well approximated by the average of multiple
utterances produced by one speaker. The average voice retains
the voice configuration of the speakers, and listeners used that
abstract representation to perform familiar voice recognition.
Furthermore, we showed that speaker representation based on
individual prototypes is present only for ecologically learned
identities.
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